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Task 1: The following MATLAB code generates (pseudo) uniform random variables

c l e a r a l l
rand(’state’,100) % set the state of Matlab’s function rand
U=rand
m=2;n=2;

5 UU=rand(m,n)

The above code returns a standard uniform random variable U (on the interval (0,1)) and an
m×n matrix UU containing independent uniform random variables. Further information can
be found under https://se.mathworks.com/help/matlab/ref/rand.html.
Play a little bit with this command to get familiar with.

The goal of the first task is to simulate a toss of a coin with probability of heads p using
uniform random variables generated by MATLAB.

Let U be a uniform random variable on (0,1) and 0 < p < 1. Consider the random variable X
defined by

X =
{

1 if U < p

0 if U ≥ p.

Show (by paper and pen) that P(H) := P("Head") = P(X = 1) = p (and also that P(T ) :=
P("Tail") =P(X = 0) = 1−p). To do this, use the formula, seen in the lecture, that allows you
to compute probabilities using a PDF.

Complete the following MATLAB code to simulate two toss of a fair coin (p = 1/2)

c l e a r a l l
rand(’state’,100) % set the state of rand
p= ... ;
U= ...

5 X=( ... <p) % first simulation
U= ...
X=( ... <p) % second simulation

Task 2: The goal of this task is to simulate normal random variables using uniform random variables
as seen in the previous task. To do so, we shall use the so-called Box-Muller transformation
(https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform) which
generates a pair of independent random variables (Z1, Z2) by transforming a pair of indepen-
dent uniform random variables (U1,U2) using the formula

Z1 =
√

−2ln(U1)cos(2πU2)

Z2 =
√

−2ln(U1)sin(2πU2).
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To illustrate the fact that Z1 and Z2 are normally distributed, we first generate n = 5000 pairs
of such normal random variables. We then plot the histograms of Z1 and Z2. The following
can be used to start this task

c l e a r a l l
rand(’state’,123) % set the state of rand
n=5000;
UU=rand(n,2); % n pairs of unif. RV

5 ZZ= ... ; % pairs of standard normal RV using Box-Muller
% plot the histograms
...
histogram( ... ,’Normalization’,’pdf’)
l egend(...)

10 ...

Feel free to increase n and compare the histograms with the true probability density function
of a standard normal random variable. This can be done using the definition of a Gaussian
function or the MATLAB command PDF (if you have the Statistics and Machine Learning
Toolbox).

What does the MATLAB function RANDN do? Can you use this function in your above
code?

Task 3: The goal of this task is to simulate a Brownian motion/Wiener process (W (t ))t∈[0,1].

(a) Write a Matlab code to simulate one realisation of a discretised Brownian motion on
[0,1] for different values of ∆t . Consider grid points given by tm = m∆t , where ∆t =
2−4,2−6, and 2−8. Use the definition of a Brownian motion to compute W (0), W (∆t ),
W (2∆t ), etc. Plot your numerical results.
You may use the following

c l e a r a l l
randn(’state’,100) % set the state of randn
% discretised BM for dt=2^(-4)
Tend= ... ;dt= ... ;N= ...;

5 W(1)= ...; % BM starts at 0 a.s.
f o r m=...
dW= s q r t(dt)*randn(1,1); % Wiener increment/normal rand. var.
W(m+1)= ... ; % iter. procedure using def. of BM

end
10 % plot W against time

f i g u r e(),
p l o t([0:dt:Tend],W,’b’,’LineWidth’,3)
...
% repeat the above for another step size dt

15 ...

(b) With the help of the above part, compute the mean of W (t ) over 20000 trajectories of
W (t ) on [0,1] with ∆t = 2−8. Plot your results.
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...
dW= s q r t(dt)*randn(M,N+1); % gen. M samples of Wiener increments
...
Wmean=mean(...);

5 ...

(c) Finally, in the same figure, display 5 sample paths of W (t ) and the mean over 50000
trajectories of W (t ) on [0,1] for ∆t = 2−8.

Task 4: The goal of this task is to simulate a stochastic process.

(a) Write a Matlab code to simulate one realisation of the discretised stochastic process
(gBM) X (t ) = X0 exp((µ− 1

2σ
2)t +σW (t )) for tm = m∆t , where µ= 2,σ= 1, X0 = 1 on

[0,1] with ∆t = 2−8. Plot your numerical results. Observe that you may use the previous
task to generate the Wiener process W (t ).

...
X(1)=X0; % the process X starts at X0
f o r m=1:N
...

5 % iter. to compute the process X, where W is Wiener proc.
X(m+1)=X0*exp((mu-0.5*sigma^2)*m*dt+sigma*W(m+1));

end
...

(b) With the help of the above part, compute the mean of X (t ) on [0,1] over 20000 trajec-
tories of X (t ) with ∆t = 2−8. Can you guess (more or less) the value of E[X (1)]?

(c) Finally, in the same figure, display 5 sample paths of X (t ) on [0,1] together with the
mean over 50000 trajectories of X (t ) for ∆t = 2−8.

Task 5: The main motivation for this task is to write a fast code for the simulation of a path of a
Wiener process/Brownian motion W (t ) for t ∈ [0,1], avoiding a FOR loop. To do this, we
shall use the MATLAB function CUMSUM. Study this function, understand and complete the
following piece of code. Compare with your result obtained in Task 3.

% Simulation of path of WP/BM
c l e a r a l l
randn(state, ... ); % set state pseudo random number generator
T=1;

5 dt=2^(-8);
...
t = 0:dt:T; % discrete time grid
dW = ... ; % generate Wiener increments
W = [0 cumsum(dW)]; % Brownian path

10 % plot the Brownian path
...
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Task 6: This task illustrates the numerical approximation by Euler-Maruyama’s scheme. Consider
the SDE (for times 0 ≤ t ≤ T )

dX (t ) =λX (t )dt +µX (t )dW (t )

X (0) = X0

with parameters X0 = 1,λ = 2,µ = 1,T = 1. For this particular problem, we know that the
exact solution reads X (t ) = X0 exp

(
(λ− 1

2µ
2)t +µW (t )

)
. Compute a discretised Brownian

motion over [0,1] with a very small discretisation parameter δt = 2−8. This is used to com-
pute our “exact solution” Xtrue. Apply Euler-Maruyama’s method with 3 different time
steps ∆t = 24δt ,22δt , and δt . Here, it is important to be on the same discretised Brownian
path as the one used for generating the exact solution. In three different figures, display one
realisation of the numerical solution together with the exact solution.

...
randn(’state’,100)
% parameters
lambda=2; mu=1; X0=1;

5 Tend=1; N=2^8; dt=T/N;
dW= s q r t(dt)*randn(1,N); % Brownian increments
% discretised Brownian path
W=...
% exact solution

10 Xtrue=X0*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W);

%% First EM approx.
R=2^4; Dt=R*dt; L=N/R; % L EM steps of size Dt = R*dt
Xem=z e r o s(1,L); % preallocate for efficiency

15 f o r j=1:L
Winc=sum(dW(R*(j-1)+1:R*j)); % Winc for EM on the same BM as above
Xem(j)= ... ; % iter. for EM scheme with step Dt

end
% first plot on first figure

20 ...
f i g u r e()
p l o t([0:dt:Tend],[X0,Xtrue],’k-’), hold on
p l o t([0:Dt:Tend],[X0,Xem],’r--*’), hold off
...

The expression Winc in the code above is computed as follows

Winc=W ( j∆t )−W (( j −1)∆t ) =W ( j Rδt )−W (( j −1)Rδt ) =
j R∑

k= j R−R+1
dWk ,

with dWk =W (kδt )−W ((k −1)δt ) the original Wiener increments.

Task 7: This task asks you to confirm numerically the weak order of convergence of Euler-Maruyama’s
scheme. Consider the SDE from the previous exercise with parameters λ = 2,µ = 0.1, X0 =
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1,T = TN = 1. Verify numerically that

eWeak
∆t :=

∣∣∣E[XN ]−E[X (tN )]
∣∣∣≤C∆t ,

where, for the exact solution, one has E[X (tN )] = E[X (1)] = eλ·1. In order to approximate
expectations, you may use a Monte-Carlo approximation with Ms = 50000 realisations of the
numerical solution.

In order to display the results in a loglog plot, one computes (for example) 5 different ap-
proximations with Euler-Maruyama’s method with step sizes ∆t = 2pδt , where δt = 2−10

and p = 1, . . . ,5.

...
Ms=50000; % number of paths sampled
Xem=z e r o s(5,1); % preallocate arrays containing num. sol.
f o r p=1:5 % take various Euler timesteps

5 Dt=2^(p-10);L=T/Dt; % L Euler steps of size Dt
Xtemp=X0*ones(Ms,1); % initial values
f o r j=1:L
Winc= s q r t(Dt)*randn(M,1);
Xtemp= ... ; % Ms EM approximation samples

10 end
Xem(p)=mean(...) ; % mean over Ms samples of EM at time Tend

end
Xerr=abs( ... - ... ); % weak errors
% loglog plots

15 Dtvals=2.^([1:5]-10); % array of time steps
f i g u r e(’units’,’normalized’,’outerposition’,[0 0 1 1])
l o g l o g(Dtvals, ... ,’ks-’,Dtvals, ... ,’r--’,’LineWidth’,2),
x l a b e l(’\Delta t’),
y l a b e l(’Weak Err.’,’Rotation’,0,’HorizontalAlignment’, ...

20 ’right’,’FontSize’,14)
l egend(’EM’,’Slope 1’,’Location’,’SouthEast’);
t i t l e (’Weak error: EM for geometric BM’,’FontSize’,10)
s e t(gca,’FontSize’,15);

Task 8: Consider again the SDE (geometric Brownian motion on 0 ≤ t ≤ T )

dX (t ) =λX (t )dt +µX (t )dW (t )

X (0) = X0

with parameters λ= 2,µ= 1, X0 = 1,T = TN = 1. Verify numerically that

estrong
∆t := E[|XN −X (TN )|] ≤C∆t 1/2,

where X (TN ) denotes the exact solution at time TN = 1 and XN the last step of Euler-
Maruyama’s method. In order to approximate the expectations, you may use Ms = 1000
samples.

5

david.cohen@umu.se


Mini-course on Stochastic Differential Equations
David Cohen (david.cohen@umu.se)

02−11 May 2018
Jaume I University

In order to display the results in a loglog plot, one computes (for example) 5 different ap-
proximations with Euler-Maruyama’s method with step sizes ∆t = 2pδt , where δt = 2−10

and p = 1, . . . ,5.

...
Xerr=z e r o s(Ms,5); % preallocate array error
f o r s=1:Ms, % sample over discrete BM
...

5 dW= s q r t(dt)*randn(1,N); % Brownian increments
W=cumsum(dW); % discrete BM
Xtrue= ...; % exact sol.
f o r p=1:5
R=2^(p);Dt=R*dt;L=N/R; % L Euler steps of size Dt=R*dt

10 Xtemp=Xzero;
f o r j=1:L
Winc= ...; % Wiener increm.
XEM= ...; % EM scheme

end
15 Xerr(s,p)=abs( ... - ... ) ; % error at T=1

end
end
% compute strong errors+plots
Dtvals=dt*(2.^([0:4]));

20 f i g u r e(’units’,’normalized’,’outerposition’,[0 0 1 1])
l o g l o g(Dtvals,mean( ... ),’ks-’,Dtvals,(Dtvals.^( ... )),’r--’, ...

’LineWidth’,2),
...

Some of the exercises are inspired by materials from E. Allen, D. Higham, H. Pishro-Nik, A.
Rakhshan, A. Szepessy.
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