Zusammenfassung: Kapitel III

- Eine steife Differentialgleichung ist eine Gleichung, wo bestimmte implizite Verfahren viel besser funktionieren als explizite Verfahren. Bsp: $\dot{y} = -1000y (1001e^{-t})$; $\dot{y} = Ay$ mit $\begin{pmatrix} -10 & 6 \\ 13.5 & -10 \end{pmatrix}$ (Fox, Goodwin (1949)).
- Die Lösung $y(t, t_0, y_0)$ des AWPs $\dot{y} = f(y), y(t_0) = y_0$ ist stabil (im Sinn von Lyapunov)
- (i) Die Lösung existiert für alle $t \geq t_0$.
- (ii) $\forall \varepsilon > 0, \exists \delta > 0 \text{ so, dass } \forall \Delta y_0 \text{ mit } ||\Delta y_0|| < \delta \text{ hat man } ||y(t, t_0, y_0 + \Delta y_0) y(t, t_0, y_0)|| < \varepsilon.$
 - Die Lösung $y(t, t_0, y_0)$ ist asymptotisch stabil \iff
- (i) Die Lösung ist stabil.
- (ii) $\lim_{t\to\infty}(y(t,t_0,y_0+\Delta y_0)-y(t,t_0,y_0))=0$ für eine Störung Δy_0 klein genug.
 - Sei das Problem $\dot{y} = Ay$ mit einer $n \times n$ Matrix A mit Eigenwerten $\lambda_1, \ldots, \lambda_n$. Das Problem ist stabil $\iff \operatorname{Re}(\lambda_i) \leq 0$ für $i = 1, \ldots, n$ und $\operatorname{Re}(\lambda_i) < 0$ falls dim(Jordan Block zu λ_i) > 1.

Das Problem ist asymptotisch stabil $\iff \operatorname{Re}(\lambda_i) < 0 \text{ für } i = 1, \dots, n.$

• Für ein Problem $\dot{y} = f(y)$, nennt man $y(t) = y_0$ ein Gleichgewichtszustand oder kritischer Punkt von f falls $f(y_0) = 0$.

Seien $f \in \mathcal{C}^1$ und y_0 ein kritischer Punkt von f:

Falls die Eigenwerte von $f'(y_0)$ Re $(\lambda) < 0$ erfüllen, dann ist $y(t) = y_0$ asymptotisch stabil. Falls ein Eigenwert von $f'(y_0)$ Re $(\lambda) > 0$ erfüllt, dann ist $y(t) = y_0$ instabil.

• Herleitung der Dahlquist-Testgleichung $y' = \lambda y, y(0) = 1 \text{ mit } \lambda \in \mathbb{C}.$

Die *Stabilitätsfunktion* eines expliziten Runge-Kutta Verfahrens ist gegeben durch das Polynom $R(z) = 1 + zb^T(1 - zA)^{-1}\mathbb{1}$, mit $z = h\lambda$, $b = (b_1, \ldots, b_s)^T$, $A = (a_{ij})_{i,j=1}^s$, $\mathbb{1} = (1, \ldots, 1)^T$.

 $S:=\{z\in\mathbb{C}:|R(z)|\leq 1\}$ ist das Stabilitätsgebiet eines expliziten Runge-Kutta Verfahrens.

Ein Verfahren ist A-stabil falls $\mathbb{C}^- \subset S$, d.h. $|R(z)| \leq 1$ für $Re(z) \leq 0$.

Das Stabilitätsgebiet eines expliziten Runge-Kutta Verfahrens ist beschränkt und so kann ein solches Verfahren nicht A-stabil sein. Deshalb muss man auf die Schrittweite h achten, wenn man solche Verfahren benutzen will.

• Das Stabilitätsgebiet von einem linearen Mehrschrittverfahren (LMV) ist $S := \{ \mu \in \mathbb{C} : \text{ alle Nullstellen von } \rho(\zeta) - \mu \sigma(\zeta) \text{ erfüllen } |\zeta_i(\mu)| \leq 1 \text{ und } |\zeta_i(\mu)| < 1 \text{ für eine mehrfache Nullstelle} \}.$

Das LMV ist A-stabil falls $\mathbb{C}^- \subset S$. Es folgt, dass falls $\mu = h\lambda \in S$ dann bleibt die numerische Lösung beschränkt.

Falls das LMV explizit ist, dann ist S beschränkt und das Verfahren ist nicht A-stabil. Die Adams-Bashforth-Verfahren sind dann nicht A-stabil.

Die root locus curve $\Gamma(\theta) = \frac{\rho(e^{i\theta})}{\sigma(e^{i\theta})}$ für $\theta \in [0, 2\pi]$ hilft uns um den Rand von S, ∂S , zu zeichnen.

Die k-Schritt-Adams-Moulton-Verfahren sind nicht A-stabil für $k \geq 2$.

Die zweite Dahlquist-Schranke sagt uns, u.a., dass das einzige A-stabile LMV mit Ordnung p=2 und Fehlerkonstante $C=\frac{-1}{12}$ die Trapez-Regel ist.

Ein Verfahren heisst $A(\alpha)$ -stabil für $0 < \alpha < \pi/2$ falls $S_{\alpha} := \{ \mu \in \mathbb{C} : |\arg(-\mu)| \le \alpha \} \subset S$.

• Für $s \ge 1$ eine ganze Zahl, $b_i, a_{ij}, c_i \in \mathbb{R}$ für $i, j = 1, \dots, s$. Das numerische Verfahren

$$\begin{cases} k_i = f(x_0 + c_i h, y_0 + h \sum_{j=1}^s a_{ij} k_j) & i = 1, 2, \dots, s \\ y_1 = y_0 + h \sum_{j=1}^s b_j k_j & \end{cases}$$

heisst ein s-stufiges Runge-Kutta Verfahren. Notation: $\begin{array}{c|c} c & a \\ \hline & b \end{array}$.

Das Kollokationspolynom u(x) vom Grad s zu den Stützstellen $0 \le c_1 < c_2 < \ldots < c_s \le 1$ ist definiert durch

$$\begin{cases} u(x_0) = y_0 \\ u'(x_0 + c_i h) = f(x_0 + c_i h, u(x_0 + c_i h)) & i = 1, \dots, s. \end{cases}$$

Das Kollokationsverfahren ist dann definiert durch

$$y_1 = u(x_0 + h).$$

Ein Kollokationsverfahren ist ein s-stufiges Runge-Kutta Verfahren mit

$$a_{ij} = \int_0^{c_i} \ell_i(\tau) d\tau \text{ und } b_i = \int_0^1 \ell_i(\tau) d\tau,$$

wobei $\ell_i(\tau)$ das Lagrange-Polynom vom Grad s-1 ist.

Beispiele: Gauss-Verfahren (s=1 Mittelpunktsregel), Radau-Verfahren (s=1 Implizites Euler-Verfahren), Lobatto-Verfahren (s=2 Trapez-Regel).

Die Stabilitätsfunktion eines Runge-Kutta Verfahrens ist gegeben durch die rationale Funktion

$$R(z) = 1 + zb^{T}(1 - zA)^{-1} \mathbb{1} = \frac{\det(I - zA + z\mathbb{1}b^{T})}{\det(I - zA)}.$$

Die Verfahren von Gauss, Radau und Lobatto sind A-stabil (Beweis: order star).

In Praxis: Implizites Euler-Verfahren, Trapez-Regel, BDF, Radau IIA, und das Beste: Radau 5.