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Abstract

We study questions of multiplicities of discriminants for degen-
erations coming from projective duality over discrete valuation rings.
The main observation is a type of discriminant-different formula in the
sense of classical algebraic number theory, and we relate it to Artin
conductors via Bloch’s conjecture. In the case of discriminants of pla-
nar curves we can calculate the different precisely. In general these
multiplicities encode topological invariants of the singular fibers and
in the case of characteristic p, also wild ramification data in the form
of Swan conductors. This builds upon results of T. Saito.
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1 Introduction and statements of re-

sults

The theory of discriminants is an old field which was recently re-
animated by the beautiful work of Gelfand-Zelevinsky-Kapranov (cf.
[GKZ94]). This article concerns questions about the multiplicities of
these discriminants along discrete valuation rings.
A motivating example of this article is the following. Let E be an
elliptic curve over a discretely valued field K with ring of integers R
which is henselian with algebraically closed residue field given by a
Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The discriminant of the equation is, for a1 = a3 = a2 = 0, given by
∆ = −16(4a4

3 + 27a6
2). Given a minimal Weierstrass model W, over

R so that ai ∈ R, a famous formula of Ogg ([Ogg67], also see [Sai88]
for a more general result and whose proof also repairs a gap in mixed
characteristic (0, 2) in the original article) states that for this minimal
Weierstrass model we have

ord ∆ = deg cEs2,E(ΩE/S) = −ArtE/S = mE − 1 + fE

where mE is the number of irreducible components in the Néron model
E (resp. fE the exponent of the conductor) of E over R. See below
for the other two terms. From the point of view of computing the
conductor, this formula is very powerful since Tate’s algorithm can be
implemented on a computer and actually allows us to find the minimal
Weierstrass model. In [Tat74], p. 192, Tate asks about Ogg’s formula:
”It would be interesting to know what is behind this mysterious equal-
ity”. Another famous formula is the Führer-Diskriminanten-produkt
formula in classical number theory which relates the discriminant of
a finite extension of local fields to the conductor. They are related
through the different by:

ord ∆L/K = ord NormL/K(δL/K) = ArtL/K

Both of these formulas relate different ways of measuring singularities,
the discriminant is somewhat of a geometric object, whereas the con-
ductor is an object built out of monodromy. The different in turn is
an object constructed out of the Kähler differentials (in the classical
context, this is [Ser80], III Proposition 14).
It seems that the first one to consider this connection in higher dimen-
sion was Deligne in [SGA7-2], Exposé XVI, where he conjectures an
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equality between the Milnor number of a point and the (total) dimen-
sion of the vanishing cycles in the same point. In [Blo87], Bloch then
conjectured a relation between a localized Chern class (see next sec-
tion for the definition) and the Artin conductor, for regular schemes
over a discrete valuation ring, which would correspond to the total
dimension of the vanishing cycles and the different in classical num-
ber theory. He proved it in relative dimension one. The statement is
that if X is regular and X → S is a flat generically smooth projective
morphism of relative dimension n with, S is the spectrum of a dis-
crete valuation ring with generic (resp. special) point η (resp. s, with
perfect residue field k(s) of characteristic p ≥ 0), then

deg cXs
n+1,X(ΩX/S) = (−1)n ArtX/S

where

ArtX/S := χ`(Xη)− χ`(Xs) +

2d∑
q=0

(−1)q SwHq(Xη,Q`)

where s and η are used to denote algebraic closures of the fields, χ`
denotes `-adic Euler-characteristic for ` 6= p and Sw denotes the Swan
conductor of the natural Galois representation acting on the various
cohomology groups (cf. introduction of [KS04], [Ser70], 2.1 or [Ser80],
chapter VI, for a general discussion on conductors). The major break-
through in this field was the article [KS04] which proved this relation
in full generality (assuming resolution of singularities).
The aim of the current article is to find computational formulas for
the order of the discriminant. A partial aim is to connect this to
Bloch’s conjecture recalled above, which is probably well-known to
specialists but which I have not been able to locate in the literature.
This amounts to finding relations between the ”different”, i.e. the
localized Chern class mentioned above, and the order of vanishing of
the discriminant in the sense of projective duality. This is essentially
Porteous’ formula.
We recall the setting. Let k be a field and X a smooth geometrically
integral variety of dimension n + 1 over k with a fixed k-embedding
X ⊆ PM . Suppose furthermore that the image of X is non-degenerate.
Then we define the discriminant variety (or dual variety) as the sub-
variety ∆X ⊆ P̌M defined by all the hyperplanes H ∈ P̌M such that
X ∩H is singular. The variety {(x,H) ∈ X × P̌M , x ∈ (X ∩H)sing}
of singular hyperplanes is the projective bundle P(N) over X where
N is the normal bundle of X in PM . The map P(N) → P̌M sending
(x,H) to H has schematic image ∆X and the map ϕ : P(N)→ ∆X is
called the Gauss morphism. The tautological hyperplane H in X×P̌M
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is naturally a family over P̌M . Their relations are summed up in the
commutative diagram

P(N) //

ϕ

��}}zz
zz

zz
zz

H
f

��

// X × P̌M .

p
zzuuuuuuuuu

X ∆X
// P̌M

(1)

In this article we will be mainly concerned with the case when the va-
riety ∆X is a hypersurface so that the Gauss morphism is proper and
generically finite. Then ∆X is defined by a homogenous polynomial
defined up to an element in k∗. When X = Pn and the projective
embedding is the d-th Veronese embedding we can also make a similar
construction over the integers. More precisely, for any homogenous
polynomial F of degree d in n+ 1 variables with coefficients in a ring
R, there is an element ∆F ∈ R, given by a universal polynomial in
the coefficients of F , which is invertible in R if and only if F defines a
smooth hypersurface in PnR (attributed to Demazure in [Sai12], section
2. See the same for a summary of the theory including further refer-
ences on the topic of discriminants of polynomials, and their precise
relations to dual varieties as described above).
The main results are the following. Over a field k, we calculate the
localized Chern class of the tautological family of hypersurfaces over
P̌M . As an application, we prove the following multiplicity formula
for a degenerating family of hypersurface sections:

Proposition 1.1. [Discriminant-Different formula] Let X be as above
and suppose ∆X is a hypersurface. Also suppose we are given a dis-
crete valuation ring R with spectrum S, and a morphism π : S → P̌M
such that the image is not contained in the discriminant. Denote by
H the pullback of the tautological hyperplane section H → P̌M , by Hs

the special fiber and by π∗∆X the pullback of ∆X to S. Then, for the
discrete valuation v on R,

v(π∗∆X) degϕ = deg cHs
n+1,H(ΩH/S).

We also provide the same type of formula for the Deligne discrim-
inant introduced in a letter [Del85] and studied in [Sai88], and in
particular remark that this discriminant is not always a discriminant
but sometimes the power of the discriminant (Proposition 3.1). The
proof is by a global computation followed by a standard specialization
argument. We include details since it involves intersection theory over
discrete valuation rings.
Part of the purpose of this article is to ask how to compute the lo-
calized Chern class in the case of non-regular total spaces. We give a
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precise answer using Deligne’s discriminant (Theorem 1.4 below) for
the case of families of curves. This is one of the main ideas in [Sai88]
and the results can be seen as a refinement of those results.
For homogenous polynomial equations and related discriminants we
can give a result valid over general discrete valuation rings, possibly
of mixed characteristics. Given a homogenous polynomial in n + 1
variables with coefficients in R, this defines a morphism π : S → P̌MZ
as above, where we think about the latter space as parameterizing
such polynomials. We denote as before H the pullback of H along π.
Writing ∆F = π∗∆d,n, we have:

Theorem 1.2. Suppose that F is a homogenous polynomial of degree
d in n + 1 variables with coefficients in a discrete valuation ring R.
For the classical discriminant ∆F , we have

v(∆F ) = deg cHs
n+1,H(ΩH/S)

The interest of these formulas is in the connection with the Bloch’s
conjecture recalled above, since this computes the right hand side in
case H is regular. Precisely, assuming resolution of singularities we
find, using [KS04], in any of the above situations:

Corollary 1.3. Suppose that H is regular and that R has perfect
residue field. Then

v(π∗∆) degϕ = (−1)n ArtH/S .

Remark 1.3.1. In particular, if P1 is a general line through P ∈ ∆X ,
the above multiplicity is then the definition of the intrinsic multiplicity
of the point P in ∆X which was studied over the complex numbers
in [Dim86], [Par91], [Nem88] where formulas in terms of (generalized)
Milnor numbers was given, and general formulas in terms of Segre
classes was given in [AC93]. In characteristic p, if we assume that the
singularities are isolated, a general line through P will define a smooth
total space over a pencil, and the formula of Deligne [SGA7-2], Exposé
XVI, Proposition 2.1 can be used together with general geometry of
pencils to prove that the multiplicity of the discriminant is the total
Milnor number in the sense of idem. The more general result when the
total space is regular around the singular fibers is covered by Bloch’s
conjecture.

The following theorem computes Deligne’s discriminant (cf. sec-
tion 3 for the definition) for a family of curves.

Theorem 1.4. Suppose X → S is a flat projective local complete in-
tersection morphism, with geometrically connected fibers of dimension
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one and S = Spec R the spectrum of a discrete valuation ring with
perfect residue field. Let ∆Del,X/S be the Deligne discriminant. Then

v(∆Del,X/S) = χ`(Xs)−χ`(Xη)+SwH1(Xη,Q`)+
∑

x∈π0(Xnon−reg)

µX,x.

where π0 denotes the connected components and µX,x is an invariant
of the surface singularity (see definition 1 in section 4).

In the case (X,x) is also an isolated surface singularity defined by
the zero of a holomorphic function f in C3, µX,x is equal to the Milnor
number of (X,x) by a formula of Laufer [Lau77] (a similar statement
is proved more generally in [Wah81] and [Ste83]). In the special case
that X is defined by a ternary form with coefficients in R, the above
gives the multiplicity of the associated discriminant.
In the complex geometric setting, when the special fiber has one com-
ponent with isolated singularities, this resembles the formula in Propo-
sition 1.2, Chapitre II of [Tei73]. In the pure characteristic p situation,
with X regular with reduced special fiber, a version of this result can
also be found in [Zin77] for discriminants of versal deformations.
Acknowledgements: I wish to thank Gerard Freixas, Takeshi Saito
and Jean-Benôıt Bost for interesting comments on various topics of
this article and Marc-Hubert Nicole for his careful reading of the
manuscript and for pointing out the reference [Zin77]. I’m also very
grateful for the many explanations Jan Stevens shared with me on sin-
gularities, and in particular for pointing out a formula for the Milnor
number of a normal surface singularity. This article also owes several
improvements to remarks and suggestions by Qing Liu. Finally, many
remarks from the anonymous referee greatly helped to improve the
exposition.

2 Discriminants and localized Chern

classes

For convenience of the reader we recall the following construction of
[Blo87]. Suppose that Y is an integral scheme of finite type over a regu-
lar scheme S. Let E = [E → E′] be a two-term complex of vector bun-
dles whose map is injective and whose cokernel is locally free of rank
n outside of a closed subscheme Z. Let CHi(Y ) denote the i-th Chow
group of Y over S of algebraic cycles of dimension i modulo rational
equivalence as in [Ful98], chapter 20.1. Then there is a bivariant class,
called the localized Chern class, for any m > n, which among other
things induces a homomorphism cZm,Y (E)∩ : CHi(Y ) → CHi−m(Z).
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This homomorphism only depends on the quasi-isomorphism class of
E . Now, let Y be a pure-dimensional integral scheme and f : Y → S
be a flat projective local complete intersection morphism of constant
relative dimension n which is generically smooth. Picking any factor-
ization of this morphism Y ↪→ PMS → S the cotangent bundle ΩY/S

has a 2-term resolution as above and outside of the f -singular locus
i : Z ⊆ Y it is locally free of rank n. We then in particular have an el-
ement cZn+1,Y (ΩY/S) := cZn+1,Y (ΩY/S) ∩ [Y ] ∈ CHdimY−n−1(Z). It has

the property that i∗c
Z
n+1,Y (ΩY/S) = cn+1(E) ∈ CHdimY−n−1(Y ). This

moreover coincides with the ”localized top Chern class” in [Ful98].
We consider next a smooth geometrically integral projective variety
X ⊆ PM , with non-degenerate image, of dimension n + 1 such that
∆X is a hypersurface in P̌M .

Proposition 2.1. Let ϕ : P(N)→ ∆X be the Gauss morphism. Then

ϕ∗c
P(N)
n+1,H(ΩH/P̌M ) = degϕ · [∆X ]

in CHM−1(∆X) = Z · [∆X ].

The following proposition is equivalent, and is a consequence of
Porteous’ formula. The below proof which we have chosen is by com-
puting degrees of the discriminant variety which seems more direct to
the author.

Proposition 2.2. [[Kle77], III.8] Let X ⊆ PM be such that ∆X is
a hypersurface. Consider the tautological hyperplane section H over
P̌M . Then

c
P(N)
n+1,H(ΩH/P̌M ) = [P(N)] ∈ CHM−1(P(N)) = Z · [P(N)].

Proof. (of Proposition 2.1) We suppose that ∆X is a hypersurface.
∆X is integral so it is obvious that

ϕ∗c
P(N)
n+1,H(ΩH/P̌M ) = c[∆X ]

for some integer c. To determine c, it suffices to calculate the class

of ϕ∗c
P(N)
n+1,H(ΩH/P̌M ) in CHM−1(P̌M ) = Pic(P̌M ) = Z, where the map

is the natural one sending ∆X to deg ∆X . Denote by L and L′ the
natural tautological line bundles O(1) on X and P̌M . Then H is cut
out by the section of L ⊗ L′ on X × P̌M determined by the dual of
(L⊗ L′)−1 → E ⊗ E∨ → O where E = OM . To compute c, we simply

compute the class p∗i∗c
P(N)
n+1,H(ΩH/P̌M ) = p∗cn+1(ΩH/P̌M ) in Pic(P̌M ).

We use the resolution

0→ L⊗ L′|−1
H → ΩX |H → ΩH/P̌M → 0
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and obtain by the Whitney sum formula:

cn+1(ΩH/P̌M )) =
∑

cn+1−i(ΩX)c1(L⊗ L′)i ∩ [H].

Since c1(L⊗ L′) ∩ [X × P̌M ] = [H], we have∑
cn+1−i(ΩX)c1(L⊗ L′)i∩[H] =

∑
cn+1−i(ΩX)c1(L⊗ L′)i+1∩[X×P̌M ].

Binomial expanding c1(L⊗ L′)i+1 = (c1(L) + c1(L′))i+1 we see that
the only terms that will give a contribution after applying pushfor-
ward are the terms of the form cn+1−i(ΩX)(i + 1)c1(L)ic1(L′). After
rewriting we obtain that the class is given by a generic hyperplane
times the number

(−1)n+1

∫
X

c(TX)

(1 + c1(L))2

where c(E) = 1+c1(E)+c2(E)+ . . . is the total Chern class. This was
calculated by Katz in [SGA7-2], XVII, Corollaire 5.6,, and is equal to
degϕdeg ∆X (correcting the typo in idem, the term (−1)r should be
(−1)dimX)). Also see [GKZ94], Chapter 2, Theorem 3.4, for a more
suggestive formulation.

Notice that even for a surface X the Gauss morphism might not
be birational. Indeed, by [SGA7-2], Exposé XVII, Proposition 3.5 and
Corollaire 3.5.0 the Gauss morphism associated to a smooth surface is
birational if and only if it is generically unramified if and only if there
is a non-degenerate quadratic singularity in some singular hyperplane
section. An explicit example of a smooth hypersurface whose dual is
a hypersurface but the Gauss morphism completely ramified is given
by a special Fermat hypersurface (cf. idem 3.4.2).

Consider the discriminant ∆d,n in P̌MZ , M =
(
n+d
d

)
− 1 parameter-

izing singular hypersurfaces of degree d in PnZ. This discriminant can
be defined as the resultant of the partial derivatives times a normaliz-
ing factor, d((−1)n+1−(d−1)n+1)/d (cf. [GKZ94], Chapter 13, Proposition
1.7). We then have the following proposition, which basically follows
from the definition given (cf. [Sai12], Section 2, in particular Lemma
2.5 and Proposition 2.8. It is called ”divided discriminant” in the
latter terminology):

Proposition 2.3. [∆d,n] = ϕ∗c
Hsing

n,H (ΩH/P̌M
Z

).

Thus the discriminant ∆d,n is an integral polynomial defined up
to sign and is controlled by the localized Chern class.
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Proof. (of Theorem 1.1 and 1.2) The proof is more or less a standard
specialization argument but we give the details since intersection the-
ory over discrete valuation rings requires some extra care. Let T be
the spectrum of one of the following: The spectrum of the base field
in the general case, and Q,Fp or the integers localized at p, Z(p) in
the case of polynomial hypersurfaces. Denote by ∆ the corresponding
discriminant variety in P̌MT which we suppose is a hypersurface. We
suppose Proposition 2.3 for the case of polynomial hypersurfaces. Let
now R be a discrete valuation ring with spectrum S and suppose we
are given a morphism π : S → P̌MT such that π(η) /∈ ∆, but π(s) ∈ ∆.
Without loss of generality we can suppose that S → T is faithfully flat,
and by base change we can also suppose that T = S, and π : S → P̌MS
is a section of the natural projection. Consider the Cartesian diagram
(see the diagram (1) for the notation)

H ′s
i //

��

f−1(∆)

��
H

j // H

.

Then, as j∗H = H, by defining properties of bivariant classes

c
H′s
n+1(ΩH/S)∩ [H] = c

f−1(∆)
n+1 (ΩH/Pn

S
)∩ [j∗H] = i∗c

f−1(∆)
n+1 (ΩH/P̌M

S
)∩ [H].

(2)
Also consider the Cartesian diagram

H ′s
i //

f ′

��

f−1(∆)

f

��
S ×P̌M

S
∆ i′ // ∆

.

By base change we have

f ′∗i
∗c
f−1(∆)
n+1 (ΩH/Pn

S
) ∩ [H] = i′

∗
f∗c

f−1(∆)
n+1 (ΩH/Pn

S
) ∩ [H]

= i′
∗

degϕ[∆], (3)

and i′∗ degϕ[∆] = degϕ[S×P̌M
S

∆] = degϕv(∆)[s] ∈ CH0(S×P̌M
S

∆) '
CH0(s). On the other hand, under the identification CH0(S×Pn

S
∆) '

CH0(s) ' Z, we have

deg c
H′s
d+1(ΩH/S) ∩ [H] = deg cHs

d+1(ΩH/S) ∩ [H].

Combining the last equality with (2) and (3) proves the proposition.
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3 Families of curves and Deligne’s dis-

criminant

Let X ⊆ PM be an embedding with non-degenerate image, with X
a smooth projective geometrically integral surface over a field k and
let L be OX(1). Consider the set P(N) = {(x,H), x ∈ (X ∩H)sing}.
The projection f : H → P̌M is now a relative curve whose singularities
form the space P(N) for N the normal bundle of X in PM and the
image of P(N) in P̌M is the discriminant of the embedding determined
by L. If k is of characteristic 0, a theorem of Ein (cf. [Ein86], par-
tially attributed to Landman and Zak) states that the dual variety of
a smooth surface is a hypersurface. The running hypothesis here is
that ∆X is a hypersurface.
Consider, for a line bundle M on H, the Deligne-Riemann-Roch-
isomorphism (cf. [Del87], p. 170)

(detRf∗M)12 ' 〈ω, ω〉〈M,Mω−1〉6

over the locus away from the discriminant. Here detRf∗ denotes the
determinant of the cohomology and 〈M,N〉 denotes the Deligne brack-
ets. The latter can be defined as the line bundle

detRf∗((M − 1)⊗ (N − 1)), (4)

where detRf∗(A − B) := detRf∗A ⊗ (detRf∗B)−1. Alternatively
we can define it étale locally on the base as the line bundle gener-
ated by symbols 〈`, `′〉 where ` (resp. `′) is a rational section of M
(resp. N) such that div(`) ∩ div(`′) = ∅. This is subject to some
relations (cf. [Sai88] for a discussion on discriminants and its relation
to the above theorem, and the formalism introduced in [Del87] for the
Deligne brackets). The purpose of this section is to provide a natural
interpretation of the discriminant as the degeneration of this rational
isomorphism over P̌M . In [Del85] Deligne calls this the discriminant
section, and verifies that it corresponds to the usual discriminant in
the case of degree d-curves in P2.
To calculate the degeneration we can suppose that k is moreover al-
gebraically closed. Let deg ∆X be the degree of ∆X in P̌M . Then

degϕdeg ∆X = deg c2(X) + 4gH − 4 + degX (5)

where ϕ is the Gauss morphism as above, and gH is the genus of a
generic hyperplane section H of X. This follows immediately from
the ”class formula”

degϕdeg ∆X = χ`(X)− 2χ`(X ∩H0) + χ`(X ∩H0 ∩H1)
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in [SGA7-2], Exposé XVII, Proposition 5.7.2, since for generic smooth
hyperplane sections H0 and H1, and we have χ`(X) = deg c2(X) (by
the Lefschetz trace formula), χ`(X ∩ H0) = 2 − 2gH and
χ`(X ∩H0 ∩H1) = degX.
The following appears in [Del85] under the headline ”remarque inu-
tile” in the special case of curves of degree d in P2. The general,
possibly surprising, result is that in fact the Deligne discriminant is
not a discriminant but the power of a discriminant in the setting of
projective duality. However, if one accepts that the localized Chern
class is the discriminant times the degree of the Gauss morphism,
this is not surprising since the Deligne-isomorphism specializes to the
Grothendieck-Riemann-Roch theorem in the Picard group where there
is the same c2-term which was calculated in the previous section. Thus
this perhaps makes the following proposition into another remarque
inutile, but it was also the motivating example behind this note.

Proposition 3.1 (Remarque inutile). The Deligne-isomorphism ex-
tends to an isomorphism

detRf∗(M)12 ' 〈ω, ω〉〈M,Mω−1〉6 ⊗O(degϕ∆X)

over P̌M .

Proof. It is not difficult to prove that the order of degeneration is
independent of the choice of line bundle (cf. [Eri11], proof of Proposi-
tion 3.3). To calculate the degeneration we can assume that we really
consider the isomorphism detRf∗ω

12 ' 〈ω, ω〉 over the smooth locus
(the Mumford isomorphism). It is also clear that the degeneration
is of the form O(c∆X), for some integer c, for the same reason as in
the previous section. We need to calculate c, which we will do by
calculating the degree of the various line bundles appearing in the iso-
morphism. Write L = L⊗L′ with notation as in the previous section.
In this case we have by adjunction, K = ω := ωH/P̌M = ωX ⊗ L|H
which admits a resolution

0→ ωX → ωX ⊗ L → ωX ⊗ L|H → 0

and so

detRf∗ω = detRp∗(ωX⊗L)⊗detRp∗ω
−1
X = L′

rk(Rp∗ωX⊗L)⊗trivial sheaf

and by Riemann-Roch for surfaces and the Noether formula we have

rk(Rp∗(ωX ⊗ L)) = χ(ωX ⊗ L) =
1

2
(L+K)L+ 1 + pa

=
1

2
(L+K)L+

1

12

(
deg c2(X) +K2

)
.
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If we have a relative Cartier divisorD, then 〈O(D),M,N〉 ' 〈M |D, N |D〉
for the multiple index Deligne brackets (cf. [Elk89], III.2.6), so we also
have

〈ω, ω〉 = 〈L, ωXL, ωXL〉X×P̌M/P̌M .

Using the formulas

〈f∗N,M1, . . . ,Mn〉 = NM1.....Mn

and
〈f∗N1, f

∗N2,M1, . . . ,Mn〉 ' O

where the upper indices indicate the intersection number (restricted to
any fiber, cf. loc. cit. IV. 2. 1.a and IV. 2.2 b iii), we deduce that the
line bundle 〈ω, ω〉 is L′ to the power of K2 + 4L(L+K)−L2. By the
adjunction formula we have L(K +L) = 2gH − 2. This in turn means
that the Mumford isomorphism induces an abstract isomorphism

detRf∗ω
12 ⊗ 〈ω, ω〉−1 = O(degϕ∆X)

since the various powers of L′ are:

(6L(K + L) +K2 + deg c2(X))− (K2 + 4L(K + L)− L2)

= deg c2(X) + 4gH − 4 + degX = degϕdeg ∆X ,

by the class formula (5).

We finish this section by a general remark on intersection theory
and Deligne brackets. If we have two Cartier divisors D and D′ on a
relative curve X over a discrete valuation ring R, whose supports don’t
intersect on the generic fiber, there is a well-known intersection prod-
uct between the two (cf. [Ser75] and [SGA7-2], Exposé X, Définition
1.5 and Proposition 1.6 iii). The latter reference only considers the
case when one of the divisors is concentrated on the special fiber, but
the argument goes through anyway):

D.D′ =
∑

(−1)iχ(Tori(OD,OD′)) = χ(OD ⊗OD′). (6)

If D is concentrated on the special fiber, and L is any line bundle on
L, one defines

D.L = degD L|D (7)

(see idem, Proposition 1.6 ii ). In any of the two above situations,
this defines a generic trivialization of 〈O(D),O(D′)〉.We record the
relation to the Deligne brackets for the next section (this statement is
implicit in [Fal84]).
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Lemma 3.2. Let X → S be a flat proper relative dimension 1 local
complete intersection morphism, with geometrically connected fibers,
over the spectrum of a discrete valuation ring R. Suppose that D and
D′ are two Cartier divisors on X such that generically they determine
non-vanishing sections of 〈O(D),O(D′)〉. Then the order of degen-
eration of this section is given by the intersection theory of divisors
described in (6) and (7).

Proof. By bilinearity we can suppose that both D and D′ are effective
and integral and not equal. Then we have an isomorphism of virtual
objects

(OX −O(D))⊗ (OX − L) ' OD(D)⊗ (L−OX) = L(D)|D−O(D)|D.

Applying the determinant to this is the definition of the Deligne bun-
dles in (4).
First suppose that D is concentrated on the special fiber. The or-
der of degeneration is given by the Zariski Euler characteristic of
L(D)|D−O(D)|D (this is proved by devissage). By the Riemann-Roch
theorem (cf. [Ful98], Example 18.3.4) this degD L|D, i.e. the intersec-
tion product in (7). The same argument goes through when D and D′

are two horizontal divisors which are not equal on the generic fiber,
defining a generic trivialization of 〈O(D),O(D′)〉, and proves that the
degeneration is given by (6).

In either case, we denote the above numbers by D.D′ (or D.L).
The definition for D.L as the degree of L along D also makes sense
when D is not a Cartier divisor. As above, one verifies that, for Cartier
divisors D and D′, D.π∗D′ = π∗D.D

′, where π∗ has to be interpreted
in the sense of pushforward of cycles of dimension 1.

4 Multiplicity of Deligne’s discriminant

In this section, let X → S be as in the theorem, i.e. a flat proper local
complete intersection morphism with S = Spec R and R a discrete
valuation ring R with perfect residue field, with smooth geometrically
connected fibers of dimension 1. In particular X could be the scheme
associated to

F (Z1, Z2, Z3) =
∑

i+j+k=d

aijkZ
i
1Z

j
2Z

k
3 = 0, aijk ∈ R

whenever F is generically smooth. Denote by ∆ = ∆Del,X/S the asso-
ciated Deligne discriminant. We are interested in the order v(∆), and
for the purposes of this section we can suppose R is henselian with
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algebraically closed residue field, or even its completion so that X is
necessarily excellent. It should also be noted that properties such as
regularity, normality or even openness of the regular locus in X over
the original R can be read off from base change to the completion
of the henselization (the first two properties are contained in Lemma
2.1.1 of [CES03], the last point follows from the fact that being an
open immersion is a fpqc-local statement).

By [Liu02], Corollary 8.3.51, we have a desingularization π : X ′ →
X, i.e. X ′ is regular and π is a proper birational and an isomor-
phism over the regular locus. Both X and X ′ are local complete
intersections so their dualizing sheaves are line bundles, and we write
ωX′/S = π∗ωX/S +

∑
biEi = π∗ωX/S + Γ for the exceptional divisors

Ei so that Γ is the discrepancy. Using [SGA7-2], Exposé X (as con-
sidered in Lemma 3.2), we have an intersection product Γ2. We con-
sider also the Zariski cohomology Euler characteristic(s) χ(cone[OX →
Rπ∗OX′ ]) = χ(π∗OX′/OX) − χ(R1π∗OX′) =: −pg. The individual
terms do not depend on the choice of regular model. In case X is
normal, by Zariski’s main theorem, π∗OX′/OX = 0 and pg is nothing
but the usual genus of the singularities defined as the dimension of the
k(s)-module R1π∗OX′ . Also consider the dimension one contribution
Y given by the Weil divisor π∗Γ. It is necessarily contained in the
non-normal locus and independent of the resolution. Then we have:

Lemma 4.1. Let X be as above. Then

v(∆Del,X/S)− v(∆Del,X′/S) = 12pg + Γ2 + 2 degY ωX/S .

Proof. Denoting by λ the determinant of the cohomology, the differ-
ence is measured by the difference of the two Mumford isomorphisms,
extended over S, which we write in the form

λ(OX′)12 ' 〈ω′, ω′〉+ v(∆Del,X′/S)

and
λ(OX)12 ' 〈ω, ω〉+ v(∆Del,X/S).

The difference λ(OX′)12 − λ(OX)12 is computed by considering the
lengths of the cohomology groups of the cone of OX → Rπ∗OX′ . This
is −12pg. We now prove that for line bundles L and M on X,

〈π∗L, π∗M〉 ' 〈L,M〉,

i.e. that the (identity) isomorphism on the generic point extends to a
global isomorphism. Using the cohomological definition of the Deligne
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brackets, the projection formula shows that the obstruction to obtain
a global isomorphism is measured by the Zariski Euler characteristics

χ((L− 1)⊗ (M − 1)⊗ π∗OX′/OX)

and
χ((L− 1)⊗ (M − 1)⊗R1π∗OX′).

But the sheaves π∗OX′/OX and R1π∗OX′ are concentrated on the
special fiber, and it follows directly from Riemann-Roch (for singular
curves) that both of these numbers are 0.

We are now ready to calculate the difference 〈ωX′/S , ωX′/S〉 −
〈ωX/S , ωX/S〉. By the above and Lemma 3.2 this is 〈ωX′/S , ωX′/S〉 −
〈π∗ωX/S , π∗ωX/S〉 = 2Γ·π∗ωX/S+Γ2 . Since Γ·π∗ωX/S = π∗Γ·ωX/S =
degY ωX/S by the projection formula the lemma follows.

Since now X ′ is a regular surface over S, using T. Saito’s formula
in [Sai88], since the generic fiber doesn’t change,

v(∆Del,X′/S) = −ArtX′/S = χ`(X
′
s)− χ`(Xη) + SwH1(Xη,Q`).

This gives

v(∆) = 12pg + Γ2 + 2 degY ωX/S + χ`(X
′
s)− χ`(Xη) + SwH1(Xη,Q`).

We recall a formula of Laufer for the Milnor number of a normal
surface singularity (cf. [Lau77]), in the complex setting. For x ∈ X
an isolated singular point, X a normal complex hypersurface in C3,
the Milnor number of x in X is shown to be equal to

µX,x = 12pg + Γ2 − b1(E) + b2(E)

where (X ′, E) → (X,x) is a desingularization with Betti numbers
bi(E).

Definition 1. We set

µX = 12pg + Γ2 + 2 degY ωX/S − b1(E) + b2(E),

where the numbers are determined by some choice of resolution
X ′ → X, and bi denote `-adic Betti numbers. If x ∈ π0(Xnon−reg),
we set

µX,x = 12pg,x + Γ2
x + 2 degYx ωX/S − b1(Ex) + b2(Ex)

so that
µX =

∑
x∈π0(Xnon−reg)

µX,x.

Here the subscript x denotes the various contributions local on x ∈ X.
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If x is an isolated singularity, then the above definition reduces to
Laufer’s formula in the complex setting, which then can be interpreted
as some type of Milnor number. These numbers are also easily verified
to be invariant under blow-up of closed points on X ′, and since any
regular two models are related by such blow-ups (cf. [Lic68], Theorem
1.15, p. 392), they are independent of the choice of X ′.

Proposition 4.2. With the above notation,

v(∆) = −ArtX/S +µX

or

v(∆) = χ`(Xs)− χ`(Xη) + SwH1(Xη,Q`) +
∑

x∈π0(Xnon−reg)

µX,x.

Proof. Standard rewriting gives χ`(X
′
s) = χ`(X̃s) +

∑
χ`(Exi) −∑

B(x) where B(x) is the number of (geometric) branches of x in Xs

under the map X ′s → Xs and X̃s is the strict transform of Xs. The
formula χ`(X̃s)− χ`(Xs) =

∑
(B(x)− 1) implies the proposition.

We explicit the numbers µX,x in one case. For this, write E =
π−1(x) = ∪Ci as a union of irreducible curves.

Proposition 4.3. Suppose x is an isolated singularity on X. Then

µX,x = 12pg + Γ2 − 2g − b+ r.

Here:

• g =
∑
g(C̃i,red) is the sum of the genus of the normalizations of

the reduced irreducible components Ci,red of E.

• b is the number of loops in the dual graph of a normal cross-
ings model (the reduced components are smooth), defined as the
graph whose vertices are the components of E and we connect
two vertices by an edge for each intersection.

• r is the number of components of E.

Proof. Since `-adic cohomology on depends on the reduced structure,
we can suppose E is reduced. Using the argument of [Zin77], Lemma
3.1, the Betti numbers can be computed in the case of a normal cross-
ings model. One finds that b1(E) = 2g + 1 − r + #Esing, b2(E) = r.
The number of loops of the dual graph is its first Betti number, and
hence we have

1− b = #nodes−#edges = r −#Esing,

so that b1(E) = 2g + b. We conclude since µX,x, 12pg,Γ
2 + r, g and b

are clearly independent of blowups in regular closed points.
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Example 1. Suppose x ∈ X is a rational double point singularity,
and consider a minimal desingularization (X ′, E)→ (X,x). Basically
by definition pg = g = 0 , and by [Lip69], p. 258, the dual graph of
this desingularization is a tree, so b = 0. Finally, it is well-known
that Γ = 0, so µX,x = r. This is one of the miracles behind the
usual formula of Ogg since the minimal Weierstrass equation is the
unique Weierstrass model of a smooth planar degree three curve which
only has rational double points as singularities, and the minimal res-
olution is given by the Néron model. The article [Kol97] approaches
the question of finding ”minimal models” of equations over discrete
valuation rings, from the point of view of geometric invariant theory.
These models are minimal, amongst other things, in the sense that
the discriminant is minimal, and in the case of Weierstrass models
corresponds to minimal Weierstrass models. It would be interesting to
understand better the geometry of such minimal models for the purpose
of this article.

Example 2. When X is given by a family of ternary homogeneous
polynomials, denoted F , then

v(∆Del,X/S) = v(∆F ) = deg cXs
2,X(ΩX/S),

by Proposition 1.2 and Proposition 3.1. More generally, J. Franke
(unpublished work on the functorial Riemann-Roch theorem) proved
this relation directly without any polynomial assumption, and it was
also revisited in the regular case in [Eri]. Thus Theorem 1.4 can be
seen as a computation of the error terms in the naive expectation from
Bloch’s conjecture whenever the total space is not regular. As the Artin
conductor is defined using vanishing cycles, is it possible to compute
the localized Chern class in in terms of the Euler characteristic of a
similar constructible sheaf even in the non-regular case?
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[Del87] , Le déterminant de la cohomologie, Contemp. Math.
67 (1987), 93–177.

[Dim86] A. Dimca, Milnor numbers and multiplicities of dual vari-
eties, Rev. Roumaine Math. Pures Appl. 31 (1986), no. 6,
535–538.

[Ein86] L. Ein, Varieties with small dual varieties. I, Invent. Math.
86 (1986), no. 1, 63–74.

[Elk89] R. Elkik, Fibres d’intersection et integrales de classes de
Chern, Ann. scient. Ec. Norm. Sup. 22 (1989), 195–226.

[Eri] D. Eriksson, Formule de Lefschetz fonctorielle et applica-
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