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Preface

Since the work of Connes in the classification of von Neumann algebras and
their automorphisms, group actions have received a great deal of attention.
Amenable group actions on the hyperfinite II1-factor were completely classi-
fied by Ocneanu, extending earlier results of Connes and Jones. In their work,
showing that outer actions have the so-called Rokhlin property was fundamen-
tal, as this property allows one to prove classification. For C∗-algebras, the
picture is more complicated. For once, it is no longer true that (strong) out-
erness implies the Rokhlin property, and there is little hope to classify general
group actions unless they have the Rokhlin property. On the other hand, the
Rokhlin property is very restrictive, and there are many C*-algebras that do
not admit any action with this property. Several weakenings of the Rokhlin
property have been introduced to address this problem. Among them, the
weak tracial Rokhlin property and Rokhlin dimension (for which Rokhlin di-
mension zero is equivalent to the Rokhlin property) have been successfully used
to prove structure results for crossed products. Furthermore, actions with these
properties seem to be very common.

In this course, we will focus on actions of finite groups, and will only oc-
casionally comment on actions of more general groups. We will introduce the
Rokhlin property, provide many examples, and show that Rokhlin actions can
be classified. We will also see that there are natural obstructions to the Rokhlin
property, and will present some weaker variants of it: the (weak) tracial Rokhlin
property and Rokhlin dimension (with and without commuting towers). These
properties are flexible enough to cover many relevant examples, and are strong
enough to yield interesting structural properties for their crossed products. Fi-
nally, we will prove a recent analog of Ocneanu’s theorem for amenable group
actions on C∗-algebras, namely, that for actions on classifiable algebras (which
are, in particular, Jiang-Su stable), strong outerness is equivalent to the weak
tracial Rokhlin property, and also equivalent to finite Rokhlin dimension (in
fact, dimension at most one).
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Chapter 2

Some preliminaries

2.1 Universal C∗-algebras

Many of the most relevant C∗-algebras can be expressed as universal C∗-
algebras on relatively simple sets of generators and relations. Unlike for groups,
universal C∗-algebras do not always exist and there a few subtelties in the the-
ory. Here, we review those aspects that will be needed later, and refer the
reader to Blackadar’s seminal work [4].

Definition 2.1.1. Let G be a set, which we call the set of generators. We do
not assume that G be finite, or even countable. We define a relation on G to
be an expression of the form

‖p(x1, x
∗
1, . . . , xn, x

∗
n)‖ ≤ r,

where p is a polynomial on 2n noncommuting variables, n ∈ N, r ∈ [0,∞), and
x1, . . . , xn ∈ G.

Let G be a set of generators and let R be a set of relations. A representation
of (G,R) consists of a Hilbert space H and a set {ax : x ∈ G} ⊆ B(H) such that

‖p(ax1 , a
∗
x1
, . . . , axn , a

∗
xn)‖ ≤ r,

whenever ‖p(x1, x
∗
1, . . . , xn, x

∗
n)‖ ≤ r is a relation in R.

Definition 2.1.2. We say that the familyR of relations on a set G is admissible
if there exists a non-zero representation of (G,R), and if there exist constants
rx ∈ [0,∞), for every x ∈ G, such that whenever {ax ∈ B(H) : x ∈ G} is a
representation of (G,R), then ‖ax‖ ≤ rx for all x ∈ G.

Universal C∗-algebras defined by admissible relations exist, as we show
next.

Theorem 2.1.3. Let G be a set of generators, and let R be an admissible set
of relations on G. Then there exists a unique C∗-algebra C∗(G : R) containing

5



6 CHAPTER 2. SOME PRELIMINARIES

a generating set {ax ∈ C∗(G : R) : x ∈ G} satisfying the relations from R, such
that whenever B is another C∗-algebra containing elements {bx ∈ B : x ∈ G}
satisfying the relations from R, then there exists a unique homomorphism
ϕ : C∗(G : R)→ B satisfying ϕ(ax) = bx for all x ∈ G.

Proof. Denote by A the free ∗-algebra generated by G. Each representation
{πx ∈ B(H) : x ∈ G} of (G,R) induces a ∗-representation π : A → B(H), given
by π(x) = πx for all x ∈ G. For a ∈ A, we define

‖a‖ = sup{‖π(a)‖ : π is a representation of (G,R)}.

Observe that ‖a‖ ≤ ∞ for all a ∈ A, because R is admissible. We let C∗(G : R)
denote the Hausdorff completion of A with respect to this norm, and note that
C∗(G : R) is a C∗-algebra. If ax ∈ C∗(G : R) denotes the image of the canonical
generator x ∈ A, then it is clear that {ax ∈ C∗(G : R) : x ∈ G} is a generating
set that satisfies the relations from R.

Now let B be another C∗-algebra containing elements {bx ∈ B : x ∈ G}
satisfying the relations from R. Then there is a unique ∗-homomorphism
ϕ0 : A → B given by ϕ0(x) = bx for all x ∈ G. Let σ : B → B(H) be a faithful
representation of B on some Hilbert space H. Then σ ◦ ϕ0 is a representation
of (G,R), and thus

‖a‖C∗(G:R) ≤ ‖σ(ϕ0(a))‖B(H) = ‖ϕ0(a)‖B .

It follows that ϕ0 extends uniquely to a homomorphism ϕ : C∗(G : R) → B
satisfying ϕ(ax) = bx for all x ∈ G.

Finally, uniqueness of C∗(G : R) follows immediately from its universal
property.

In the definition of admissible representation, the condition that all gener-
ators are uniformly bounded in norm is necessary for a universal C∗-algebra to
exist.

Example 2.1.4. There is no “universal C∗-algebra generated by a single el-
ement”. This would correspond to G = {x} and R = ∅. The reason is that
if such a C∗-algebra existed, and ax were the canonical generator in it, the
norm of ax would have to be larger than the norm of every element in every
C∗-algebra. This is of course not possible, so this algebra does not exist.

It is often the case that the relations are described rather informally, par-
ticularly when the precise description is clear. We present some examples.

Examples 2.1.5. 1. The universal unital C∗-algebra generated by a self-
adjoint contraction is the universal C∗-algebra with G = {1, a} and R
given by

‖1a− a‖ ≤ 0, ‖a1− a‖ ≤ 0, ‖a∗ − a‖ ≤ 0, and ‖a‖ ≤ 1.

This C∗-algebra is isomorphic to C([−1, 1]) with the canonical generator
being the inclusion of [−1, 1] into C.
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2. Similarly, the universal C∗-algebra generated by a self-adjoint contraction
is isomorphic to C0([−1, 1] \ {0}).

3. The universal C∗-algebra generated by a unitary has G = {1, u} and R
given by

‖1u− u‖ ≤ 0, ‖u1− u‖ ≤ 0, ‖u∗u− 1‖ ≤ 0 and ‖uu∗ − 1‖ ≤ 0.

This C∗-algebra is isomorphic to C(S1).

4. If G is a discrete group, then there is a universal C∗-algebra generated
by a unitary representation of G. This algebras has G = {ug : g ∈ G}
and R given by the relations implying that u1 is the unit, ug is a unitary
with inverse ug−1 , and uguh = ugh for all g, h ∈ G. This C∗-algebra is
the full group C∗-algebra C∗(G) of G.

5. Fix n ∈ N, and set G = {ej,k : 1 ≤ j, k ≤ n} and

R = {e∗j,k = ek,j , ej,kel,m = δk,jej,m : 1 ≤ j, k, l,m ≤ n}.

The relations in R implies that each ej,k is a partial isometry so ‖ej,k‖ ≤
1, and hence the universal C∗-algebra exists by Theorem 2.2.1. It is easy
to check that this C∗-algebra is isomorphic toMn, with ej,k corresponding
to the matrix that has a 1 in the (j, k)-entry and zeroes elsewhere.

6. Every C∗-algebra is a universal C∗-algebra. Indeed, for a C∗-algebra A
we may take G = {xa : a ∈ A} with relations R given by

‖xa‖ = ‖a‖, ‖x∗a − xa∗‖ = 0, and ‖xaxb − xab‖ = 0

for all a, b ∈ A. Then C∗(G : R) is naturally isomorphic to A. This
description of A as a universal C∗-algebra is however not very useful in
practice.

A number of very familiar constructions in C∗-algebras can be described
through universal C∗-algebras, such as direct sums, tensor products, free prod-
ucts, etc. Crossed products, particularly full crossed products, can also be
described as universal C∗-algebras; see Theorem 4.1.9.

We close this section by introducing a particularly rich class of universal
C∗-algebras, namely graph algebras.

Definition 2.1.6. A directed graph is a tuple E = (V,E, r, s), where V and
E are countable sets (usually referred to as the sets of vertices and edges,
respectively), and r, s : E → V are functions (usually referred to as the range
and source functions of an edge).

For a directed graph E = (V,E, r, s), we define its associated graph C∗-
algebra C∗(E) to be the universal C∗-algebra generated by the set

G = {pv : v ∈ V } ∪ {se : e ∈ E}

and subject to the following relations
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1. pv is a projection for all v ∈ V ;

2. pvpw = 0 whenever v, w ∈ V are distinct;

3. s∗ese = pr(e) for all e ∈ E;

4. s∗esf = 0 whenever e, f ∈ E are distinct;

5. ses
∗
e ≤ ps(e) for all e ∈ E;

6. for v ∈ V , if the set {e ∈ E : s(e) = v} is not empty, then

pv =
∑

e∈s−1(v)

sesse
∗.

Arguably the first historical examples of a graph algebra (before these were
even considered) are the Cuntz algebras On [15], for n ≥ 2, which are the alge-
bras associated to the graph with one vertex and n loops (see Example 2.1.7).
Graph algebras also include many well-studied C∗-algebras, such as the com-
pact operators, the Toeplitz algebra, AF-algebras, and all UCT Kirchberg alge-
bras with torsion-free K1. The study of graph algebras is a very active one; see,
for example [81]. Indeed, they constitute a particularly tractable and accessible
class whose basic structure is well-understood.

Example 2.1.7. We collect some elementary examples of graph algebras.

1. The graph algebra associated to the graph with V = {∗} and E = ∅ is C.

2. For n ∈ N, let En denote the graph with one vertex and n loops around
it. Then C∗(En) is the universal C∗-algebra generated by isometries
s1, . . . , sn satisfying

∑n
j=1 sjs

∗
j = 1. Whem n = 1, the isometry s1 is

a unitary and hence C∗(E1) ∼= C(S1). For other values of n, the resulting
C∗-algebra is known as the Cuntz algebra and denoted On.

3. Let n ∈ N, and consider the graph Mn given as follows:

• e1 // • e2 // · · · // •
en−1 // •

Then C∗(Mn) ∼= Mn.

4. Consider the graph E given as follows:

· · · // •
e−1 // • e0 // • e1 // · · ·

Then C∗(E) ∼= K.



2.2. MULTIPLIER ALGEBRAS 9

2.2 Multiplier algebras

Unital C∗-algebras are, for many purposes, significantly easier to work with
than non-unital ones. When a given C∗-algebra A is not unital, one may
wish to consider a unital C∗-algebra that contains A as an ideal. To avoid
working with C∗-algebras that are “too big relative to A”, it is convenient to
look at unital algebras that contain A as an essential ideal1. For an algebra
of the form C0(X), this corresponds to embedding X into a compact space
Y as an open dense subspace. In the topological setting, there are both a
minimal and a maximal way to do this: these are, respectively, the one-point
compactification X+ and the Stone-Čech compactification βX of X. Minimal
and a maximal unitizations also exist for an arbitrary C∗-algebra A: these are
the one-dimensional unitization A+ ∼= A⊕C and the multiplier algebra M(A).

Theorem 2.2.1. Let A be a C∗-algebra. Then there exists a unique unital
C∗-algebra M(A) containing A as an essential ideal such that whenever A is
an ideal in some C∗-algebra B, then there is a unique homomorphism ϕ : B →
M(A) extending the identity on A and satisfying ker(ϕ) = {b ∈ B : bA = {0}}.
In other words, the following diagram commutes:

A �
� ιA //
q�

""

M(A)

B.

∃!ϕ

OO

Once the existence of such a C∗-algebra is established, its uniqueness follows
from the universal property; see Exercise 2.2.6. We will sketch the proof that
an algebra satisfying the properties as above exists, using double centralizers.
This requires some preparation. For a C∗-algebra A and an operator T ∈ B(A),
we define T ∗ ∈ B(A) by T ∗(a) = T (a∗)∗ for all a ∈ A.

Definition 2.2.2. Let A be a C∗-algebra. A double centralizer on A is a pair
(L,R) consisting of maps L,R ∈ B(A) satisfying

L(ab) = L(a)b, R(ab) = aR(b) and aL(b) = R(a)b

for all a, b ∈ A.
We letM(A) denote the set of all double centralizers, endowed with coordinate-

wise addition and scalar multiplication, and operations

(L1, R1)(L2, R2) = (L2 ◦ L1, R1 ◦R2) and (L,R)∗ = (R∗, L∗),

for all (L,R), (L1, R1), (L2, R2) ∈ M(A). Finally, set ‖(L,R)‖ = ‖L‖ for
(L,R) ∈M(A).

1An ideal I in B is said to be essential if J ∩ I 6= {0} whenever J is a non-trivial ideal
in B. Equivalently, if b ∈ B satisfies bI = {0}, then b = 0.
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Proposition 2.2.3. Let A be a C∗-algebra. Then M(A), as defined above, is
a unital C∗-algebra.

The proof is easy, and is left as an exercise; see Exercise 2.2.6. Perhaps the
only subtle part is showing that the adjoint operation is norm-preserving.

Example 2.2.4. Let A be a C∗-algebra, and let a ∈ A. Define La, Ra ∈ B(A)
by La(b) = ab and Ra(b) = ba for all b ∈ A. One easily checks that (La, Ra) is
a double-centralizer, and that ‖(La, Ra)‖ = ‖a‖. Moreover, it is easily verified
that the map ιA : A → M(A) given by ιA(a) = (La, Ra) for all a ∈ A is an
isometric homomorphism.

Remark 2.2.5. If A is an ideal in some C∗-algebra B, then the identity
map on A extends canonically to a homomorphism ϕ : B → M(A) given by
ϕ(b) = (Lb, Rb), where Lb, Rb ∈ B(A) are given by left and right multiplication
by b ∈ B, respectively. It is easy to check that ker(ϕ) = {b ∈ B : bA = 0}.
Uniqueness of ϕ is also easily verified.

The proof of Theorem 2.2.1 follows by combining Proposition 2.2.3, Exam-
ple 2.2.4, and Remark 2.2.5.

Exercise 2.2.6. Write down a complete proof of Theorem 2.2.1, including
uniqueness of M(A), the proof of Proposition 2.2.3, and filling in the details in
Example 2.2.4 and Remark 2.2.5.

Examples 2.2.7. We list some examples of multiplier algebras, without proof.

1. If X is a locally compact space, then M(C0(X)) ∼= Cb(X) ∼= C(βX).

2. If H is a Hilbert space, then M(K(H)) = B(H).

3. If A is a unital C∗-algebra, then A = M(A).

Another convenient identification of the elements in M(A) as single opera-
tors is given as follows.

Exercise 2.2.8. Let π : A → B(H) be a non-degenerate, injective represen-
tation of a C∗-algebra A on a Hilbert space H. Show that M(A) can be
canonically identified with

{T ∈ B(H) : Tπ(A) ⊆ π(A), π(A)T ⊆ π(A)}.

Yet another presentation of M(A) as operators on A, once A is regarded as
a Hilbert module over itself, will be given in Section 2.4.
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2.3 K-theory

The area of noncommutative topology has largely benefited from taking a notion
from topology and extending it to the category of noncommutative C∗-algebras,
via a suitable rephrasing of the original notion for commutative C∗-algebras
using the contravariant equivalence of the latter category with that of locally
compact Hausdorff spaces. This process has seen great sucess, since often
in point-set topology, the natural object to study is a “singular” space, that
cannot be described in purely topological terms. A prime example of this
situation is the orbit space of a non-proper action. In some of these situations,
there is a suitable noncommutative C∗-algebra that can play the role of this
singular space; in the case of orbit spaces, this is usually the reduced crossed
product.

There has been a great amount in noncommutative algebraic topology –
that is, extending functors from topological spaces to groups, to general C∗-
algebras. While attempts to do this for different types of homology or fun-
damental groups have not been successful, this works out particularly nicely
with K-theory. In this section we give a brief introduction to K-theory for C∗-
algebras, without assuming any knowledge of K-theory for topological spaces.
The interested reader is referred to [6] for a much more thorough treatment of
this indispensable tool.

The Grothendieck group.

The Grothendieck construction allows one to obtain an abelian group from
an abelian semigroup in such a way that any group containing a homomor-
phic image of the semigroup, will also contain a homomorphic image of the
Grothendieck envelope. The following is its precise definition:

Definition 2.3.1. For be an abelian semigroup V , we define G(V ) to be the
quotient of V × V under the equivalence relation (x1, y1) ∼ (x2, y2) whenever
there exists z ∈ V such that

x1 + y2 + z = x2 + y1 + z.

The set G(V ) can be thought of as the set of equivalence classes of expressions
of the form x− y. Addition on G(V ) is induced by addition on V × V . Then
G(V ) is an abelian group, with −(x− y) = y − x for all x, y ∈ V . This group
is called the Grothendieck group of V .

Example 2.3.2. It is immediate to check that G(N) = Z

There is always a canonical semigroup map ιV : V → G(V ), given by
ιV (x) = x for all x ∈ V . This map is, however, injective if and only if V
has cancellation, meaning that x+ z = y + z implies x = y, for all x, y, z ∈ V .
In the next example, the map ιV is not injective.
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Example 2.3.3. Define on V = N ∪ {∞} a sum extending the operation on
N by setting x+∞ =∞. Then the equivalence relation from Definition 2.3.1
identifies all pairs in V , as one can see by taking z = ∞. It follows that
G(N ∪ {∞}) = {0}.

Grothendieck groups enjoy an improtant universal property.

Theorem 2.3.4. Let V be an abelian semigroup. If G is an abelian group and
ϕ : V → G is a semigroup homomorphism, then there exists a unique group
homomorphism ψ : G(V ) → G satisfying ψ ◦ ιV = ϕ. In other words, the
following diagram commutes

V
ϕ //

ιV

��

G

G(V ).

∃!ψ

<<

Morever, if G(V ) is another abelian group and jV : V → G(V ) is a semigroup
homomorphism satisfying the same property as above, then there exists an
isomorphism θ : G(V )→ G(V ) satisfying θ ◦ ιV = jV .

Exercise 2.3.5. Give a proof of Theorem 2.3.4.

The Murray-von Neumann semigroup.

For a C∗-algebra A and positive integers n,m with m ≥ n, we usually identify
Mn(A) with a the subalgebra of Mm(A) of those upper-left n×n matrices with
values in A. The union of these matrix algebras with these embeddings (but
not completion) is usually denoted by M∞(A). Note that the completion of
M∞(A) is isomorphic to A⊗K.

Definition 2.3.6. Let A be a C∗-algebra. Given projections p, q ∈ A, we say
that p and q are Murray-von Neumann equivalent, and write p ∼M−vN q, if
there exists a partial isometry s ∈ A with s∗s = p and ss∗ = q.

Let n,m ∈ N with n ≤ m. We say that two projections p ∈ Mn(A) and
q ∈ Mm(A) are K0-equivalent if there exists k ≥ 0 such that p ⊕ 0m−n ⊕
0k ∼M−vN q ⊕ 0k. We denote the K0-equivalence class of p by [p]0.

We define the Murray-von Neumann semigroup V (A) of A as

V (A) = {[p]0 : p ∈M∞(A) projection}.

Addition on V (A) is given by [p]0 + [q]0 = [diag(p, q)]0 for projections p, q ∈
M∞(A).

Remark 2.3.7. One could define V (A) equivalently using the relations of uni-
tary equivalence (with unitaries taken in the minimal unitization) or homotopy
equivalence on the projections of M∞(A). Of these relations for projections,
homotopy is the strongest, while Murray-von Neumann equivalence is the weak-
est.
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Lemma 2.3.8. Let A be a C∗-algebra. Then V (A) is an abelian semigroup.

Proof. It suffices to show that diag(p, q) and diag(q, p) are unitarily equivalent,

and this is easily seen by considering the unitary

(
0 1
1 0

)
.

Examples 2.3.9. Let H be a Hilbert space.

1. If dim(H) <∞, then V (B(H)) = N, regardless of the dimension of H.

2. If dim(H) =∞, then V (B(H)) = N ∪ {∞}.

The K0-group.

The definition of the K0-group of a C∗-algebra is easier when the C∗-algebra
is unital, so we begin with this case.

Definition 2.3.10. Let A be a unital C∗-algebra. We define its K0-group
K0(A) as the Grothendieck group (Definition 2.3.1) of its Murray-von Neumann
semigroup V (A) (Definition 2.3.6).

Example 2.3.11. Combining the examples we saw in the previous subsections,
we deduce that

K0(Mn) = Z and K0(B(`2)) = {0}.

It is easily seen that K0 is a functor from the category of unital C∗-algebras
(with unital homomorphisms) to the category of abelian groups. The standard
picture of K0(A), for a unital C∗-algebra A, is

K0(A) = {[p]0 − [q]0 : p, q ∈M∞(A) projections}.

Definition 2.3.12. Let A be a nonunital C∗-algebra, and let Ã be its minimal
unitzation. Then there is a canonical unital homomorphism µ : Ã→ C, which
induces a homomorphism K0(µ) : K0(Ã) → K0(C) = Z. We define K0(A) =
ker(K0(µ)).

With the above definition, K0 is a functor from the category of all C∗-
algebras (with arbitrary homomorphisms) to the category of abelian groups.

The K1-group.

Let A be a C∗-algebra, let n ∈ N, and let u ∈Mn(A) be a unitary. For m ≥ n,
we regard u as a unitary in Mm(A) by identifying u with u⊕ 1m−n.

Definition 2.3.13. Let A be a unital C∗-algebra. Given unitaries u, v ∈ A, we
say that u and v are homotopic, and write u ∼h v, if there exists a continuous
unitary path w : [0, 1]→ A such that w(0) = u and w(1) = v.

Given n,m ∈ N with n ≤ m and unitaries u ∈Mn(A) and v ∈Mm(A), we
say that u and v are K1-equivalent, and write u ∼1 v, if there exists k ≥ 0 such
tha u⊕ 1m−n ⊕ 1k ∼h v ⊕ 1k. The K1-equivalence class of u is denoted [u]1.
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The K1-group of a C∗-algebra is defined as follows:

Definition 2.3.14. We define the K1-group K1(A) of A as

K1(A) = {[u]1 : u ∈
∞⋃
n=1

Mn(Ã) unitary}.

Addition on K1(A) is given by [u]1 + [v]1 = [diag(u, v)]1 for unitaries u, v ∈
M∞(A). Then K1(A) is a group, with−[u]1 = [u∗]1 and unit given by [1Mn(Ã)]1
for any n ∈ N.

With the above definition, K1 is a functor from the category of all C∗-
algebras (with arbitrary homomorphisms) to the category of abelian groups.
Both functors K0 and K1 share a number of properties, some of which we
summarize in the next theorem.

Theorem 2.3.15. The functors K0 and K1 satisfy the following properties.

1. They commute with direct sums:

K0(A⊕B) ∼= K0(A)⊕K0(B) and K1(A⊕B) ∼= K1(A)⊕K1(B)

for all C∗-algebras A and B.

2. They commute with direct limits: If A = lim−→((Aj)j∈J , (ϕj,k)j,k∈J), then

K0(A) ∼= lim−→((K0(Aj))j∈J , (K0(ϕj,k))j,k∈J)

K1(A) ∼= lim−→((K1(Aj))j∈J , (K1(ϕj,k))j,k∈J)

3. They are stable: for n ∈ N, let ιn : A→ Mn(A) be the upper-left corner
embedding. Then K0(ιn) and K1(ιn) are isomorphisms.

4. They are homotopy invariant: if ϕ,ψ : A → B are homotopy equivalent
homomorphisms, then K0(ϕ) = K0(ψ) and K1(ϕ) = K1(ψ). In particu-
lar, K0(A) ∼= K0(B) and K1(A) ∼= K1(B) whenever A ∼h B.

Observe that parts (2) and (3) in the above theorem imply that the natural
map A→ A⊗K, given by a 7→ a⊗ e1,1, induces isomorphisms of the K-groups
of A and A⊗K.

Using part (2) in Theorem 2.3.15, it is possible to effortlessly compute the
K-theory of UHF-algebras.

Exercise 2.3.16. The goal of this exercise is to compute the K-theory of a
UHF-algebra in terms of its supernatural number.

1. Let n,m ∈ N with n|m, and let ϕ : Mn → Mm be any unital homomor-
phism. Compute the induced map K0(ϕ) : K0(Mn)→ K0(Mm).
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2. Let M2∞ denote the CAR algebra, which is the direct limit of the ma-
trix algebras M2n , for n ∈ N, we the canonical unital maps. Compute
K0(M2∞) and K1(M2∞).

3. Let S be a supernatural number. Compute the K-groups of the UHF-
algebra associated to S.

Exercise 2.3.17. Let A be a C∗-algebra. We say that an automorphism ϕ of
A is inner if there exists a unitary u ∈M(A) such that ϕ = Ad(u). We denote
by Inn(A) the set of all inner automorphisms of A.

1. Show that the canonical map U(M(A)) → Inn(A) is a group homomor-
phism.

2. Show that Inn(A) is a normal subgroup of Aut(A).

3. The closure Inn(A) of Inn(A) in Aut(A) is the group of approximately
inner automorphisms. Show that Inn(A) is a normal subgroup of Aut(A).

4. Show that K0(ϕ) = idK0(A) and K1(ϕ) = idK1(A) is ϕ is approximately
inner.

5. Is the converse to the previous item true?

For a C∗-algebra A, denote by SA its suspension, which is isomorphic to
C0(R, A). Then K1(A) can be alternatively defined as K1(A) = K0(SA). One
then defines the higher K-groups inductively, by setting Kn(A) = Kn−1(SA)
for n ≥ 1.

Bott periodicity

Perhaps the most fundamental result in K-theory for C∗-algebras (or more
generally, complex Banach algebras) is the fact, known as Bott periodicity,
that K0(A) is naturally isomorphic to K1(SA). This implies that Kn+2(A) is
naturally isomorphic to Kn(A) for all n ∈ N; in other words, complex K-theory
is periodic with period 2. (For the sake of comparison, we mention here that
real K-theory is periodic with period 8.)

Theorem 2.3.18. (Bott periodicity). Let A be a C∗-algebra. Then there is a
natural isomorphism βA : K0(A)→ K1(SA).

For the proof, we refer the reader to Section 9.2 in Blackadar’s book [6].
We nevertheless discuss here the easiest case, namely A = C. This involves the
Bott projection on the 2-sphere.

Example 2.3.19. When A = C, the Bott map is an isomorphism between
K0(C) and K0(C0(R2)). Since K0(C) is generated by the class of the unit,
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it suffices to determine what βC([1]0) is. We identify R2 with C. Let p, q ∈
M2(C0(C)+) be the projections given by

p(z) =

(
1 0
0 0

)
and q(z) =

1

1 + |z|2

(
|z|2 z
z 1

)
.

Then the map βC is determined by βC([1]0) = [q]0 − [p]0.

The projection q is called the Bott projection, and it can be identified with
the projection coming from a bundle as follows2. Identify the one-point com-
pactification of C with the space CP 1 of subspaces of C2 of complex dimension
one, and let V be the Bott bundle, which is given by

V = {(M,v) ∈ CP 1 × C, v ∈M}.

This is a sub-bundle of the trivial 2-dimensional bundle over CP 1 ∼= S2, and
hence it is a direct summand in it. Under the natural identifications mentioned
here, q is the projection onto this sub-bundle.

The 6-term exact sequence in K-theory

Let

0 // I
ι // A

π // B // 0

be a short exact sequence of C∗-algebras. By functoriality of the K-groups,
it follows that K0(π) ◦ K0(ι) = 0 and K1(π) ◦ K1(ι) = 0. It can even be
shown that ker(K0(π)) = Im(K0(ι)) and ker(K1(π)) = Im(K1(ι)), so that the
following sequence is exact, for j = 0, 1:

Kj(I)
Kj(ι) // Kj(A)

Kj(π) // Kj(B).

However, K0(ι) and K1(ι) may fail to be injective, while K0(π) and K1(π)
may fail to be surjective, so that the K-functors do not preserve short exact
sequences. There is, however, a 6-term exact sequence of K-groups associated
to any short exact sequence of C∗-algebras, which resembles the long exact
sequences in cohomology.

Theorem 2.3.20. Let

0 // I
ι // A

π // B // 0

be a short exact sequence of C∗-algebras. Then there exist group homomor-
phisms δ0 : K0(B) → K1(I) (called the exponential map) δ1 : K1(B) → K0(I)

2Recall that for the algebra of continuous functions on a compact Hausdorff space, matrix-
valued projections are in one-to-one correspondence with complex vector bundles over the
space.
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(called the index map), making the following an exact sequence:

K0(I)
K0(ι) // K0(A)

K0(π) // K0(B)

δ0

��
K1(B)

δ1

OO

K1(A)
K1(π)
oo K1(I)

K1(ι)
oo

The exponential map δ0 : K0(B)→ K1(I) measures the obstruction to lift-
ing projections in (a matrix algebra over)B to a projection in (a matrix algebra)
over A, and its name reflects the fact that the way that one obtains a unitary
in Ĩ is by taking exponentials.

The index map δ1 : K1(B) → K0(I) measures the obstruction to lifting
unitaries in (a matrix algebra over) B to a unitary in a matrix algebra over A.
It takes its name from the fact that it generalizes the classical Fredholm index
of Fredholm operators on a Hilbert space.

Exercise 2.3.21. 1. Let

0 // I
ι // A

π // B // 0

be a short exact sequence of C∗-algebras, and suppose that there is a
homomorphism s : B → A satisfying π ◦ s = idB . Show that Kj(A) ∼=
Kj(I)⊕Kj(B).

2. Let A be a C∗-algebra. Use the previous part to compute the K-theory
of C(S1)⊗A.

3. Find examples of short exact sequences as in (1) where:

a) K0(ι) is not injective.

b) K1(ι) is not injective.

c) K0(π) is not surjective.

d) K1(π) is not surjective.

2.4 Hilbert modules and operators

Hilbert modules are a simultaneous generalization of Hilbert spaces and C∗-
algebras, and are a very useful tool that allow one to give elegant and unified
proofs of important parts of the theory. Hilbert modules have had applications
in three main areas:

• Rieffel’s theory of induced representations and Morita equivalence of C∗-
algebras [82];

• Kasparov’s KK-theory [50];

• Woronowicz’s theory of quantum groups [107].
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In these notes, we will be mostly concerned with the first of these applications,
specifically in Chapter 6. Cite Lance and Blackadar.

For a C∗-algebra A, a Hilbert A-module is an A-module with an A-valued
inner product, satisfying axioms analogous to those satisfied by Hilbert spaces
(which are Hilbert C-modules3). This is the formal definition:

Definition 2.4.1. Let A be a C∗-algebra and let E be a right A-module. An
A-valued inner product on E is a map 〈·, ·〉A : E ×E → A which is linear on the
second coordinate and satisfies the following properties for all ξ, η, ζ ∈ E :

1. 〈ξ, η · a〉A = 〈ξ, η〉Aa for all ξ, η ∈ E and all a ∈ A;

2. 〈ξ, η〉∗A = 〈η, ξ〉A for all ξ, η ∈ E ;

3. 〈ξ, ξ〉A ≥ 0 for all ξ ∈ E and 〈ξ, ξ〉A = 0 if and only if ξ = 0.

If E is complete in the norm induced by 〈·, ·, 〉A, then we say that (E , 〈·, ·〉A)
is a Hilbert A-module.

When the coefficient algebra is clear from the context, we will write 〈·, ·〉
instead of 〈·, ·〉A.

Hilbert modules behave very similarly to Hilbert spaces, and many construc-
tions and arguments can be adapted to this context with only minor changes.
There is just one important exception, namely that orthogonality is not nearly
as well behaved as in the Hilbert space case. For once, Hilbert submodules
are rarely complemented, and it is often the case that for a proper submodule
F ⊆ E , one has F⊥ = {0}, and thus F⊥⊥ is much larger than F .

Examples 2.4.2. Let A be a C∗-algebra.

1. If I is an ideal in A, we may regard I as a right Hilbert A-module, with
the A-action given by (right) multiplication, and the inner product given
by 〈x, y〉A = x∗y for all x, y ∈ I.

2. Let p ∈ M(A) be a projection, and set E = pA. Then E is a Hilbert
pAp − A-bimodule, with left and right actions given by multiplication,
and inner products given by

pAp〈pa, pb〉 = pa(pb)∗, and 〈pa, pb〉A = (pa)∗pb

for all a, b ∈ A.

3. If (Ej)j∈J is a family of Hilbert A-modules, then the algebraic direct sum
alg⊕
j∈J
Ej admits a pre-inner product given by

〈(ξj)j∈J , (ηj)j∈J〉 =
∑
j∈J
〈ξj , ηj〉

3To be precise, Hilbert spaces are the left Hilbert C-modules



2.4. HILBERT MODULES AND OPERATORS 19

for (ξj)j∈J , (ηj)j∈J ∈
alg⊕
j∈J
Ej . The completion of the algebraic direct sum

with respect to the induced norm is the Hilbert A-module
⊕
j∈J
Ej . When

J is finite, no completion is needed.

4. As a special case of the previous example, when J = N and Ej = A for
all j ∈ N, we write HA for

⊕
n∈N

A. An alternative description of HA is

HA =

{
(an)n∈N : an ∈ A,

∑
n∈N

a∗nan converges in A

}
,

with the inner product given by 〈(an)n∈N, (bn)n∈N〉 =
∑
n∈N

a∗nbn for all

(an)n∈N, (bn)n∈N ∈ HA.

5. If E is a Hilbert A-module, we define its dual module E∗ to be E∗ =
{ξ∗ : ξ ∈ E} with ξ∗ + η∗ = (ξ + η)∗ and λξ∗ = (λξ)∗ for all ξ, η ∈ E
and all λ ∈ C. We endow E∗ with a left Hilbert A-module structure by
setting

a · ξ∗ = (ξ · a)∗, and A〈ξ∗, η∗〉 = 〈η, ξ〉A.

We turn to operators between Hilbert modules.

Definition 2.4.3. Let A be a C∗-algebra, and let E and F be Hilbert A-
modules. We say that a function T : E → F is adjointable if there exists a
function T ∗ : F → E satisfying

〈T (ξ), η〉 = 〈ξ, T ∗(η)〉

for all ξ, η ∈ E . The operator T ∗ is called the adjoint of T , and is uniquely
determined by T .

We denote by LA(E ,F) the set of all adjointable operators from E to F ,
and abbreviate LA(E , E) to LA(E). We also omit the subscript A whenever
confusion is unlikely to arise.

The critical reader will notice that adjointable operators are not assumed
to be linear or continuous. Indeed, this is automatic:

Proposition 2.4.4. Let A be a C∗-algebra, and let E and F be Hilbert A-
modules, and let T ∈ L(E ,F). Then T is a continuous, linear, A-module map.

Proof. We begin with linearity. Given ξ1, ξ2, η ∈ E and λ ∈ C, we have

〈T (ξ1 + λξ2), η〉 = 〈ξ1 + λξ2, T
∗(η)〉

= 〈ξ1, T ∗(η)〉+ λ〈ξ2, T ∗(η)〉
= 〈T (ξ1) + λT (ξ2), η〉.
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We deduce that T is linear. A similar computation, using that the inner product
respects the A-action, shows that T is an A-module map. Finally, to check
continuity of T , we use the Closed Graph Theorem. Let (ξn)n∈N be a sequence
in E converging to 0, and suppose that there exists η ∈ F such that (T (ξn))n∈N
converges to η. Then

0 = lim
n→∞

〈ξn, T ∗(η)〉 = lim
n→∞

〈T (ξn), η〉 = 〈η, η〉,

and hence η = 0, as desired.

Unlike for Hilbert spaces, it is not true that every bounded A-module
map is automatically adjointable. A counterexample is the canonical inclusion
C0((0, 1]) ↪→ C([0, 1]), regarded as a map between Hilbert C([0, 1])-modules as
in item (1) of Examples 2.4.2. On the other hand, the following is shown just
as in the Hilbert space case.

Proposition 2.4.5. Let A be a C∗-algebra and let E be a Hilbert A-module.
Endow L(E) with the adjoint operation and with the operator norm. Then
L(E) is a C∗-algebra.

Again, as in the case of Hilbert spaces, operators of finite rank and compact
operators play an important role in the theory, so we proceed to introduce these.

Definition 2.4.6. Let A be a C∗-algebra, and let E and F be Hilbert A-
modules. Given ξ ∈ E and η ∈ F , we let θη,ξ ∈ LA(E ,F) be the rank-one
operator given by θη,ξ(ζ) = η · 〈ξ, ζ〉 for all ζ ∈ E . One checks easily that
θ∗η,ξ = θξ,η, so θη,ξ is indeed an adjointable operator. We denote by KA(E ,F)
the closed linear span of {θη,ξ : ξ ∈ E , η ∈ F} in LA(E ,F), and call the elements
in it A-compact operators. We abbreviate KA(E , E) to KA(E). We also omit
the subscript A whenever confusion is unlikely to arise.

It is an easy exercise to verify that K(E) is an ideal in L(E), and hence a
C∗-algebra in its own right.

Remark 2.4.7. A word of warning is in order. If T : E → F is an A-compact
operator, then T will in general not be a compact operator in the usual sense,
when E and F are regarded as Banach spaces; see Examples 2.4.8.

Next, we compute the algebra K(E) in some cases of interest.

Examples 2.4.8. Let A be a C∗-algebra.

1. If A is regarded as a Hilbert A-module as in part (1) of Examples 2.4.2,
and a, b ∈ A, then one readily verifies that θa,b is left multiplication by
ab∗ (which is an arbitrary element in A2 = A). Moreover, ‖θa,b‖ = ‖ab∗‖.
We deduce that K(A) is naturally isomorphic to A. When A is unital,
the operator θ1,1 is the unit of L(A), and thus K(A) = L(A) = A. In this
case, the operator idA : A→ A is A-compact, although it is not compact
unless A is finite-dimensional.
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2. Let E be a Hilbert A-module, and denote by E∞ the infinite direct sum
of countably many copies of E . Then K(E∞) can be identified with the
closure of

⋃
n∈N

Mn(K(E)) in L(E∞). In particular, K(E∞) is isomorphic to

K(E)⊗ K. For E = HA, and in combination with the preivous example,
this gives the useful identity K(HA) ∼= A⊗K.

A number of results referring to representations of C∗-algebras on Hilbert
spaces can be generalized in a straightforward manner (mostly even without
changes) to representations of C∗-algebras on Hilbert modules. For example,
universal C∗-algebras on generators and relations could have been defined using
representations of the relations on Hilbert modules, rather than Hilbert spaces,
without changing the outcome. Another example refers to multiplier algebras:

Proposition 2.4.9. Let A and B be C∗-algebras, let E be a Hilbert B-module,
and let π : A → LB(E) be a non-degenerate, injective representation. Then
M(A) can be canonically identified with

{T ∈ LB(E) : Tπ(A) ⊆ π(A), π(A)T ⊆ π(A)}.

The proof is identical to that of Exercise 2.2.8, so we omit it. This presen-
tation of M(A) does have an interesting consequence, in the case A = KB(E):

Corollary 2.4.10. Let A be a C∗-algebra, and let E be a Hilbert A-module.
Then M(K(E)) = L(E). In particular, M(A) = L(A), when A is regarded as a
Hilbert A-module.

As for Hilbert spaces, we say that two Hilbert A-modules E and F are
isomorphic if there exists a unitary between them, that is, if there exists a
bijective map U ∈ L(E ,F) satisfying 〈U(ξ), U(η)〉 = 〈ξ, η〉 for all ξ, η ∈ E .

Perhaps the most significant result in the theory of Hilbert modules is Kas-
parov’s Stabilization/Absorption Theorem. We say that a Hilbert A-module E
is countably generated if there exists a countable set X ⊆ E such that XA is
dense in E .

Theorem 2.4.11. Let A be a C∗-algebra, and let E be a countably generated
Hilbert A-module. Then

E ⊕HA ∼= HA.

Note that HA is countably generated if and only if A is σ-unital. For
this reason, in applications one usually restricts the attention to σ-unital C∗-
algebras.

In order to prove Theorem 2.4.11, we will need the following lemma, which
is proved in the same way as for Hilbert space. Recall that an element b in
some C∗-algebra B is said to be strictly positive (in B) if bB = B.

Lemma 2.4.12. Let A be a C∗-algebra, let E be a countably generated Hilbert
A-module, and let T ∈ K(E) be a positive element. Then T is stricly positive
if and only if it has dense range.
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Proof. If T is strictly positive, then TK(E) = K(E). Now, since K(E)E is dense
in E , it follows that T (E is dense in E , as desired. Conversely, assume T has
dense range, and let ξ, η ∈ E . We will show that θξ,η belongs to the closure of
TK(E). Let (ξn)n∈N be any sequence in E with lim

n→∞
T (ξn)→ ξ. Then

θξ,η = lim
n→∞

T ◦ θξn,η ∈ TK(E),

as desired.

Exercise 2.4.13. Prove Theorem 2.4.11, as follows.

1. If A+ denotes the one-dimensional unitization of A, denote by E+ the
Hilbert A+-module which as a vector space is identical to E , with the
obvious extended action and the same A-valued inner product as E . Show
that if E+ ⊕HA+

∼= HA+ , then E ⊕HA ∼= HA. Deduce that it is enough
to prove the theorem when A is unital (which we will assume from now
on).

2. Let (ξn)n∈N be an enumeration of a countable generating set for E , with
each element repeated an infinite number of times, and let (δn)n∈N be
the canonical orthonormal basis of HA. Show that there is a well-defined
operator T ∈ KA(HA, E ⊕ HA) that satisfies T (δn) = (ξn/2

n, δn/4
n) for

all n ∈ N.

3. Show that T is injective and has dense range.

4. Show that T ∗T has dense range, and is hence strictly positive.

5. Show that there is a unique well-defined operator U ∈ L(HA, E ⊕ HA)
satisfying U((T ∗T )1/2ξ) = T (ξ) for all ξ ∈ E .

6. Show that U is a unitary, concluding the proof of the theorem.

2.5 Morita equivalence

For a Hilbert A-module E , the set {〈ξ, η〉A : ξ, η ∈ E} is not in general closed
under sums, and its closed linear span AE is an ideal in A which does not agree
with A in general. If AE = A, then we say that E is a full Hilbert A-module.
Clearly E is always a full Hilbert AE -module.

Definition 2.5.1. Let A and B be C∗-algebras. We say that A and B are
Morita equivalent, written A ∼M B, if there exists an A−B-bimodule E which
is simultaneously a full left Hilbert A-module and a full right Hilbert B-module,
satisfying

A〈ξ, η〉 · ζ = ξ · 〈η, ζ〉B

for all ξ, η, ζ ∈ E . A bimodule E as above is called an imprimitivity bimodule.
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In this section, we will prove two important results concerning Morita equiv-
alence. First, and using a construction known as the linking algebra, we will
show in Theorem 2.5.3 that two C∗-algebras are Morita equivalent if and only
if there exists a third C∗-algebra into which both embed as full corners. And
second, we will prove in Theorem 2.5.11 that for σ-unital C∗-algebras, Morita
equivalence is the same as stable isomorphism.

The following example will be particularly important for us.

Example 2.5.2. Let A be a C∗-algebra, and let p ∈ M(A) be a projection.
We have seen in Examples 2.4.2 that E = pA is a pAp − A bimodule, and it
can be easily checked that it satisfies the identity in Definition 2.5.1. As a left
Hilbert pAp-module, E is full, while AE is the ideal ApA generated by p. In
other words, E induces a Morita equivalence between pAp and ApA.

In some sense, every Morita equivalence is as in the previous example.

Theorem 2.5.3. Let A and B be C∗-algebras. Then A ∼M B if and only if
there exist a C∗-algebra C and a projection p ∈M(C) with CpC = C(1− p)C =
C such that pCp ∼= A and (1− p)C(1− p) ∼= B.

Exercise 2.5.4. Prove Theorem 2.5.3. For the “only if” implication, let E be
an imprimitivity bimodule and consider

C =

[
A E
E∗ B

]
=

{(
a ξ
η∗ b

)
: a ∈ A, b ∈ B, ξ, η ∈ E

}
.

Define a canonical matrix-type product and involution on C. Let C act on
E ⊕B by (

a ξ
η∗ b

)(
ζ
c

)
=

(
a · ζ + ξ · c
〈η, ζ〉B + bc

)
,

1. Prove that C is a C∗-algebra with the induced operator norm. This
C∗-algebra is called the linking algebra associated to E .

2. Show that C and p =

(
1M(A) 0

0 0

)
satisfy the conclusion of the theo-

rem.

3. Where is fullness of E used?

For an arbitrary Hilbert B-module E , one can define a left Hilbert KB(E)-
module structure on E by

θξ,η · ζ = Θξ,η(ζ) and KB(E)〈ξ, η〉 = Θη,ξ

for all ξ, η, ζ ∈ E . Then E is a K(E)−B-imprimitivity bimodule. The converse
to this remark is also true:

Lemma 2.5.5. LetA andB be C∗-algebras, and let E be anA−B-imprimitivity
bimodule. Then there is a natural isomorphism KB(E) ∼= A.



24 CHAPTER 2. SOME PRELIMINARIES

Proof. Given ξ, η ∈ E , define ϕ(Θξ,η) = A〈η, ξ〉. By linearity and continuity,
one extends this assignment to a map ϕ : KB(E) → A, which is easily seen
to be a homomorphism. The map is surjective, because the set of all A-inner
products spans a dense subspace of A, and also injective, since it is injective
on the set of finite-rank operators. We omit the details.

We need to introduce the definition of the (internal) tensor product of
Hilbert modules.

Definition 2.5.6. Let A and B be C∗-algebras, let E be a Hilbert A-module,
let F be a Hilbert B-module, and let φ : A → L(F) be a homomorphism. We
regard F as a left A-module with the action given by a · η = φ(a)(η) for all
a ∈ A and all η ∈ F . The algebraic tensor product E ⊗alg F therefore has the
structure of a right B-module. Denote by E ⊗φ F the quotient of E ⊗alg F by
the subspace generated by elements of the form

ξa⊗ η − x⊗ φ(a)(η),

for ξ ∈ E , η ∈ F and a ∈ A. This is a Hilbert B-module with action given by
(ξ ⊗ η)b = ξ ⊗ (ηb), and inner product determined by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈η1, φ(〈ξ1, ξ2)(η2)〉

for all ξ1, ξ2 ∈ E and all η1, η2 ∈ F . We call E ⊗φF the internal tensor product
of E and F with respect to φ.

Implicit in the definition above is the fact that the sesquilinear form defined
is indeed an inner product. We omit this verification. The notation E ⊗φ F is
meant to stress the fact that the tensor product depends on the choice of φ.
In cases where there is a canonical (or unique) choice, such as in the following
example, we may drop φ from the notation and simply write E ⊗A F .

Example 2.5.7. Let H = `2(N), and B be a C∗-algebra. We regard H as a
Hilbert C-module and B as a B-module. Let φ : C → M(B) = L(B) be the
unique unital homomorphism. Then H⊗C B is canonically isomorphic to HB .

Example 2.5.8. More generally, let B be a C∗-algebra and let E be a Hilbert
B-module. Let φ : C → L(E) be the unique unital homomorphism. Then
H⊗C E is canonically isomorphic to the B-module E∞ from item (2) in Exam-
ples 2.4.8.

Exercise 2.5.9. Let A and B be C∗-algebras, let F be a Hilbert B-module,
and let φ : A → K(F) be a homomorphism4. Show that there is a canonical
isomorphism

u : HA ⊗φ F → H⊗C F
determined on elementary tensors by u((ξ⊗a)⊗η) = ξ⊗φ(a)(η) for all ξ ∈ H,
all a ∈ A and all η ∈ F . In particular, when F = B and φ : A → B is a
homomorphism, we get HA ⊗φ B ∼= HB .

4This is equivalent to φ : A → L(F) being nondegenerate in the sense that φ(A)F is
dense in F .
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In the previous exercise, if the argument is done using C instead of H, one
obtains the isomorphisms A⊗φ F ∼= F and A⊗φ B ∼= B.

Proposition 2.5.10. Let A and B be C∗-algebras, and let E be an imprim-
itivity bimodule. Then there is a canonical isomorphism ϕ : E∗ ⊗A E → B of
Hilbert B-modules given by ϕ(ξ∗, η) = 〈ξ, η〉B for all ξ, η ∈ E .

Since A = A ⊗ e1,1 ∼M A ⊗ K, it is clear that stable isomorphism implies
Morita equivalence. The converse is clearly not true, since for a non-separable
Hilbert space H one has C ∼M K(H) although C and K(H) are not stably
isomorphic. A fundamental result in the theory of Morita equivalence, due
to Brown-Green-Rieffel, asserts that the converse does hold for σ-unital C∗-
algebras:

Theorem 2.5.11. Let A and B be σ-unital C∗-algebras. Then A ∼M B if
and only if A⊗K ∼= B ⊗K.

Proof. Let E be an imprimitivity bimodule.
Claim: there is an isomorphism HA ⊗A E ∼= HB of Hilbert B-modules.

Since B is σ-unital, the module E , and hence also E∗, is countably generated.
In particular, we have E∗⊕HA ∼= HA by Theorem 2.4.11. Hence, using Propo-
sition 2.5.10 at the fourth step, we get

HA ⊗A E ∼= H⊗C HA ⊗A E
∼= H⊗C (HA ⊕ E∗)⊗A E
∼= (H⊗C HA ⊗A E)⊕ (H⊗C E∗ ⊗A E)
∼= (HA ⊗A E)⊕ (H⊗C B)
∼= HB ,

thus proving the claim.
Recall that HA ⊗A E ∼= E∞ as Hilbert B-modules (see Example 2.5.8).

Combined with the claim above, we deduce that E∞ ∼= HB as Hilbert B-
modules.

In the following computation, we use Lemma 2.5.5 at the first step; item (2)
in Examples 2.4.8 at the second step; the isomorphism E∞ ∼= HB at the third
step; and the isomorphism KB(HB) ∼= B⊗K at the fourth step (see last claim
in item (2) of Examples 2.4.8), to get

A⊗K ∼= KB(E)⊗K ∼= KB(E∞) ∼= KB(HB) ∼= B ⊗K.

Together with Example 2.5.2, we deduce the following.

Corollary 2.5.12. Let A be a σ-unital C∗-algebra, and let p ∈ M(A) be a
projection. Then pAp ⊗ K ∼= ApA ⊗ K. In particular, if p is full in A, then
pAp⊗K ∼= A⊗K.

—————————————————————————————————
—————————————————–





Chapter 3

Group actions

3.1 C∗-dynamical systems

In this section, we introduce the notion of group action on a C∗-algebra, and
present a number of examples of them. A large source of examples comes from
topological dynamics, while inner actions on noncommutative C∗-algebras also
play an important role in the theory.

For a C∗-algebra A, we write Aut(A) for its automorphism group. If X is
any set and f : X → Aut(A) is a function, and to avoid cumbersome notation,
we usually write fx in place of f(x).

Definition 3.1.1. Let G be a topological group, and let A be a C∗-algebra.
An (strongly continuous) action of G on A is a group homomorphism α : G→
Aut(A) such that for every a ∈ A, the map αa : G→ A given by αa(g) = αg(a),
for all g ∈ G, is continuous. In this case, we say that the triple (G,A, α) is a
C∗-dynamical system, and that the pair (A,α) is a G-C∗-algebra.

In these notes, actions will always be strongly continuous, and we will not
mention it explicitly. Notice that continuity is automatic if the acting group is
discrete.

The study of group actions is a generalization of the study of automorphisms
of C∗-algebras, in view of the following easy observation.

Remark 3.1.2. Let A be a C∗-algebra. Then there is a one-to-one correspon-
dence between Aut(A) and Z-actions on A. Indeed, given ϕ ∈ Aut(A), the
associated action αϕ : Z → Aut(A) is given by αϕn(a) = ϕn(a) for all n ∈ Z,
with the convention that ϕ0 = idA.

Similarly, there are a one-to-one correspondences:

• between pairs of commuting automorphisms of A and Z2-actions on A;

• between pairs of automorphisms of A and F2-actions on A;

• between automorphisms of A of order n and Zn-actions on A.
27
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3.2 Topological actions

It is well-known that the categories of commutative C∗-algebras and that of lo-
cally compact Hausdorff spaces are equivalent, via the Gelfand transform. Not
surprisingly, for a fixed locally compact group G, the categories of commutative
G-C∗-algebras and that of G-topological spaces are equivalent. We recall first
the definition of a topological action. For a locally compact Hausdorff space,
we denote by Homeo(X) the group of homeomorphisms of X.

Definition 3.2.1. Let G be a locally compact group and let X be a locally
compact Hausdorff space. An action of G on X is a group homomorphism
σ : G→ Homeo(X) such that the map σ̃ : G×X → X given by σ̃(g, x) = σg(x)
for all (g, x) ∈ G × X, is continuous. When no confusion can arise, we often
omit the symbol σ, and just write Gy X to mean that G acts on X.

Theorem 3.2.2. Let G be a locally compact group and let X be a locally
compact Hausdorff space. If σ : G → Homeo(X) is a topological action, then
the formula σ∗g(f) = f ◦ σ−1

g , for g ∈ G and f ∈ C0(X), defines an action of G
on C0(X).

Moreover, the assignment σ 7→ σ∗ defines a one-to-one correspondence be-
tween G-actions on X and G-actions on C0(X).

We now give some relevant examples of topological actions.

Examples 3.2.3. Let G be a locally compact Hausdorff space.

1. There is unique action of G on the one-point space {∗}. More generally,
every locally compact Hausdorff space X carries an action of G, namely
the trivial on idX : G→ Homeo(X).

2. The action Lt : G → Homeo(G) given by Ltg(h) = gh for all g, h ∈ G,
is called the left translation action. With a slight abuse of notation, we
also write Lt : G→ Aut(C0(G)) for the induced action.

3. More generally, if H is a subgroup of G, then H acts on G via left
translation.

4. The action Ad: G → Homeo(G) given by Adg(h) = ghg−1 for all g, h ∈
G, is called the conjugation action. This action is trivial if and only if G
is abelian.

5. Let θ ∈ R be a number. Then the homeomorphism rθ ∈ Homeo(S1)
given by rθ(ζ) = e2πiθζ, for all ζ ∈ S1, defines a Z-action on S1. We call
this action the rotation action (by angle θ). When θ is irrational, we call
it an irrational rotation.

6. Define the boundary ∂F2 of F2 = 〈a, b〉 as the set of right-infinite reduced
words on {a, a−1, b, b−1}, and endow it with the topology in which two
infinite words are close if they agree on some long initial segment. Then
∂F2 is a Cantor set, and F2 acts on it by left concatenation (followed,
potentially, by reduction). This is called the boundary action of F2.
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3.3 Actions on noncommutative C∗-algebras

We now turn to actions on noncommutative C∗-algebras.

Notation 3.3.1. If A is a unital C∗-algebra, we denote by U(A) its unitary
group. When A is not necessarily unital, we write M(A) for its multiplier
algebra. There is a canonical group homomorphism Ad: U(M(A)) → Aut(A)
given by Adu(a) = uau∗ for all u ∈ U(M(A)) and all a ∈ A. The image of Ad
is denoted by Inn(A) and it is called the group of inner automorphisms of A.
It is routine to verify that Inn(A) is a normal subgroup of Aut(A).

Definition 3.3.2. Let G be a locally compact Hausdorff group, let A be a
C∗-algebra, and let z : G→ U(M(A)) be a homomorphism such that for every
a ∈ A, the map za : G → A given by za(g) = zga for all g ∈ G, is continuous.
Then the map Ad(z) : G → Aut(A) given by Ad(z)g(a) = zgaz

∗
g for all g ∈ G

and all a ∈ A, is called the inner action associated to z.

If α is an inner action, in the sense of the definition above, then clearly
αg ∈ Inn(A) for all g ∈ G. However, the converse does not hold in general.
The following two exercises give counterexamples:

Exercise 3.3.3. Set

u =

(
1 0
0 −1

)
and v =

(
0 1
1 0

)
.

1. Prove that there is a well-defined action α : Z2 × Z2 → Aut(M2) deter-
mined by α(1,0) = Ad(u) and α(0,1) = Ad(v).

2. Prove that this is not an inner action, although αg ∈ Inn(M2) for all
g ∈ Z2 × Z2.

Exercise 3.3.4. Define a continuous function u : S1 →M2 by

uζ =
1

2

(
ζ + 1 i(ζ − 1)
i(ζ − 1) −ζ − 1

)
for all ζ ∈ S1.

1. Prove that uζ is a unitary for all ζ ∈ S1.

2. Show that there is a well-defined action α : Z2 → Aut(C(S1,M2)) whose
nontrivial automorphism is given by conjugation by u.

3. Prove that this is not an inner action, although Ad(u) is an inner auto-
morphism.

In some special situations, however, every action by inner automorphisms
is indeed an inner action. One such situation is given by the following lemma.
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Lemma 3.3.5. Let A be a unital C∗-algebra with trivial center, let G be a
finite cyclic group, and let α : G→ Aut(A) be an action satisfying αg ∈ Inn(A)
for all g ∈ G. Then α is an inner action.

As Exercise 3.3.3 shows, the assumption that G be a finite cyclic group is
necessary in the previous lemma, while Exercise 3.3.4 shows that the assump-
tion that A have trivial center is also necessary.

We finish this section by giving a number of methods for constructing new
actions from old ones.

Theorem 3.3.6. Let G be a locally compact group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action.

1. Let B be another C∗-algebra, and let β : G→ Aut(B) be another action.
Let ⊗γ be a C∗-tensor product such that for all g ∈ G, the automorphism
αg�βg of the algebraic tensor product A�B extends to an isomorphism
αg ⊗γ βg of A ⊗γ B. Then there is a well-defined action α ⊗γ β : G →
Aut(A⊗γ B) given by (α⊗γ β)g = αg ⊗γ βg for all g ∈ G.

2. Let I be a G-invariant ideal of A, that is, an ideal satisfying αg(I) = I
for all g ∈ G, and denote by π : A → A/I the canonical quotient map.
Then α induces an action α : G→ Aut(A/I) such that for all g ∈ G, the
following diagram commutes:

A
αg //

π

��

A

π

��
A/I

αg
// A/I.

Furthermore,

3. Let (Λ,≤) be a directed set, and let ((Aλ)λ∈Λ, (ιµ,λ)µ≤λ) be a direct
system of C∗-algebras, and denote by (A, (ιλ,∞)λ∈Λ) its direct limit. For

λ ∈ Λ, let α(λ) : G→ Aut(Aλ) be the action and assume that ιλ,µ◦α(λ)
g =

α
(µ)
g ◦ ιλ,µ for all λ, µ ∈ Λ with λ ≤ µ, and all g ∈ G. Then there is a

canonical action α : G→ Aut(A) satisfying αg ◦ ιλ,∞ = ιλ,∞ ◦α(λ)
g for all

g ∈ G and all λ ∈ Λ.

The next exercise shows that the assumption on ⊗γ in part (2) of Theo-
rem 3.3.6 is not automatic.

Exercise 3.3.7. Let A0 be a C∗-algebra such that A0⊗maxA0 is not isomorphic
to A0 ⊗min A0. (One could take, for example, A0 to be the reduced group C∗-
algebra of F2.) Set A = A0 ⊕ A0, and let α : Z2 → Aut(A) be the flip action.
Denote by ⊗γ the C∗-norm on the algebraic tensor product A�A satisfying

A⊗γ A = (A0 ⊗max A0)⊕ (A0 ⊗min A0).

Show that α1 � α1 does not extend to an isomorphism of A⊗γ A.
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Using Theorem 3.3.6, we can introduce a special family of actions on UHF-
algebras.

Example 3.3.8. For n ∈ N, let dn ∈ {2, 3, . . .} be a natural number, and
denote by Md the UHF-algebra which is the direct limit of Md1 ⊗ · · · ⊗Mdn ,
for n ∈ N. Let G be a locally compact group, and for every n ∈ N, let
un : G → U(Mdn) be a unitary representation. Let α(n) : G → Aut(Mdn) be
the inner action associated to un, and let β(n) : G→ Aut(Md1 ⊗ · · · ⊗Mdn) be
the tensor product of α(1), . . . , α(n) (see part (1) of Theorem 3.3.6). Part (3)
of Theorem 3.3.6 implies that is a well-defined direct limit action β : G →
Aut(Md).

Actions on UHF-algebras of this form are called product-type actions. For
compact groups, they have been completely classified in terms of their equiv-
ariant K-theory by Handelman and Rossmann; see [39].

The class considered in the example above is a particular case of a more
general construction of group actions on AF-algebras obtained as certain direct
limits of actions on matrix algebras:

Definition 3.3.9. Let A be an AF-algebra, let G be a locally compact group,
and let α : G → Aut(A) be an action. We say that α is an AF-action if there
exist an AF-approximation A = lim−→(An, ϕn) of A, and actions α(n) : G →
Aut(An), for n ∈ N, making the connecting maps ϕn equivariant, and such
that α is (conjugate to) the direct limit of (αn, ϕn)n∈N.

Exercise 3.3.10. Let A be an AF-algebra, let G be a finite group, and let
α : G→ Aut(A) be an action. Show that Aoα G is an AF-algebra.

For many decades, it was an open problem to decide whether every finite
group action on an AF-algebra is necessarily an AF-action. In [5], Blackadar
solved this problem negatively by constructing an action of Z2 on the UHF-
algebra of type 2∞ whose crossed product is not AF – such an action cannot be
an AF-action by Exercise 3.3.10. The main idea is to write said UHF-algebra in
an unusual way as a direct limit of C∗-algebras that are not finite-dimensional
and do not even have trivial K1. Blackadar’s construction revealed that the
structure theory of AF-algebras is really much richer than that of their algebraic
analogs, and among other things it allowed him to prove that the 2∞ UHF-
algebra contains Cartan subalgebras that are themselves not AF.

The following exercise has the purpose of making the reader become fa-
miliar with Blackadar’s celebrated example. Recall that K0(Mn(C(S1))) ∼=
K1(Mn(C(S1))) ∼= Z for all n ∈ N.

Exercise 3.3.11. For k ∈ N, we identify Mk(C(S1)) as

Mk(C(S1)) = {f : [0, 1]→Mk continuous : f(0) = f(1), }

and define the positive twice-around embedding φ+
k : Mk(C(S1))→M2k(C(S1))

by

φ+
k (f)(t) =

(
cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)(
f(t/2) 0

0 f((t+ 1)/2)

)(
cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)∗
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for all f ∈ Mk(C(S1)) and all t ∈ [0, 1]. Similarly, the negative twice-around
embedding φ−k : Mk(C(S1))→M2k(C(S1)) is given by φ−k (f)(t) = φ+

k (f)(1−t)
for all f ∈Mk(C(S1)) and all t ∈ [0, 1].

1. Let k ∈ N. Show that

K0(φ±k ) : K0(Mk(C(S1))→ K0(M2k(C(S1)))

is multiplication by 2, while K1(φ±k ) is multiplication by the sign of φ±k .

2. For n ∈ N, set An = M4n(C(S1)) and let ψn : An → An+1 be

ψn(f) =

(
φ+

4n(f) 0
0 φ−4n(f)

)
⊗ 1M2

for all f ∈ An. Let A = lim−→(An, ψn). Show that A has the same K-theory
as the UHF-algebra of type 2∞.

3. Prove that A is an AF-algebra, and conclude that A is isomorphic to the
UHF-algebra of type 2∞. 1

4. For n ∈ N, set

un = diag (1,−1,−1, 1)⊗ 14n−1 ∈ An

and let α : Z2 → Aut(An) be the inner action determined by un. Show
that ψn : An → An+1 is equivariant, and conclude that there is a well-
defined limit action α : Z2 → Aut(A).

5. With Bn = M22n+1(C(S1)), show that Aαnn is isomorphic to Bn ⊕Bn.

6. Show that under the above identification, the restriction of ψn to Aαn
corresponds to the map θn : Bn ⊕Bn → Bn+1 ⊕Bn+1 given by

θn(f, g) = diag
(
φ+

22n+1(f), φ−22n+1(g), φ+
22n+1(g), φ−22n+1(f)

)
for all f, g ∈ Bn.

7. Show that K0(Aα) ∼= K1(Aα) ∼= K0(A). Conclude that Aα is not AF,
and hence that α is not an AF-action.

Bernoulli shifts are extremely important in topological dynamics and er-
godic theory. Since they also play a fundamental role within noncommutative
C∗-algebras, we formally define them next.

1This item is significantly harder than the others, and it becomes easier if one uses the
classification of C∗-algebras of tracial rank zero Theorem A.4.1.
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Example 3.3.12. Let D be a unital C∗-algebra, and let G be a discrete group.
We denote by D⊗G the infinite tensor product of copies of D indexed by the
elements of G2. We define an action βG,D : G → Aut(DG) on simple tensors
by

βG,D(g)(dh1
⊗ · · · ⊗ dhn ⊗ 1⊗ · · · ) = dgh1

⊗ · · · ⊗ dghn ⊗ 1⊗ · · ·

for all g, h1, . . . , hn ∈ G. We call βG,D the Bernoulli shift of G with base D.

Another relevant family of examples of actions of noncommutative C∗-
algebras is that of the so-called gauge actions. There is no formal definition of
what a gauge action is, but they typically are actions of S1 (or (S1)n for some
n ∈ N) on a C∗-algebra that is defined by generators and relations, where the
action multiplies some of the generators by a scalar of modulus one, in such
a way that the relations are preserved. Crossed products of gauge actions are
typically “less complicated” than the original algebras where they act, and this
is usually a very helpful feature of these actions.

In the next example, given n ∈ N we write the elements of (S1)n as tuples
ζ = (ζ1, . . . , ζn).

Examples 3.3.13. The following are examples of gauge-type actions.

1. Identify C(S1) with the universal unital C∗-algebra generated by a uni-
tary u, and define an action γ : S1 → C(S1) by γζ(u) = ζu for all ζ ∈ S1.
This action is just Lt : S1 → C(S1).

2. For θ ∈ R, let Aθ denote the associated rotation algebra, which is the
universal unital C∗-algebra generated by unitaries u, v satisfying uv =
e2πiθvu. Then there is an action γ : S1 → Aut(Aθ) determined by γζ(u) =
ζu and γζ(v) = v for all ζ ∈ S1.

3. Identify C∗(Fn) with the universal unital C∗-algebra generated by uni-
taries u1, . . . , un without any further relations. Then there is an action
γ : (S1)n → Aut(C∗(Fn)) determined by γζ(uj) = ζjuj for all ζ ∈ (S1)n

and all j = 1, . . . , n.

4. Let n ∈ N, and consider the Cuntz algebra On, which is the universal

unital C∗-algebra generated by isometries s1, . . . , sn satisfying
n∑
j=1

sjs
∗
j =

1. Then there is an action γ : (S1)n → Aut(On) determined by γζ(sj) =

ζjsj for all ζ ∈ (S1)n and all j = 1, . . . , n.

Examples (1) and (4) above are particular cases of the gauge action on a
graph algebra.

2Formally, this infinite tensor product is defined as the direct limit of algebras of the
form ⊗g∈FD, for F ⊆ G finite, where for finite sets F ⊆ F ′ ⊆ G the connecting map
⊗g∈FD → ⊗g∈F ′D is x 7→ x⊗ 1F ′\F .
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Example 3.3.14. Let E = (V,E, r, s) be a directed graph (see Definition 2.1.6).
We denote a generic element of the group (S1)E = {f : E → S1} by z, and for
e ∈ E we write ze for the evaluation of z at e. The gauge action on C∗(E) is
the action γ : (S1)E → Aut(C∗(E)) determined on generators by

γz(pv) = pv and γz(se) = zese

for all v ∈ V and all e ∈ E.
The restriction of γ to the (constant) copy of S1 is sometimes also referred

to as the gauge action of S1 on C∗(E).
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Full and reduced crossed
products

4.1 Covariant representations and crossed products

One of the main goals of these lecture notes is to study the structure of crossed
products by certain classes of actions. This section is devoted to the construc-
tion of full and reduced crossed product, and we also prove some elementary
properties.

Definition 4.1.1. Let G be a locally compact group, and let α : G→ Aut(A)
be an action on a C∗-algebra A. A covariant representation of (G,A, α) is a
triple (H, u, ϕ), where H is a Hilbert space, u : G→ U(H) is a strongly contin-
uous unitary representation1, and ϕ : A→ B(H) is a representation satisfying

ϕ(αg(a)) = ugϕ(a)u∗g

for all g ∈ G and all a ∈ A.
A covariant representation (H, u, ϕ) is called regular if there exist a Hilbert

spaceH0, a representation ϕ0 : A→ B(H0) and an identificationH ∼= L2(G,H0)
under which u and ϕ are given by

ug(ξ)(h) = ξ(g−1h) and ϕ(a)(ξ)(g) = ϕ0(αg−1(a(g)))(ξ(g))

for all g, h ∈ G, for all ξ ∈ H and for all a ∈ Cc(G,A, α).
A covariant representation (H, u, ϕ) is said to be non-degenerate if ϕ is

non-degenerate.

Remark 4.1.2. The previous definition also has a recipe for constructing
regular covariant representations, and in particular shows that covariant rep-
resentations exist. Namely, starting from any representation ϕ : A→ B(H), we

1This means that for every ξ ∈ H, the map uξ : G → H given by uξ(g) = ug(ξ) for all
g ∈ G, is continuous.

35
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take HG = L2(G,H0) and let λH : G→ U(HG) and ϕG : A→ B(HG) be given
by

λHg (ξ)(h) = ξ(g−1h) and ϕG(a)(ξ)(g) = ϕ(αg−1(a(g)))(ξ(g))

for all g, h ∈ G, for all ξ ∈ H and for all a ∈ Cc(G,A, α). Then the tripe
(HG, λH, ϕG) is a (regular) covariant representation.

The full crossed product of a C∗-dynamical system (G,A, α) is defined to
be the universal object with respect to covariant representations of the system,
while the reduced crossed product is defined to be the universal object with
respect to regular covariant representations; see Definition 4.1.8 below. The
rigourous definition in the case that G is locally compact requires that one
develops some theory of integration on Banach spaces. Since the focus of these
notes will be on discrete groups, we omit much of this discussion here.

Definition 4.1.3. Let G be a locally compact group, and let α : G→ Aut(A)
be an action on a C∗-algebra A. Let µ denote a left Haar measure on G, and
let ∆: G→ R denote its associated modular function. Endow the vector space
Cc(G,A) of continuous compactly supported functions from G to A with the
product given by the following twisted convolution

(a ∗ b)(g) =

∫
G

a(h)αh(b(h−1g)) dµ(h)

for all a, b ∈ Cc(G,A) and all g ∈ G, and with the following twisted convolution

a∗(g) = ∆(g)−1αg(a(g−1)∗)

for all a ∈ Cc(G,A) and all g ∈ G. Finally, we define the norm of a ∈ Cc(G,A)
by ‖a‖1 =

∫
G
‖a(g)‖ dµ(g). The resulting object is denoted by Cc(G,A, α).

Exercise 4.1.4. Prove that Cc(G,A, α) is a normed ∗-algebra, and that it is
unital if and only if G is discrete and A is unital.

Remark 4.1.5. When G is discrete, Cc(G,A, α) is sometimes denoted by
A[G], and it admits a more concise description as follows:

A[G] =

∑
g∈F

agδg : F ⊆ G finite, and ag ∈ A for all g ∈ F

 ,

with multiplication given by augbuh = aαg(b)ugh and involution given by
(aug)

∗ = ug−1a∗ = αg−1(a∗)δg−1 for all a, b ∈ A and all g, h ∈ G.

It turns out that ∗-representations of Cc(G,A, α) on Hilbert space are in
one-to-one correspondence with covariant representations of (G,A, α), via the
integrated form.
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Theorem 4.1.6. Let G be a locally compact group, and let α : G → Aut(A)
be an action on a C∗-algebra A. Then there is a canonical one-to-one cor-
respondence between (non-degenerate) covariant representations of (G,A, α)
and (non-degenerate) ∗-representations of Cc(G,A, α). If (H, u, ϕ) is a co-
variant representations of (G,A, α), then the associated ∗-representation ϕ o
u : Cc(G,A, α)→ B(H) is called the integrated form of (u, ϕ), and is given by

(ϕo u)(a)ξ =

∫
G

ϕ(a(g))(ug(ξ)) dµ(g)

for all a ∈ Cc(G,A, α) and all ξ ∈ H.

Proof. Let (H, u, ϕ) be a covariant representations of (G,A, α). We need
to show that the formula in the statement determines a ∗-representation of
Cc(G,A, α). Given a, b ∈ Cc(G,A, α) and ξ ∈ H, we have

(ϕo u)(ab)ξ =

∫
G

ϕ(ab(g))ug(ξ) dµ(g)

=

∫
G

∫
G

ϕ(a(h))ϕ(αh(b(h−1g)))ug(ξ) dµ(h)dµ(g)

=

∫
G

∫
G

ϕ(a(h))uhϕ(b(h−1g))uh−1g(ξ) dµ(h)dµ(g)

=

(∫
G

ϕ(a(h))uh

(∫
G

ϕ(b(k))uk(ξ) dµ(k)

)
dµ(h)

)
= ((ϕo u)(a) ◦ (ϕo u)(a)) ξ,

so ϕo u is multiplicative. One checks analogously that ϕo u is ∗-preserving.
We proceed to show that any ∗-representation of Cc(G,A, α) is the inte-

grated form of a covariant representation of (G,A, α). We only prove the result
when G is discrete and A is unital, and refer the reader to [99] for a proof in
the general case.

Assume then that G is discrete and that A is unital. We denote by δg ∈
Cc(G,A, α) the corresponding Kronecker delta, and by ι : A→ Cc(G,A, α) the
∗-homomorphism given by ι(a) = aδ1 for a ∈ A.In the case of discrete groups,
integrated forms take a particularly nice form. Indeed, a generic element of
Cc(G,A, α) has the form

∑
g∈G

agδg, where ag ∈ A for all g ∈ G and ag 6= 0

for at most finitely many g ∈ G. If (H, u, ϕ) is a covariant representations of
(G,A, α), one easily checks that

(ϕo u)(
∑
g∈G

agδg) =
∑
g∈G

ϕ(ag)ug.

Let ψ : Cc(G,A, α) → B(H) be an ∗-representation. Set ϕ = ψ ◦ ι and
let u : G → B(H) be given by u(g) = ψ(δg) for all g ∈ G. Then ϕ is a
representation of A, and u is a unitary representation of G.
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We claim that ψ = ϕo u. To check this, it suffices to show that they agree
on elements of the form aδg, for a ∈ A and g ∈ G. This is readily checked:

(ϕo u)(aδg) = ϕ(a)ug = ψ(aδ1)ψ(δg) = ψ(aδg),

thus concluding the proof.

The reader is encouraged to prove the above result in the case that G is
discrete but A is not necessarily unital, using limits along an approximate
identity to define the unitary representation.

Exercise 4.1.7. Let G be a discrete group, let A be a C∗-algebra, and let
α : G → Aut(A) be an action. Show that any ∗-representation of Cc(G,A, α)
is the integrated form of a covariant representation of (G,A, α).

We are now ready to introduce full and reduced crossed products.

Definition 4.1.8. Let G be a locally compact group, and let α : G→ Aut(A)
be an action on a C∗-algebra A.

We define the full crossed product AoαG of (G,A, α) to be the completion
of Cc(G,A, α) with respect to the norm

‖a‖AoαG = sup{‖(ϕou)(a) : (ϕ, u) is a covariant representation of (G,A, α)}.

We define the reduced crossed product Aoλ,αG of (G,A, α) to be the com-
pletion of Cc(G,A, α) with respect to the norm

‖a‖Aoλ,αG = sup{‖(ϕou)(a) : (ϕ, u) is a regular covariant representation of (G,A, α)}.

By definition, there is a canonical quotient map κ : Aoα G→ Aoλ,α G.

It follows directly from the definitions that representations of A oα G are
in one-to-one correspondence with covariant representations of (G,A, α), and
that representations of Aoλ,αG are in one-to-one correspondence with regular
covariant representations of (G,A, α). These are generalizations of the corre-
sponding facts for the full and reduced group C∗-algebras C∗(G) and C∗λ(G) of
G, which are, respectively, the full and reduced crossed products of the trivial
action of G on C. Section 4.2 contains the explicit computations of a number
of crossed products. In particular, Example 4.2.1 is a generalization of the
observation that CoG = C∗(G) and Coλ G = C∗λ(G).

Full crossed products by discrete groups admit a very natural description
as universal C∗-algebras with generators and relations, as we show next.

Theorem 4.1.9. Let G be a discrete group, and let α : G → Aut(A) be an
action on a C∗-algebra A. Then A oα G is canonically isomorphic to the
universal C∗-algebra generated by the set {aug : a ∈ A, g ∈ G}, where ug is
a unitary for all g ∈ G, subject to the relations augbuh = aαg(b)ugh for all
a, b ∈ A and all g, h ∈ G.
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Proof. Denote by B the universal C∗-algebra described in the statement; we
will show that there is a canonical isomorphism B ∼= Aoα G. By universality
of B, and since A oα G is generated by the same generators and relations as
B, there is a surjective map π : B → A oα G, which maps an element aug to
aδg ∈ Cc(G,A, α), for all a ∈ A and all g ∈ G.

Observe that there is a canonical inclusion ι : Cc(G,A, α) → B deter-
mined by sending ι(aδg) = aug for all a ∈ A and all g ∈ G. We obtain a
∗-representation of Cc(G,A, α) on B, which by Theorem 4.1.6 must be the
integrated form of some covariant representation (ϕ, u), where ϕ : A → B is a
homomorphism and u : G→M(B) is a unitary representation. By the univer-
sal property of the crossed product, the integrated form of (ϕ, u) extends to
a homomorphism θ : A oα G → B satisfying θ(aδg) = (ϕ o u)(aδg) = aug. It
follows that π and θ are mutual inverses, and thus B is canonically isomorphic
to Aoα G.

Observe that in the context of the theorem above, the elements ug, for
g ∈ G, belong to the multiplier algebra of A oα G, and u1 is its unit. In
particular, A is contained in Aoα G as Au1.

Remark 4.1.10. In particular, when A is unital, a crossed product of the
form A oα Z is the universal unital C∗-algebra generated by a unital copy of
A together with a unitary u satisfying uau∗ = α1(a).

In previous examples, equality between full and reduced crossed products
was deduced from simplicity of the full crossed product. A very general instance
in which full and reduced crossed products agree is when the acting group is
amenable, as we show in the next theorem, whose proof is very similar to the
proof that the universal map C∗(G) → C∗λ(G) is an isomorphism when G is
amenable.

Theorem 4.1.11. Let G be a locally compact group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action. If G is amenable, then the natural map
κ : Aoα G→ Aoλ,α G is an isomorphism.

Proof. Let x ∈ Cc(G,A, α), let (H, ϕ, u) be a covariant representation, and let
ε > 0. Use ϕ to construct the regular covariant representation (HG, λH, ϕG)
as in Remark 4.1.2. Using the notation from Theorem 4.1.6, we will show that

‖(ϕo u)(x)‖ − ε ≤ ‖(ϕG o λH)(x)‖.

Recall that HG is just L2(G,H). Let v ∈ U(HG) be the unitary given by

v(ξ)(g) = u−1
g (ξ(g))

for all ξ ∈ HG and all g ∈ G.
Claim: For all g ∈ G and all a ∈ A, we have

v(λg ⊗ ug)v∗ = λg ⊗ 1H, and v(1L2(G) ⊗ ϕ(a))v∗ = ϕG(a).
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The proof of the claim is a routine verification, which we omit.
It follows that (HG, λ ⊗ u, 1L2(G) ⊗ ϕ) is a regular covariant representa-

tion that induces the same norm as (HG, λH, ϕG) on Cc(G,A, α). It therefore
suffices to show that

‖(ϕo u)(x)‖ − ε ≤ ‖((1⊗ ϕo (λ⊗ u))(x)‖.

Without loss of generality, we may assume that ‖(ϕo u)(x)‖ = 1. Choose
ξ0 ∈ H with ‖ξ0‖ = 1 and

‖(ϕo u)(x)ξ0‖ > 1− ε/2.

Set F = supp(x) ∪ {1} and

δ =

(
1− ε/2
1− ε

)2

− 1 > 0,

and use amenability ofG to find a compact subsetK ⊆ G satisfying µ(F−1K) <
(1 + δ)µ(K). Let ξ ∈ HG = L2(G,H) be given by

ξ(g) =

{
ξ0, for g ∈ F−1K
0, else.

Then ‖ξ‖ = µ(F−1K)1/2‖ξ0‖ < (1 + δ)1/2µ(K)1/2. One shows that

((1⊗ ϕ) o λ⊗ u)(x)ξ(g) = (uo ϕ)(x)(ξ0)

for all g ∈ K, from which it follows that

‖((1⊗ ϕ) o λ⊗ u)(x)ξ‖ ≥ µ(K)1/2‖(uo ϕ)(x)(ξ0)‖ ≥ µ(K)1/2
(

1− ε

2

)
.

We conclude that

‖((1⊗ ϕo (λ⊗ u))(x)‖ >
µ(K)1/2

(
1− ε

2

)
(1 + δ)1/2µ(K)1/2

= (1 + δ)−1/2
(

1− ε

2

)
= (1− ε) ,

as desired.

When A = C, the converse to Theorem 4.1.11 is true: if C∗(G) = C∗λ(G),
then G is amenable. For actions on arbitrary C∗-algebras, however, this need
not be the case. For example, C0(G) o G = C0(G) oλ G regardless of G, by
Proposition 4.2.3.

Full and reduced crossed products exhibit nice functoriality properties with
respect to a number of constructions in C∗-algebras. We record a few of them,
and leave some of the proofs to the reader.
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Proposition 4.1.12. Let G be a locally compact group, let A and B be
C∗-algebras, and let α : G → Aut(A) be an action. Then there are natural
isomorphisms

(A⊗max B) oα⊗maxidB G
∼= (Aoα G)⊗max B

and
(A⊗min B) oλ,α⊗minidB G

∼= (Aoλ,α G)⊗min B.

Exercise 4.1.13. Let G be a locally compact group, let A and B be C∗-
algebras, and let α : G→ Aut(A) be an action.

1. Prove Proposition 4.1.12 by comparing the representations of the objects
involved.

2. Can Proposition 4.1.12 be generalized to the case when G acts non-
trivially on B?

Proposition 4.1.14. Let G be a locally compact group, let A, and let α : G→
Aut(A) be an action. Suppose thatA can be written as a direct limit (A, (ιn,∞)n∈N) =
lim−→(An, ιn), and that there exist actions α(n) : G → Aut(An), for n ∈ N,
which make the connecting maps ιn equivariant, and satisfy αg(ιn,∞(a)) =

ιn,∞(α
(n)
g (a)) for all g ∈ G, for all n ∈ N and for all a ∈ An. Then

Aoα G = lim−→An oα(n) G and Aoλ,α G = lim−→An oλ,α(n) G.

Exercise 4.1.15. Prove Proposition 4.1.14 in the case that all the maps ιn
are inclusions.

Discussion about extensions: goes well with full crossed products, not so
with reduced. What is needed later is that the crossed product of an invariant
ideal is an ideal in the crossed product.

For future use, we give here explicit descriptions of approximate identities
in full crossed products (and hence also on reduced crossed products). This
description has two very useful consequences: first, when A is discrete then any
approximate identity of A is an approximate identity of Aoα G. And second,
if G is first countable2 and A is σ-unital, then Aoα G is also sigma unital.

Proposition 4.1.16. Let G be a locally compact group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action. Let (aj)j∈J be an approximate unit for
A, and let (fk)k∈K be an approximate unit for C∗(G). Then (ajfk)j∈J,k∈K is
an approximate unit for Aoα G.

Proof. In order to check that (ajfk)j∈J,k∈K is an approximate unit for AoαG,
it suffices to show that it is an approximate unit for elements of the form fa,
for f ∈ Cc(G) and a ∈ A.

2Recall that for a locally compact group G, its full group algebra C∗(G) is σ-unital if
and only if G is first countable.
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Accordingly, let S ⊆ Cc(G) and F ⊆ A be finite subsets, and let ε > 0.
Without loss of generality, we assume that ‖a‖ = 1 for all a ∈ F . Find k ∈ K
such that

‖fk ∗ f − f‖ < ε/2 and max
g∈supp(fk)

‖αg(a)− a‖ < ε/2

for all f ∈ S and all a ∈ F . Find j ∈ J such that∥∥∥∥aj (∫
G

αg(a)fk(g) dµ(g)

)
−
∫
G

αg(a)fk(g) dµ(g)

∥∥∥∥ < ε/2

for all a ∈ F . Given a ∈ F and f ∈ S, we have

‖(ajfk)(af)− af‖ =

∥∥∥∥(aj ∫
G

αg(a)fk(g) dµ(g)

)
(fk ∗ f)− af

∥∥∥∥
≤
∥∥∥∥aj ∫

G

αg(a)fk(g) dµ(g)− a
∥∥∥∥+ ‖fk ∗ f − f‖

<

∥∥∥∥∫
G

αg(a)fk(g) dµ(g)− a
∥∥∥∥+ ε/2

=

∥∥∥∥∫
G

(αg(a)− a)fk(g) dµ(g)

∥∥∥∥+ ε/2

≤ max
g∈supp(fk)

‖αg(a)− a‖
∫
G

fk(g) dµ(g) + ε/2

< ε/2 + ε/2 = ε,

as desired.

Corollary 4.1.17. Let G be a locally compact group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action.

1. If G is discrete, then any approximate identity of A is an approximate
identity of Aoα G.

2. If G is first countable and A is σ-unital, then AoαG is also sigma unital.

4.2 Examples and computations

This section is devoted to the computation of a number of examples of full and
reduced crossed products. We begin with the trivial action on a C∗-algebra.

Example 4.2.1. Let A be a C∗-algebra, let G be a locally compact group,
and let idA : G → Aut(A) be the trivial action. Then there are canonical
isomorphisms

AoidA G
∼= A⊗max C

∗(G) and Aoλ,idA G ∼= A⊗min C
∗
λ(G).
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Proof. Covariant representations for (G,A, idA) on a Hilbert space H are in
natural one-to-one correspondence with pairs (ϕ, π) of commuting represen-
tations ϕ : A → B(H) and π : C∗(G) → B(H). Thus, the universal object for
these representations is the maximal tensor product of A and C∗(G). Similarly,
regular covariant representations of (G,A, idA) have the form (ϕ⊗idL2(G), idH⊗
λ), where ϕ : A → B(H) is some representation and λ : G → U(L2(G)) is the
left regular representation. The universal C∗-algebra that these representations
generate is thus the minimal tensor product of A and C∗λ(G).

The notation o that we use for crossed products is inspired by the following
fact.

Exercise 4.2.2. Let G = N oH be a semidirect product of discrete compact
groups. Show that there are canonical isomorphisms

C∗(G) ∼= C∗(N) oH and C∗λ(G) ∼= C∗λ(N) oλ H.

For the next computation, we recall that Mn is the universal unital C∗-
algebra generated by {ej,k : j, k = 1, . . . , n}, subject to the relations

ej,kel,m = δk,mej,m, e∗j,k = ek,j ,

n∑
j=1

ej,j = 1

for all j, k, l,m = 1, . . . , n. Elements ej,k as above are called matrix units for
Mn.

Proposition 4.2.3. Let G be a locally compact group. Then there are canon-
ical isomorphisms

C0(G) oLt G ∼= C0(G) oλ,Lt G ∼= K(L2(G)).

Proof. We only prove the proposition in the discrete case; the proof for arbi-
trary G can be found in ???.

For g ∈ G, we denote by ug the canonical unitary implementing Ltg in the
full crossed product, and we denote by χg ∈ c0(G) the characteristic function
of {g}. For g, h ∈ G, set eg,h = χgugh−1 ∈ c0(G) oLt G.

Let F ⊆ G be a finite set.
Claim: There is a canonical isomorphism ϕF : B(`2(F ))→ C∗({eg,h : g, h ∈

F}) satisfying ϕF (1) =
∑
g∈F eg,g. For this, it is enough to show that the

set {eg,h : g, h ∈ F} satisfies the relations for matrix units in B(`2(F )). For
g, h, k,m ∈ F , we have

eg,hek,m = χgugh−1χkukm−1

= χgLtgh−1(χk)ugh−1km−1

= χgχgh−1kugh−1km−1

= χgδh,kugm−1 .
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On the other hand, it is clear that e∗g,h = eh,g for all g, h ∈ F . The claim thus
follows.

Observe that if F1 ⊆ F2 are finite subsets of G, and we regard B(`2(F1)) as a
(non-unital) subalgebra of B(`2(F2)), then ϕF2 |B(`2(F1)) = ϕF1 . We deduce that
the family (ϕF )

F⊆G finite induces a well-defined contractive homomorphism

ϕ :
⋃

F⊆G finite

B(`2(F ))→ Cc(G, c0(G), Lt).

By continuity, ϕ extends to a homomorphism ψ : K(`2(G))→ c0(G)oLtG. This
homomorphism is surjective, since its range contains the dense set span{eg,h : g, h ∈
G}. Since K(`2(G)) is simple, ψ must also be injective and hence an isomor-
phism.

Finally, since c0(G)oLtG is simple and c0(G)oλ,LtG is a quotient of it (via
κ), they must be isomorphic.

The previous proposition can be generalized

Proposition 4.2.4. Let G be a locally compact group, let H be a closed
subgroup, and let G act on G/H by translation. Prove that there are canonical
isomorphisms

C0(G/H) oLt G ∼= C∗(H)⊗K(L2(G/H))

and

C0(G/H) oλ,Lt G ∼= C∗λ(H)⊗K(L2(G/H)).

Exercise 4.2.5. Prove Proposition 4.2.4 in the case that G is discrete.

Example 4.2.6. Let θ ∈ R be a number, and let rθ : Z→ Aut(C(S1)) denote
the rotation action from part (5) of Examples 3.2.3. Then C(S1) orθ Z is
isomorphic to Aθ, that is, the universal C∗-algebra generated by two unitaries
u, v satisfying uv = e2πiθvu, and the same is true for C(S1) oλ,rθ Z

Proof. Let v denote the canonical generating unitary of C(S1). Then rθ(v) =
eπiθv, and hence the result follows from Remark 4.1.10. The reduced crossed
product, being a quotient of the simple C∗-algebra Aθ, is therefore isomorphic
to Aθ itself.

Example 4.2.7. Let Z2 act on S1 via conjugation, and denote by α : Z2 →
Aut(C(S1)) the induced action. We will show that

C(S1) oα Z2
∼= {f ∈ C([−1, 1],M2) : f(1), f(−1) are diagonal}.

Denote by S1
+ the closed upper-half circle, and observe first that the algebra

B =

{
f ∈ C(S1

+,M2) : f(1), f(−1) are of the form

[
x y
y x

]}
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is isomorphic to what we want to get. Define ϕ : C(S1)→ B by

ϕ(f) =

[
f(z) 0

0 f(z)

]
for all f ∈ C(S1) and all z ∈ S1

+, and let v ∈ U(B) be the unitary given by

v(z) =

[
0 1
1 0

]
for all z ∈ S1

+. One checks that v2 = 1 and that vϕ(f)v∗ =

ϕ(α1(f)) for all f ∈ C(S1). By the universal property of C(S1) oα Z2, there
is a unique homomorphism ψ : C(S1) oα Z2 → B extending ϕ and satisfying
ψ(u) = v. One checks that this homomorphism is given by

ψ(f0 + f1u) =

[
f0(z) f1(z)
f1(z) f0(z)

]
for all f0, f1 ∈ C(S1) and all z ∈ S1

+. The rest of the proof consists in showing
that ψ is an isomorphism, which we leave as an exercise.

Exercise 4.2.8. Complete the details in Example 4.2.7.

Exercise 4.2.9. Let Z2 act on [−1, 1] via multiplication by -1, and denote by
α : Z2 → Aut(C([−1, 1])) the induced action. Compute C([−1, 1]) oα Z2.

The following computation will be very relevant in chapter 11. The action
we consider there is a particular case of a product type action, as defined in
Example 3.3.8.

Proposition 4.2.10. Let G be a finite group, and set m = |G|. We denote
by D the UHF-algebra of type m∞, which we identify with the infinite tensor
product of B(`2(G)). Let λ : G→ U(`2(G)) denote the left regular representa-
tion, and let δ : G→ Aut(D) be the action given by

δg = ⊗∞n=1Ad(λg)

for all g ∈ G. Then D oδ G is isomorphic to D.

Proof. For n ∈ N, set Dn =
n⊗
j=1

B(`2(G)) and let δ(n) : G → Aut(Dn) denote

the restriction of δ to Dn. Denote by ιn : Dn → Dn+1 the map given by
ιn(d) = d⊗1 for all d ∈ Dn, and note that (D, δ) is the equivariant direct limit
of the systems (Dn, ιn, δ

(n)). We denote by

ιn oG : Dn oδ(n) G→ Dn+1 oδ(n+1) G

the homomorphism induced by ιn. By Proposition 4.1.14, there is a natural
isomorphism

lim−→(Dn oδ(n) G, ιn oG) ∼= D oδ G.
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We begin by computing Dn oδ(n) G. For g ∈ G, set λ
(n)
g =

n⊗
j=1

λg, so that

δ
(n)
g = Ad(λ

(n)
g ). For g ∈ G, we write ug ∈ Dn oδ(n) G and vg ∈ C∗(G) for the

canonical unitaries. We define a linear map

ϕn : Dn oδ(n) G→ Dn ⊗ C∗(G)

by ϕn(dug) = dλ
(n)
g ⊗ vg for all d ∈ Dn and all g ∈ G. We claim that ϕn is an

isomorphism. To check multiplicativity, we let d, e ∈ Dn and g, h ∈ G. Then

ϕn(dug)ϕn(euh) = (dλ(n)
g ⊗ vg)(eλ(n)

h ⊗ vh)

= (dλ(n)
g eλ

(n)
h )⊗ vgh

= dδ(n)
g (e)λ

(n)
gh ⊗ vgh

= ϕn(dδ(n)
g (e)ugh)

= ϕn((dug)(euh)),

as desired. A similar computation shows that ϕn is ∗-preserving. The map ϕn
is clearly surjective, since its image contains all elementary tensors. Injectivity
can be deduced from the fact that both the domain and the codomain of ϕn are
finite-dimensional C∗-algebras with the same linear dimension. One can also
see this directly by constructing its inverse, which is the map ψn : Dn⊗C∗(G)→
Dn oδ(n) G given by ψn(d⊗ vg) = dλ

(n)
g−1ug for all d ∈ Dn and all g ∈ G. This

proves the claim.
It follows that there is an isomorphism

D oδ G = lim−→(Dn ⊗ C∗(G), ϕn+1 ◦ (ιn oG) ◦ ψn).

The connecting map is given by

(ϕn+1 ◦ (ιn oG) ◦ ψn)(d⊗ vg) =

Similar arguments can be used to compute the crossed products of other
product-type actions. The following computation will be relevant in chapter 12.

Exercise 4.2.11. Let G be a finite group, and set m = |G|. We denote by E
the UHF-algebra of type (m+ 1)∞, which we identify with the infinite tensor
product of B(`2(G) ⊕ C). Let λ ⊕ 1: G → U(`2(G) ⊕ C) denote the direct
sum of the left regular representation and the trivial representation, and let
β : G→ Aut(E) be the action given by

βg = ⊗∞n=1Ad(λg ⊕ 1)

for all g ∈ G. Compute E oβ G, at least when G = Z2.
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4.3 Conditional expectations in crossed products by
discrete groups

In this section, we will establish the existence of a canonical conditional ex-
pectation from full and reduced crossed products by discrete groups back into
the original coefficient algebra. We will also prove a distinguishing feature of
the reduced crossed product, namely, faithfulness of its canonical conditional
expectation.

Lemma 4.3.1. Let G be a discrete group, let A be a C∗-algebra, and let
α : G → Aut(A) be an action. Let ϕ : A → B(H) be a representation and
let (HG, λH, ϕG) be its associated regular covariant representation as in Re-
mark 4.1.2. Let F ⊆ G be a finite set, let ag ∈ A, for g ∈ F , and set

a =
∑
g∈F

agug ∈ Cc(G,A, α) ⊆ Aoλ,α G.

1. For ξ ∈ HG and g ∈ G, we have

((ϕG o λH)(a)ξ)(g) =
∑
h∈G

ϕ(αg−1(ah)(ξ(h−1g)).

2. For g ∈ G, let sg ∈ B(H,HG) be the isometry which sends ξ to ξδg, for
all ξ ∈ H. For all g, h ∈ G, we have

s∗g(ϕ
G o λH)sh = ϕ(αg−1(agh−1)).

The proof of the previous lemma is routine, so we leave it as an exercise.

Exercise 4.3.2. Prove Lemma 4.3.1.

Lemma 4.3.3. Let G be a discrete group, let A be a C∗-algebra, let α : G→
Aut(A) be an action, and fix g ∈ G. Then there exists a unique contractive
linear map Eg : A oλ,α G → A satisfies Eg(a) = ag for all a =

∑
g∈F agug ∈

Cc(G,A, α) as in Lemma 4.3.1. Moreover, for every representation ϕ : A →
B(H), one has

s∗g(ϕ
G o λH)(b)sh = ϕ(αg−1(Egh−1(b)).

for all g, h ∈ G, and for all b ∈ Aoλ,α G.

Proof. Define a linear map E
(0)
g : Cc(G,A, α) → A by evaluating at g. Then

Eg is continuous with respect to the ‖ · ‖∞ norm on Cc(G,A, α). It therefore
suffices to show that ‖ · ‖∞ ≤ ‖ · ‖λ norm on Cc(G,A, α). For a as in the
statement, and for an isometric representation π : A→ B(H), we have

‖ag‖ = ‖π0(ag)‖ = ‖s∗1(ϕG o λH)(a)sg−1‖ ≤ ‖(ϕG o λH)(a)‖ ≤ ‖a‖λ.

The last identity follows immediately from part (2) of Lemma 4.3.1.
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It follows that for any a ∈ Aoλ,αG, and hence for every a ∈ AoαG, there
are well-defined coefficients ag ∈ A, for g ∈ G. (This is obvious for elements in
Cc(G,A, α).) However, a cannot in general be recovered as

∑
g∈G agug, since

this series does not in general converge in the crossed product. However, as we
show next, an element in the reduced crossed product is zero if and only if all
of its coefficients are zero.

Theorem 4.3.4. Let G be a discrete group, let A be a C∗-algebra, and let
α : G→ Aut(A) be an action.

1. If a ∈ Aoλ,α G satisfies Eg(a) = 0 for all g ∈ G, then a = 0.

2. If a ∈ Aoλ,α G, then ‖Eg(a∗a)‖2 ≤ ‖E1(a∗a)‖ for all g ∈ G.

3. If a ∈ Aoλ,α G satisfies E1(a∗a) = 0, then a = 0.

Proof. (1). Let ϕ : A → B(H) be a representation. If a ∈ A oλ,α G satisfies
Eg(a) = 0 for all g ∈ G, then s∗g(ϕ

GoλH)(a)sh = 0 for all g, h ∈ G, and hence

(ϕG o λH)(a) = 0. Since ϕ is arbitrary, it follows that a = 0.
(2). For a finite subset F ⊆ G and an element a =

∑
g∈F agug ∈ Cc(G,A, α),

we have
a∗a =

∑
g,h

αg−1(aga
∗
h)ug−1h

and thus
E1(a∗a) =

∑
g∈G

aga
∗
g =

∑
g∈G

Eg(a)Eg(a
∗).

Thus E1(a∗a) ≥ αg−1(Eg(a)Eg(a)∗) for all g ∈ G and hence ‖E1(a∗a)‖ ≥
‖Eg(a)‖2. By continuity, this holds for all elements in Aoλ,α G.

(3). If E1(a∗a) = 0, then Eg(a) = 0 for all g ∈ G by part (2), and hence
a = 0 by part (1).

Among the maps Eg, for g ∈ G, the one corresponding to the unit of the
group is special. For once, it is a completely positive map, and it is even a
conditional expectation in the sense of the following definition.

Definition 4.3.5. Let B be a C∗-algebra, let A ⊆ B be a C∗-subalgebra,
and let E : B → A be a positive, linear map. We say that E is a conditional
expectation if E(a) = a for all a ∈ A, and E(ab) = aE(b) for all a ∈ A and all
b ∈ B.

When A and B are commutative von Neumann algebras and E is unital,
it can be shown that a conditional expectation in the sense of Definition 4.3.5
is given by a conditional expectation at the level of the underlying measure
spaces, in the sense of probability theory.

Proposition 4.3.6. Let G be a discrete group, let A be a C∗-algebra, and let
α : G→ Aut(A) be an action. Then the map E1 : Aoλ,αG→ A is a conditional
expectation.
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Proof. Positivity of E1 follows by taking g = h = 1 in the displayed identity
of Lemma 4.3.3. Since A is identified with Au1 ⊆ A oλ,α G, it is clear that
E(a) = a for all a ∈ A. Finally, given a ∈ A and b ∈ Cc(G,A, α) of the form
b =

∑
g∈G

bgug, it is clear that E(ab) = ab1 = aE(b). Since E is continuous, it

follows that this identity holds for all b ∈ Aoλ,α G, as desired.

Definition 4.3.7. Let G be a discrete group, let A be a C∗-algebra, and let
α : G→ Aut(A) be an action. Then the maps

E = E1 : Aoλ,α G→ A and E ◦ κ : Aoα G→ A

are called the canonical conditional expectations on the reduced and full crossed
products, respectively.





Chapter 5

Duality theory for abelian group
actions

In this chapter, we will prove a generalization of Pontryagin’s duality
̂̂
G ∼= G

in the context of crossed products of C∗-algebras, usually known as Takai
duality. In its most classical form, it is a result about crossed products by
abelian groups, although generalization for arbitrary groups, using coactions,
exist ???. For the sake of clarity of the exposition, we will restrict ourselves to
the abelian case.

The original proof of Takai duality, due to Takai, has been subsequently
simplified by other authors. In these notes, we have chosen to follow Raeburn’s
proof [80], which is based on the universal property of the (full) crossed product.
Accordingly, we devote the next section to establishing said universal property
and discussing an important example, namely G acting on C0(G) by translation
(see also Proposition 4.2.3).

5.1 The universal property of the full crossed products

In this section, we prove that the full crossed product of a C∗-dynamical system
can be completely described through a universal property intimately related
to covariant representations of the system. This presentation is not surprising,
but it has the advantage of making certain computations of crossed products
much easier. Additionally, a relatively elementary proof of Takai duality can
be given using this picture of the crossed product.

Notation 5.1.1. Let G be a locally compact group, let B be a unital C∗-
algebra, and let u : G → U(B) be a unitary representation. We will usually
also denote by u : Cc(G) → B the non-degenerate ∗-representation given by
u(f) =

∫
G
f(g)ug dµ(g) for all f ∈ Cc(G).

Theorem 5.1.2. Let G be a locally compact group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action. Then there exist homomorphisms

ιA : A→M(Aoα G) and ιG : G→ U(M(Aoα G))
51
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satisfying

1. ιA(αg(a)) = ιG(g)ιA(a)ιG(g)−1 for all a ∈ A and all g ∈ G;

2. Aoα G = span{ιA(a)ιG(f) : a ∈ A, f ∈ Cc(G)};

3. Whenever (H, u, ϕ) is a covariant representation of (G,A, α), then

ϕ = (ϕo u) ◦ ιA and u = (ϕo u) ◦ ιG.

Moreover, suppose that B is another C∗-algebra and that jA : A → M(B)
and jG : G→ U(M(B)) are maps satisfying conditions (a), (b) and (c) above.
Then there exists an isomorphism ψ : Aoα G→ B such that ψ ◦ ιA = jA and
ψ ◦ ιG = jG.

Proof. For g ∈ G, let ιG(g) : Cc(G,A, α)→ Cc(G,A, α) be given by ιG(g)(x)(h) =
αg(x(g−1h)) for all x ∈ Cc(G,A, α) and all h ∈ G. It is easily seen that ιG(g)
determines an invertible multiplier of A oα G, and that the resulting map
ιG : G→M(Aoα G) is a unitary representation.

For a ∈ A, let ιA(a) : Cc(G,A, α)→ Cc(G,A, α) be given by ιA(a)(x) = ax
for all x ∈ Cc(G,A, α). It is easily seen that ιA(a) determines an invertible
multiplier of A oα G, and that the resulting map ιA : A → M(A oα G) is a
homomorphism. The maps ιG and ιA clearly satisfy conditions (1), (2) and (3)
above.

Now let (B, jA, jG) be a triple as in the statement. Since (jA, jG) is a co-
variant representation and jA is non-degenerate, there exists a non-degenerate
homomorphism jA o jG : Aoα G→ B satisfying

(jA o jG) ◦ ιA = jA and (jA o jG) ◦ ιG = jG.

Reversing the roles of (B, jA, jG) and (Aoα G, ιA, ιG) gives a non-degenerate
homomorphism ιA o ιG : B → Aoα G satisfying

(ιA o ιG) ◦ jA = ιA and (ιA o ιG) ◦ jG = ιG.

It is then immediate that jA o jG and ιA o ιG are mutual inverses.

Remark 5.1.3. Instead of developing the theory of crossed products as we did
in Section 4.1, we could have defined crossed products through the universal
property from the previous theorem. Had we taken that route, we would have
had to show that there exists a least one (and hence precisely one) crossed
product. Of course our work in Section 4.1 shows that one crossed product
can be obtained by completing Cc(G,A, α) with respect to its universal norm,
but there is a slightly shorter way of proving its existence. We can find a
set S of covariant representations of (G,A, α) such that every cyclic covariant
representation is equivalent to an element of S. Then set

ιA =
⊕

(H,ϕ,u)∈S

ϕ and ιG =
⊕

(H,ϕ,u)∈S

u,
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which act on the Hilbert space
⊕

(H,ϕ,u)∈S
H. Then take AoαG to be the closed

linear span of {ιA(a)ιG(f) : a ∈ A, f ∈ Cc(G)}.

We will now have another look at the crossed product of Lt : G→ Aut(C0(G))
from the perspective of Theorem 5.1.2. Recall that M(K(L2(G))) is just
B(L2(G)).

Example 5.1.4. Let G be a locally compact group. Let λ : G → U(L2(G))
be its left regular representation, and let m : C0(G) → M(K(L2(G)) be the
multiplication function. Then (K(L2(G)),m, λ) is the crossed product of the
translation action Lt : G → Aut(C0(G)). Checking that it satisfies the prop-
erties in Theorem 5.1.2 is easy, with the exception of (c). Indeed, (a) is an
elementary computation that amounts to the identity Ad(λg) ◦m = m ◦ Ltg,
valid for all g ∈ G. For (b), it suffices to observe that moλ maps Cc(G,Cc(G))
into the space of kernels in Cc(G×G), which is known to be dense in K(L2(G)).
Finally, (c) can be established using induced representations, and we omit the
argument.

5.2 Dual actions and Takai duality

We begin by showing the existence of dual actions, using the universal property
of crossed products established in Theorem 5.1.2.

Proposition 5.2.1. Let G be a locally compact abelian group, let A be a
C∗-algebra, and let α : G→ Aut(A) be an action. Then there exists an action

α̂ : Ĝ→ Aut(Aoα G) which is determined by

α̂χ(ιA(a)ιG(f)) = ιA(a)ιG(χf)

for χ ∈ Ĝ, for a ∈ A and for f ∈ Cc(G).

Proof. Fix χ ∈ Ĝ, and define ιχG : G → U(M(A oα G)) by ιχG(g) = χ(g)ιG(g)
for all g ∈ G. We claim that (A oα G, ιA, ιχG) satisfies the universal property
for Aoα G from Theorem 5.1.2. Parts (a) and (b) are clear, while (c) follows
since (H, u, ϕ) is covariant if and only if (H, χ−1u, ϕ) is covariant, and one has

u = (ϕo χ−1u) ◦ ιχG.

It follows that there is an automorphism α̂χ ∈ Aut(A oα G) satisfying
α̂χ(ιA(a)ιG(f)) = ιA(a)ιG(χf) for all a ∈ A and for all f ∈ Cc(G). It is easy

to check that the resulting map α̂ : Ĝ → Aut(A oα G) is a homomorphism of

groups. Finally, for χ ∈ Ĝ, for a ∈ A and for f ∈ Cc(G), we have

‖ιA(a)ιG(χf)−ιA(a)ιG(f)‖ ≤ ‖a‖‖ιG(χf)−ιG(f)‖ ≤ ‖a‖µ(supp(f)‖χf−f‖∞.

Now, recall that the topology of Ĝ is uniform convergence on compact subsets
of G. It thus follows that the action of Ĝ on Cc(G) my multiplication is
continuous with respect to ‖ · ‖∞. We conclude that α̂ is continuous.
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When G is discrete, there is a very concrete description of the dual action
in terms of the canonical generators identified in Theorem 4.1.9.

Proposition 5.2.2. Let G be a discrete abelian group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action. For χ ∈ Ĝ, for a ∈ A and for g ∈ G, we
have

α̂χ(aug) = aχ(g)ug.

Proof. Recall that A oα G is generated by linear combinations of elements of
the form aug, for a ∈ A and g ∈ G. For χ ∈ Ĝ, the formula for the dual action
given in Proposition 5.2.1 entails that α̂χ(aug) = aα̂χ(ug), so we may assume
that a = 1. In terms of the map ιG from Theorem 5.1.2, the unitary ug is just
ι(δg), where δg ∈ Cc(G) ⊆ C∗(G) is the Kronecker delta. Since χδg = χ(g)δg
in Cc(G), we conclude that α̂χ(ug) = χ(g)ug, as desired.

In particular, we see that α̂ leaves A fixed and acts on the unitaries by
multiplication by the character.

We now look at a concrete example:

Example 5.2.3. Let Z act on the one-point space. Then C oα Z = C∗(Z) ∼=
C(S1), where the last identification is given by the Fourier transform. Denote
by u ∈ C(S1) the canonical generating unitary, which is just the inclusion of
S1 into C. Then α̂ : S1 → Aut(C(S1)) is determined by α̂z(u)(w) = zu(w) =
zw = u(wz) for all w ∈ S1. In other words, α̂ is canonically identified with
Rt : S1 → Aut(C(S1)). (And also with Lt, since G is abelian.)

The previous example is a particular case of a much more general fact:

Proposition 5.2.4. Let G be a locally compact abelian group, acting trivially
on C. Show that the dual action îd : Ĝ → Aut(C∗(G)) can be identified with

the left translation action of Ĝ on itself.

Proof. Let F0 : Cc(G)→ C0(Ĝ) be given by

F0(f)(τ) =

∫
G

f(g)τ(g) dµ(g)

for all f ∈ Cc(G) and all τ ∈ Ĝ. It is readily verified that F is a ∗-homomorphism
(with respect to convolution), which is contractive for the universal norm of
C∗(G) and has dense range. Thus it extends to an isomorphism F : C∗(G)→
C0(Ĝ), known as the Fourier transform. It suffices to check that F0 is equiv-

ariant with respect to îd and Lt.
For χ, τ ∈ Ĝ and f ∈ Cc(G), we have

F0(îdχ(f))(τ) = F0(χf)(τ) =

∫
G

f(g)χ(g)τ(g) dµ(g) = F0(f)(χ−1η),

as desired.
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In turn, one could wonder what is the dual of the translation action – this
is the double dual of the trivial action. One should notice right away that one
cannot possibly get the trivial action back, since (double) dual actions are never
trivial for G 6= {1}. However, one gets a very natural action on the compact
operators.

Proposition 5.2.5. Let G be a locally compact abelian group, and identify
L2(G) and L2(Ĝ) via the Fourier transform. Then

L̂t : Ĝ→ Aut(K(L2(G))) ∼= Aut(K(L2(Ĝ)))

is the action of conjugation by the left regular representation λ : Ĝ→ U(L2(Ĝ)).

Exercise 5.2.6. Prove Proposition 5.2.5.

Putting Proposition 5.2.4 and Proposition 5.2.2, we see that in the case of
the trivial action, the passage to the dual generates a copy of K(L2(G)) with
conjugation by the left regular representation. Takai’s theorem shows that this
phenomenon occurs in full generality:

Theorem 5.2.7. (Takai duality) Let G be a locally compact abelian group,
let A be a C∗-algebra, and let α : G→ Aut(A) be an action. Then there exists
a canonical equivariant isomorphism:

τ : (Aoα Goα̂ Ĝ) ∼= (A⊗K(L2(G)), α⊗Ad(λ)).

Proof. The proof is technical and long. For the sake of brevity and clarity,
we will sketch the core of the argument, given by a series of claims whose
verifications we leave to the reader.

We will construct maps jAoαG : AoαG→M(A⊗K(L2(G))) and jĜ : Ĝ→
U(M(A⊗K(L2(G)))) such that the triple (A⊗K(L2(G)), jAoαG, jĜ) satisfies

the universal property for A oα G oα̂ Ĝ. We denote by (A oα G, ιA, ιG) the
universal triple given by Theorem 5.1.2.

Let α, α−1 : A → Cb(G,A) ⊆ M(C0(G,A)) be the (coaction) maps given
by

α(a)(g) = αg(a) and α−1(a)(g) = α−1
g (a)

for all a ∈ A and all g ∈ G. We define map jA : A → M(A ⊗ K(L2(G)),

jG : G→ U(M(A⊗K(L2(G)))) and jĜ : Ĝ→ U(M(A⊗K(L2(G)))) by

jA(a) = (idA ⊗m) ◦ α−1, jG = 1A ⊗ λ, and jĜ = 1A ⊗m,

where we regard canonically Ĝ as a subset of Cb(G), which acts on K(L2(G))
by multiplication.

Claim 1: (jA, jG) is a covariant pair for (G,A, α). It therefore makes sense
to consider the integrated form jAojG : AoαG→M(A⊗K(L2(G))). This will
be our map jAoαG. We now proceed to show that (A⊗K(L2(G)), jAo jG, jĜ)
satisfies the conditions in Theorem 5.1.2. The following two claims show that
conditions (a) and (b) are satisfied.
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Claim 2: (jAo jG, jĜ) is a covariant pair for (Ĝ, AoαG, α̂). The proof of
this claim reduces to showing that jĜ commutes with jA, since the interaction
with jG is clear from Example 4.2.1.

Claim 3: span{jA(a)jG(f)jG(f̂) : a ∈ A, f ∈ Cc(G), f̂ ∈ Cc(Ĝ)} is dense
in A ⊗ K(L2(G)). Example 4.2.1 implies that the span of the elements of the

form jG(f)jG(f̂) is dense in K(L2(G)), so it suffices to jA(a)jG(f) spans a
dense subset of A⊗ C0(G).

It remains to check condition (c). For this, let (H, v, ϕo u) be a covariant

representation of (Ĝ, AoαG, α̂). We want to construct a homomorphism ψ : A⊗
K(L2(G))→ B(H) such that ψ ◦ (jA o jG) = ϕo u and ψ ◦ jĜ = v.

The representation v : Ĝ → U(H) can be integrated to a non-degenerate

homomorphism from C∗(Ĝ) ∼= C0(G), which we extend to a unital homomor-

phism θ : Cb(G)→ B(H) satisfying θ(χ) = vχ for all χ ∈ Ĝ.
Claim 4: (H, u, θ) is a covariant representation of (G,C0(G), Lt). This is

relatively straightforward from the fact that (v, ϕ o u) is a covariant pair for

(Ĝ, Aoα G, α̂).
Since v commutes with ϕ (because α̂ leaves A fixed), so does θ. Hence we

get a homomorphism θ ⊗ ϕ : C0(G)⊗A→ B(H). We set π = (θ ⊗ ϕ) ◦ α.
Claim 5: π commutes with θ and with u. Commutation with θ is clear

since θ itself commutes with θ ⊗ ϕ. Commutation with u is somewhat more
delicate.

It follows that π commutes with θou, so we get an induced homomorphism

ψ = π ⊗ (θ o u) : A⊗K(L2(G))→ B(H).

Claim 6: We have ψ ◦ jA = ϕ, ψ ◦ jG = u and ψ ◦ jĜ = v. It thus follows
that ψ ◦ (jA o jG) = ϕo u, and hence part (c) in Theorem 5.1.2 is verified.

Denote by ιAoαG : AoαG→M(AoαGoα̂ Ĝ) the canonical inclusion. We
deduce that there exists an isomorphism

τ : A⊗K(L2(G))→ Aoα Goα̂ Ĝ

satisfying τ(jA(a)jG(f)jĜ(f̂)) = ιAoαG(ιA(a)ιG(f))ιĜ(f̂) for all a ∈ A, all

f ∈ Cc(G) and all f̂ ∈ Cc(Ĝ). It remains to show that τ is equivariant.

Fix g ∈ G, a ∈ A, f ∈ Cc(G) and f̂ ∈ Cc(Ĝ). Note that

̂̂αg(ιAoαG(ιA(a)ιG(f))ιĜ(f̂)) = ιAoαG(ιA(a)ιG(f))ιĜ(gf̂).

Thus, the result follows from the following claim.
Claim 7: We have

(αg ⊗Ad(λg))(jA(a)jG(f)jĜ(f̂)) = jA(a)jG(f)jĜ(gf̂).

This concludes the sketch of the proof.
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The proof of Theorem 5.2.7 given above is admittedly quite involved. For
finite groups, however, it takes a much simpler form, and the reader is encour-
aged to attempt the following illuminating exercise.

Exercise 5.2.8. Give a complete proof of Takai duality for G = Z2 and A
unital. In this case, the isomorphism can be described very explicitly.

We will explore a number of consequences of Takai duality in the next chap-
ters, particularly to computations of the K-theory of certain crossed product.
Here, we apply it to obtain a satisfactory description of the G-invariant ideals
in A.

Proposition 5.2.9. Let G be a locally compact abelian group, let A be a
C∗-algebra, and let α : G → Aut(A) be an action. Then the assignment I 7→
Ioα|I G defines a one-to-one correspondence between the G-invariant ideals in

A and the Ĝ-invariant ideals in Aoα G.

Proof. Let I be a G-invariant ideal in A. One easily checks that I oα|I G is
isomorphic to

span(ιA(x)ιG(f) : x ∈ I, f ∈ Cc(G)},

and therefore I oα|I G is canonically an ideal in A oα G. The identification

above also makes it obvious that I oα|I G is Ĝ-invariant, so the assignment is
well-defined.

Suppose now that J is a Ĝ-invariant ideal in A oα G. Taking its crossed
product and reasoning as above, we deduce that Joα̂|J Ĝ is a G-invariant ideal

in A oα G oα̂ Ĝ. This double crossed product is equivariantly isomorphic to
(A ⊗ K(L2(G)), α ⊗ Ad(λ)) by Theorem 5.2.7, so there exists a G-invariant
ideal IJ in A such that

J oα̂|J Ĝ = IJ ⊗K(L2(G)).

We claim that IIoα|IG = I and that J = IJ oα|IJ G. Let jA, jG and
jĜ be the maps constructed in the proof of Theorem 5.2.7, that show that
A ⊗ K(L2(G)) satisfies the universal property of the double crossed product.
We will use the fact that the Takai isomorphism

τ : A⊗K(L2(G))→ Aoα Goα̂ Ĝ

satisfies τ(jA(a)jG(f)jĜ(f̂)) = ιAoαG(ιA(a)ιG(f))ιĜ(f̂) for all a ∈ A, all f ∈
Cc(G) and all f̂ ∈ Cc(Ĝ).

Let I be an α-invariant ideal in A. Using α-invariance, one checks that
jA(I) is contained in M(I ⊗K(L2(G))). It then follows that the restriction of

τ to I ⊗K(L2(G)) is an isomorphism between I ⊗K(L2(G)) and I oαGoα̂ Ĝ.
This shows that IIoα|IG = I.

The other identity is proved similarly, and is left as an exercise.

We finish this chapter with two examples.
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Example 5.2.10. Let θ ∈ R, and consider the rotation algebra

Aθ = C∗({u, v unitaries with uv = e2πiθvu});

see Example 4.2.6. The gauge action γ : S1 → Aut(Aθ) described in part (2) in
Examples 3.3.13 can be immediately identified with the dual action of rθ : Z→
Aut(C(S1)), once C(S1)orθ Z is identified canonically with Aθ. It follows that
there is an equivariant isomorphism

(Aθ o S1, γ̂) ∼= (C(S1)⊗K(L2(S1)), rθ ⊗Ad(λ)).

Although we do not have enough tools to prove all the claims in the following
example, we choose to present it here due to its historical relevance.

Example 5.2.11. Let n ∈ N with n ≥ 1, and consider the Cuntz algebra
On with its gauge action γ : S1 → Aut(On) from part (4) of Examples 3.3.13.
Then there is a canonical identification of On oγ S1 with Mn∞ ⊗ K(`2(Z)),
where the dual of γ becomes the bilateral shift.

Possibly add: Landstat, and Pedersen’s result on equivariant isomorphism
of the crossed product.



Chapter 6

Compact group actions

In this chapter, we define and study fixed point algebras, with special emphasis
on the case of compact group actions. We will define the strong Connes spec-
trum of an action of a compact abelian group, and will prove that the spectrum
is full if and only if the fixed point algebra is Morita equivalent to the crossed
product.

6.1 Fixed point algebras

Definition 6.1.1. Let G be a locally compact group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action. We define the fixed point algebra of α by

Aα = {a ∈ A : αg(a) = a for all g ∈ G}.

When α is clear from the context, we sometimes write AG in place of Aα.

Fixed point algebras are the noncommutative analog of orbit spaces, since
for a locally compact Hausdorff space X and an action of G on X there is a
canonical identification C0(X/G) ∼= C0(X)G.

In particular, when G is not compact, the fixed point algebra may be very
small (and in some cases even empty). The study of fixed point algebras is
therefore most meaningful in the case of compact group actions. In this case,
there is a canonical conditional expectation from the original algebra to the
fixed point algebra, which is in some sense “dual” to the one constructed in
Theorem 4.3.4.

Proposition 6.1.2. Let G be a compact group with Haar probability measure
µ, let A be a C∗-algebra, and let α : G → Aut(A) be an action. Then there
is a canonical faithful conditional expectation E : A → Aα given by E(a) =∫
G

αg(a) dµ(g) for all a ∈ A.

Proof. That E is a conditional expectation is proved analogously to Proposi-
tion 4.3.6, and is left as an exercise. We show that E is faithful as follows. Let

59
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a ∈ A be nonzero. Choose a positive linear functional φ : A → C such that
φ(a∗a) > 0. By continuity, there exists an open neighborhood U of e ∈ G such
that φ(αg(a

∗a)) > 0 for all g ∈ U . Then

φ(E(a∗a)) =

∫
G

αg(a
∗a) dµ(g) ≥

∫
U

αg(a
∗a) dµ(g) > 0.

Thus E(a∗a) 6= 0 whenever a 6= 0, as desired.

Definition 6.1.3. Let α : G → Aut(A) be an action of a compact group G
on a C∗-algebra A, and let a ∈ Aα. We denote by ca : G → A the continuous
function that is constantly equal to a. We denote by c : Aα → C(G,A) ⊆
Aoα G the resulting map.

Fauthfulness of the conditional expectation is very helpful when checking
whether a certain equivariant map is injective. Concretely, it suffices to check
injectivity on the fixed point algebra.

Corollary 6.1.4. Let G be a compact group, let A and B be C∗-algebras,
let α : G → Aut(A) and β : G → Aut(B) be actions, and let ϕ : A → B be an
equivariant homomorphism. Then ϕ is injective if and only if ϕ|Aα] : Aα → Bβ

is injective.

Proof. It is clear that ϕ|Aα] is injective if ϕ is. Conversely, let a ∈ A be
a positive element satisfying ϕ(a) = 0. Since E is natural with respect to
equivariant homomorphisms (meaning that E ◦ ϕ = ϕ ◦ E), it follows that
ϕ(E(a)) = 0. Since E(a) ∈ Aα and ϕ|Aα] is injective, we deduce that E(a) = 0.
Using positivity of a and faithfulness of E (Proposition 6.1.2), we conclude that
a = 0, as desired.

Theorem 6.1.5. Let G be a compact group, let A be a C∗-algebra, and
let α : G → Aut(A) be an action. Then c : Aα → A oα G is an injective
homomorphism, and there exists a unique projection p ∈M(AoαG) such that
c(Aα) = p(Aoα G)p.

Proof. It is clear that c is injective, so it suffices to check that it is multi-
plicative. Given a, b ∈ Aα and g ∈ G, we use the operation in C(G,A, α) to
get

(ca ∗ cb)(g) =

∫
G

ca(h)αh(cb(h
−1g)) dµ(h) =

∫
G

ab dµ(h) = ab = cab(g),

as desired.
Denote by 1 the unit of M(A), and by p the function on G which is con-

stantly equal to 1. (Observe that p = c1 when A is unital.) Then p belongs to
M(A oα G) (and it belongs to A oα G if A is unital). It is clear that p is a
projection.
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Let a ∈ Aα. We claim that ca = pcap. Given g ∈ G, we have

(ca ∗ p)(g) =

∫
G

ca(h)αh(p(h−1g)) dµ(h) =

∫
G

a1 dµ(h) = a = ca(g),

so ca∗p = ca. A similar computation (or taking adjoints) shows that p∗ca = ca,
so the claim is proved. It follows that c(Aα) ⊆ p(A oα G)p. Let us show the
converse inclusion.

Given f ∈ C(G,A, α) and g ∈ G, we have

(f ∗ p)(g) =

∫
G

f(h)αs(p(h
−1g)) dµ(h) =

∫
G

f(h) dµ(h),

and thus

(p ∗ f ∗ p)(g) =

∫
G

p(h)αh((f ∗ p)(h−1g)) dµ(h) =

∫
G

∫
G

αh(f(k)) dµ(k)dµ(h).

Setting x =
∫
G

αh

(∫
G

f(k) dµ(k)

)
dµ(h), we have x ∈ Aα and p ∗ f ∗ p = cx. It

follows that p(A oα G)p ⊆ c(Aα). Since uniqueness of p is clear, the proof is
complete.

For future use, we extract some identities from the proof of the previous
theorem.

Remark 6.1.6. Let the assumptions and notation be as in Theorem 6.1.5,
and let f ∈ C(G,A) and let g ∈ G. Then

(f ∗ p)(g) =

∫
G

f(h) dµ(h), (p ∗ f)(g) =

∫
G

αh(f(h−1g)) dµ(h)

and

(f ∗ p ∗ f)(g) =

∫
G

αh

∫
G

f(k) dµ(k)

 dµ(h).

Remark 6.1.7. Let G be a finite group, let A be a unital C∗-algebra, and let
α : G→ Aut(A) be an action. Then there are two canonical ways of embedding
Aα into A oα G: one such embedding is the map c from Theorem 6.1.5, and
the other one is the composition Aα ↪→ A ↪→ AoαG. These embeddings never
agree for non-trivial G: while the first one is a corner embedding, the second
one is unital.

We now apply Theorem 6.1.5 in combination with the theory of Morita
equivalence from Section 2.5. For this, we need to know when crossed prod-
ucts and fixed point algebras are σ-unital, which we do next. The result for
the crossed product was proved for general locally compact groups in Propo-
sition 4.1.16, so we treat the case of fixed point algebras of compact group
actions here.

Recall that for a locally compact group G, its full group algebra C∗(G) is
σ-unital if and only if G is first countable.
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Proposition 6.1.8. Let G be a compact group, let A be a C∗-algebra, and
let α : G→ Aut(A) be an action.

1. If (aj)j∈J is an approximate unit for A, then (E(aj))j∈J is an approxi-
mate unit for A contained in Aα.

2. If A is σ-unital, then Aα is also σ-unital.

Proof. (1). Let (aj)j∈J be an approximate identity in A. Fix a positive element
a ∈ A and ε > 0. Since {αg(a) : g ∈ G} is norm-compact in A, we can find
j0 ∈ J such that ‖ajαg(a)− αg(a)‖ < ε for all j ≥ j0 and all g ∈ G. Since αg
is isometric, the previous inequality is equivalent to ‖αg(aj)a − a‖ < ε for all
j ≥ j0 and all g ∈ G. By averaging over G, we conclude that ‖E(aj)a− a‖ < ε
for all j ≥ j0, as desired.

(2). This follows immediately from (1).

Corollary 6.1.9. Let G be a compact group, let A be a C∗-algebra, and let
α : G → Aut(A) be an action. Then Aα is Morita equivalent to an ideal in
AoαG. In particular, if A is σ-unital, then Aα is stably isomorphic to an ideal
in Aoα G.

Proof. The first claim follows immediately from Theorem 6.1.5 and Exam-
ple 2.5.2, while the second one follows from Proposition 4.1.16, Proposition 6.1.8
and Corollary 2.5.12.

The ideal generated by the image of Aα in A oα G under the map c from
Definition 6.1.3 admits the following natural description.

Proposition 6.1.10. Let G be a compact group, let A be a C∗-algebra, and
let α : G → Aut(A) be an action. For a ∈ A, let ã ∈ C(G,A) be given by
ã(g) = αg(a) for all g ∈ G. Then the ideal in A oα G generated by c(Aα)
agrees with

span{ã∗ ∗ b̃ : a, b ∈ A}.

Moreover, for a, b ∈ A we have (ã∗ ∗ b̃)(g) = a∗αg(b) for all g ∈ G.

Exercise 6.1.11. Prove Proposition 6.1.10.

6.2 Eigenspaces of compact groups actions

In this section, we analyze the structure of a C∗-algebra which has a compact
group action, through the so-called eigenspaces of the action. In the following
section, these eigenspaces will be used to define two kinds of spectra for the
action, which provide useful information about the ideal structure of the crossed
product.

Since this analysis is technically much simpler when the group is abelian,
we will restrict to this case throughout. It should be noted, however, that the
results in this section admit non-commutative analogs; see ???.
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Definition 6.2.1. Let G be a compact abelian group, let A be a C∗-algebra,
and let α : G → Aut(A) be an action. For a character χ ∈ Ĝ, we define the
associated spectral subspace, also called eigenspace A(χ) by

A(χ) = {a ∈ A : αg(a) = χ(g)a for all g ∈ G}.

Note that if t : G→ {1} denotes the trivial character, then At = Aα is the
fixed point algebra of α.

Proposition 6.2.2. Let G be a compact abelian group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action.

1. For χ ∈ Ĝ, there exists a contractive linear idempotent map Eχ : A →
A(χ) given by

Eχ(a) =

∫
G

χ(g)αg(a) dµ(g)

for all a ∈ A. Moreover, Eχ ◦ Eτ = 0 if χ 6= τ .

2. For all χ, τ ∈ Ĝ, we have

A(χ)∗ = A(χ−1) and A(χ)A(τ) ⊆ A(χτ).

3. Given a ∈ A, we have Eχ(a) = 0 for all χ ∈ Ĝ if and only if a = 0. In
particular,

∑
χ∈Ĝ

A(χ) is dense in A.

4. Given a ∈ A, we have E1(a∗a) = 0 for all χ ∈ Ĝ if and only if a = 0.

5. A(χ)A(χ)∗ is an ideal in Aα for all χ ∈ Ĝ.

Proof. (1). Fix χ ∈ Ĝ. For a ∈ A, the element Eχ(a), as given in the statement,
is well-defined because g 7→ α(a) is continuous and G is compact. Moreover,
for h ∈ G we have

αh(Eχ(a)) =

∫
G

χ(g)αhg(a) dµ(g) =

∫
G

χ(h−1g)αg(a) dµ(g) = χ(h)Eχ(a),

so Eχ(a) ∈ A(χ). The resulting map Eχ : A → A(χ) is clearly linear and

contractive. Given τ ∈ Ĝ and a ∈ a, we have

(Eχ ◦ Eτ )(a) =

∫
G

∫
G

χ−1(g)τ−1(h)αgh(a) dµ(g)dµ(h)

=

∫
G

∫
G

χ−1(g)τ−1(h)αgh(a) dµ(g)dµ(h)

=

∫
G

χ−1(g)τ(g)dµ(g)

∫
G

τ−1(h)αh(a)dµ(h).

When τ = χ, the above expression equals Eχ(a), so we deduce that Eχ ◦Eχ =
Eχ. When τ 6= χ, then

∫
G
χ−1(g)τ(g)dµ(g) = 0 and hence Eχ ◦ Eτ = 0.
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(2). These are straightforward to verify.

(3). Recall that span‖·‖∞Ĝ = C(G). Then the assumption implies that∫
G
f(g)αg(a) dµ(g) = 0 for all f ∈ C(G). Let (fj)j∈ J be an approximate

identity for L1(G) contained in C(G). Then

a = lim
j∈J

∫
G

fj(g)αg(a) dµ(g) = 0,

as desired.
(4). This was proved in Proposition 6.1.2.

(5). Fix χ ∈ Ĝ. It follows from (3) that A(χ)A(χ)∗ is contained in Aα, so it
remains to show that it is an ideal in it. In turn, this follows from the fact that
for a ∈ Aα and b ∈ a, we have Eχ(ab) = aEχ(b) and Eχ(ba) = Eχ(b)a.

At this point, the reader should notice some similarities between the maps
Eχ : A → A(χ), for χ ∈ Ĝ (for G compact) in the previous proposition, and
the maps Eg : AoG→ A, for g ∈ G (for G discrete) from Lemma 4.3.3. These
are, in some sense, “the same”, and the precise relationship will become clear
in the next chapter. For now, we give an example in which these maps are
really identical.

Example 6.2.3. Let G be a compact abelian group, and let Γ denote its
dual group, which is discrete. Then C(G) can be canonically identified with
C∗(Γ). Under this identification, the action Lt : G → Aut(C(G)) is given by
Ltg(uγ) = γ(g)uγ for all g ∈ G and all γ ∈ Γ.

For γ ∈ Γ = Ĝ, we have

C(G)(γ) = {x ∈ C∗(Γ) : Ltg(x) = γ(g)x for all g ∈ G} = Cuγ ,

and the linear idempotent Eγ : C(G) → C(G)(γ) from Proposition 6.2.2 is
precisely the linear idempotent Eγ : C∗(Γ) → C from Lemma 4.3.3. To check
this, notice first that both maps send uχ to δχ,γuγ . Therefore they agree on
the canonical unitaries of C∗(Γ), and thus on all of C∗(Γ).

The previous example can be greatly generalized:

Exercise 6.2.4. Let Γ be a discrete abelian group, and set G = Γ̂. Let
β : Γ→ Aut(B) be an action, and set

A = B oβ Γ and α = β̂ : G→ Aut(A).

Show that A(χ) = Buχ for all χ ∈ Ĝ ∼= Γ. In particular, this shows that the

fixed point algebra of the dual action β̂ is B.

We make some comments about non-continuous actions.

Remark 6.2.5. Let G be a compact abelian group, let A be a C∗-algebra,
and let α : G → Aut(A) be a not necessarily continuous action. The spectral
subspaces A(χ) can be defined also in this context, and their closed linear span
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Aα =
∑
χ∈Ĝ

A(χ) is a G-invariant subalgebra of A. It is immediate that the

restriction of α to Aα is continuos, and in fact Aα is the largest G-invariant
subalgebra of A where α is continuous. Indeed, an alternative description of
Aα is the following:

Aα = {a ∈ A : the map αa : G→ A given by g 7→ αg(a) is continuous}.

Fixed-point algebras of tensor product actions can be computed nicely using
spectral subspaces:

Proposition 6.2.6. Let G be a compact abelian group, let A and B be C∗-
algebras, and let α : G→ Aut(A) and β : G→ Aut(B) be actions. Then

(A⊗B)α⊗β =
∑
χ∈Ĝ

A(χ)⊗B(χ−1).

In particular, when β = idB , we have (A⊗B)α⊗idB = Aα⊗B (and this is valid
also for non-abelian groups).

Proof. It follows from part (3) of Proposition 6.2.2 that
∑

χ,τ∈Ĝ
A(χ) ⊗ B(τ) is

dense in A⊗B. If E : A⊗B → (A⊗B)α⊗β denotes the canonical conditional
expectation from Proposition 6.1.2, then the image of

∑
χ,τ∈Ĝ

A(χ)⊗B(τ) under

E is dense in (A⊗B)α⊗β .

Let χ, τ ∈ Ĝ, let a ∈ A(χ) and let b ∈ B(τ). We use orthgonality of the
characters of G at the last step to get

E(a⊗ b) =

∫
G

αg(a)⊗ βg(b) dµ(g)

= (a⊗ b)
∫
G

χ(g)τ(g) dµ(g)

=

{
a⊗ b, if χ = τ−1

0, otherwise.

Thus, it follows that A(χ)⊗B(χ−1) is contained in (A⊗B)α⊗β for all χ ∈ Ĝ,
and that their span is dense.

6.3 Spectra for compact abelian group actions

In this section, we use the eigenspaces considered in the previous section to
define spectra for compact abelian group actions, and show that the ideal
structure of the crossed product can be determined in the case of full spectrum.

Notation 6.3.1. If α : G → Aut(A) is an action, we write HerG(A) for the
set of all G-invariant hereditary subalgebras of A. For B ∈ HerG(A), we write
α|B for the induced action on B.
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We now introduce two different spectra for compact abelian group actions.

Definition 6.3.2. Let G be a compact abelian group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action.

1. We define strong Arveson spectrum S̃p(α) to be

S̃p(α) = {χ ∈ Ĝ : A(χ)A(χ)∗ = Aα}.

2. We define strong Connes spectrum Γ̃(α) to be

Γ̃(α) =
⋂

B∈HerG(A)

S̃p(α|B).

There are “weak” versions of these spectra, called respectively the Arveson
spectrum Sp(α) and the Connes spectrum Γ(α), that are defined using the
condition A(χ) 6= 0, instead of A(χ)A(χ)∗ being dense in Aα. Unlike their

strong versions, Sp(α) and Γ(α) are subgroups of Ĝ. All these spectra are in
general different, and the following exercise shows that the “strong” versions
are in general different from the regular ones.

Exercise 6.3.3. Let α : {−1, 1} → Aut(C([−1, 1])) be the action induced by
multiplication by −1 on [−1, 1].

1. Describe the spectral subspaces of α.

2. Compute Sp(α), Γ(α), S̃p(α) and Γ̃(α).

An alternative description of S̃p(α) is given in the following exercise.

Exercise 6.3.4. Let G be a compact abelian group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action. Show that

S̃p(α) = {χ ∈ Ĝ : A(χ)AA(χ−1) = A}.

Also, both the Connes spectrum and the strong Connes spectrum can be
computed using the dual action.

Proposition 6.3.5. Let G be a compact abelian group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action. Then

1. Γ(α) = {χ ∈ Ĝ : α̂χ(I) ∩ I 6= 0 for all ideals I ⊆ Aoα G}.

2. Γ̃(α) = {χ ∈ Ĝ : α̂χ(I) ⊆ I for all ideals I ⊆ Aoα G}.

Proof. Part (1) is proved on pages 391 and 392 of [56]. Part (2) is Lemma 3.4
(but really Lemma 3.2) in [55] – but this is also for locally compact, perhaps
there’s a better proof for compact G?
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The actual spectrum of an action (Arveson’s, Connes’, or the strong ver-

sions), as a subset of Ĝ, does not provide much information, and the condition
that seems to be of interest is fullness of the spectrum (meaning that it is

equal to Ĝ). In this case, it turns out that a lot about the ideal structure of
Aoα G, although what exactly can be said depends on what spectrum one is
considering.

Theorem 6.3.6. Let G be a compact abelian group, let A be a C∗-algebra,
and let α : G→ Aut(A) be an action.

1. The following are equivalent:

a) S̃p(α) = Ĝ;

b) c(Aα) is a full corner in Aoα G (see Theorem 6.1.5).

2. The following are equivalent:

a) Γ̃(α) = Ĝ;

b) For every ideal J in Aoα G we have J = (J ∩A) oαJ∩A G.

Proof. (1). (a) implies (b). Set

C = span‖·‖∞{ã∗b̃ ∈ C(G,A) : a, b ∈ A}.

We will show that C = C(G,A). Since

‖ · ‖AoαG ≤ ‖ · ‖1 ≤ ‖ · ‖∞

on C(G,A), the result will follow from density of C(G,A) in AoαG. Moreover,

since span‖·‖∞Ĝ = C(G) and

{g 7→ f(g)a : f ∈ C(G), a ∈ A}

is dense in C(G,A), it suffices to show that for every χ ∈ Ĝ and for every
a ∈ A, the function χa belongs to C.

Fix a ∈ A with ‖a‖ = 1, fix χ ∈ Ĝ and fix ε > 0. Use part (1) of
Proposition 6.1.8 to find e ∈ Aα such that ‖a − ae‖ < ε/2. Since A(χ)∗A(χ)
is dense in Aα, there exist n ∈ N and x1, . . . , xn, y1, . . . , yn ∈ A(χ) such

that

∥∥∥∥∥e− n∑
j=1

x∗jyj

∥∥∥∥∥ < ε/2. Set f =
n∑
j=1

x̃ja∗
∗
∗ ỹj , and note that f(g) =

χ(g)a
n∑
j=1

x∗jyj for all g ∈ G. Then

‖χ(g)a−f(g)‖ =

∥∥∥∥∥∥χ(g)a− χ(g)a

n∑
j=1

x∗jyj

∥∥∥∥∥∥ ≤ ‖a−ae‖+‖a‖‖e−
n∑
j=1

x∗jyj‖ < ε
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for all g ∈ G. Since f belongs to C, it follows that χ(g)a belongs to C as well
and thus C = C(G,A), as desired.

(b) implies (a). Given f ∈ C(G,A) and τ ∈ Ĝ, we will denote by τf ∈
C(G,A) the pointwise product of τ and f . Notice that ‖τf‖AoαG = ‖f‖AoαG
for all f ∈ C(G,A), and that τ(f1 ∗ f2) = (τf1) ∗ (τf2) for all f1, f2 ∈ C(G,A).

Let ε > 0, let χ ∈ Ĝ, and let x ∈ Aα. Then there exist n ∈ N and

a1, . . . , an, b1, . . . , bn ∈ A such that

∥∥∥∥∥χ−1cx −
n∑
j=1

ã∗j b̃j

∥∥∥∥∥ < ε. Recall the def-

inition of the linear contractive idempotent Eχ : A → A(χ) from part (1) of
Proposition 6.2.2. The proof will be concluded once we show that∥∥∥∥∥∥x−

n∑
j=1

Eχ(a∗j )Eχ(bj)

∥∥∥∥∥∥ < ε.

Claim: for a, b ∈ A, and for p ∈M(AoαG) as in Theorem 6.1.5, we have

p ∗ (χ−1ã∗) ∗ (χ−1b̃) ∗ p = cEχ(a)∗Eχ(b).

To prove the claim, let g ∈ G. Using Remark 6.1.6, we get

(p ∗ (χ−1ã∗))(g) =

∫
G

αh((χ−1ã∗)(h−1g) dµ(h)

= χ−1(g)

∫
G

χ(h)αh(αh−1g(ã(g−1h)∗)) dµ(h)

= χ−1(g)

∫
G

χ(h)αg(αg−1h(a∗)) dµ(h)

= χ−1(g)

(∫
G

χ−1(h)αg(αg−1h(a)) dµ(h)

)∗
= χ−1(g)Eχ(a)∗.

Similarly,

(χ−1b̃ ∗ p)(g) =

∫
G

χ−1(h)̃b(h) dµ(h) =

∫
G

χ−1(h)αh(b)dµ(h) = Eχ(b).

Thus,([
p ∗ (χ−1ã∗)

]
∗
[
(χ−1b̃) ∗ p

])
(g) =

∫
G

χ−1(h)Eχ(a)∗αh(Eχ(b)) dµ(h)

= Eχ(a)∗
∫
G

χ−1(h)αh(Eχ(b)) dµ(h)

= Eχ(a)∗Eχ(Eχ(b))

= Eχ(a)∗Eχ(b),

as desired. This proves the claim.
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Recall that χ−1(f1 ∗ f2) = (χ−1f1) ∗ (χ−1f2) for all f1, f2 ∈ C(G,A). In
the following computation, we use at the first step that c : Aα → A oα G is
an isometric homomorphism, and at the second step we use the claim and the
fact that the image of c is contained in p(AoαG)p (see Theorem 6.1.5), to get∥∥∥∥∥∥x−

n∑
j=1

Eχ(a∗j )Eχ(bj)

∥∥∥∥∥∥ =

∥∥∥∥∥∥cx −
n∑
j=1

cEχ(a∗j )Eχ(bj)

∥∥∥∥∥∥
=

∥∥∥∥∥∥p ∗
cx − χ−1

n∑
j=1

ã∗j ∗ b̃j

 ∗ p
∥∥∥∥∥∥

≤

∥∥∥∥∥∥cx − χ−1
n∑
j=1

ã∗j ∗ b̃j

∥∥∥∥∥∥
=

∥∥∥∥∥∥χcx −
n∑
j=1

ã∗j ∗ b̃j

∥∥∥∥∥∥ ,
as desired. This concludes the proof.

The equivalences in (2) have to be filled in.

There also exist characterizations of fullness of the spectra Sp(α) and Γ(α)
in terms of weaker conditions for the ideals in the crossed products. Reference?

In particular, we deduce the following:

Corollary 6.3.7. Let G be a compact abelian group, let A be a C∗-algebra,
and let α : G → Aut(A) be an action. Then A oα G is simple if and only if

Γ̃(α) = Ĝ and A is α-simple.

Proof. If Aoα G is simple, then Aα, being a corner of it, is also simple. Thus
Γ̃(α) = Ĝ and thus A is α-simple (since otherwise every nontrivial G-invariant
ideal would induce a non-trivial ideal in Aoα G). The converse follows imme-
diately from Theorem 6.3.6.

As usual, it is instructive to look at the commutative case to gain intuition.

Lemma 6.3.8. Let G be a compact abelian group, let X be a locally compact
Hausdorff space, and let α : G→ Aut(C0(X)) be an action. If G y X is free,
then the ideal in C0(X) oα G generated by the image of C0(X)α = C0(X/G),
that is

span{(g, x) 7→ f1(x)f2(g−1 · x) : f1, f2 ∈ C0(X)},

is equal to C0(X) oα G.

Proof. Assume that G y X is free. Using the Stone-Weierstrass theorem, it
suffices to show that functions of the form given in the statement separate the
points of G×X. Let (g, x), (h, y) ∈ G×X be distinct points.
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If x 6= y, then there exists f1 ∈ C0(X) such that f1(x) 6= f1(y). Let
f2 ∈ C0(X) be any function which is identically 1 on the (compact) orbits of
x and y. Then

f1(x)f2(g−1 · x) = f1(x) 6= f1(y) = f1(y)f2(h−1 · y).

If x = y, then g 6= h. Since the action is free, we have g−1 · x 6= h−1 · x. Let
f2 ∈ C0(X) be any function distinguishing these two points, and let f1 ∈ C0(X)
satisfy f1(x) 6= 0. Then

f1(x)f2(g−1 · x) 6= f1(x) = f1(y)f2(h−1 · x),

as desired.

For commutative dinamical systems, fullness of the strong spectra is equiv-
alent to freeness:

Proposition 6.3.9. Let G be a compact abelian group, let X be a locally
compact Hausdorff space, and let α : G→ Aut(C0(X)) be an action. Then the
following are equivalent:

1. S̃p(α) = Ĝ;

2. Γ̃(α) = Ĝ;

3. Every ideal in C0(X)oαG has the form C0(U)oαG for some G-invariant
open subset U ⊆ X;

4. Gy X is free.

Proof. That (1) implies (4) follows from Lemma 6.3.8 in combination with the
first part of Theorem 6.3.6. To prove the converse, suppose that G y X is
not free, and find g ∈ G \ {1} and x ∈ X such that g · x = x. Let χ ∈ Ĝ be
any character with χ(g) 6= 1. A function f ∈ C0(X)(χ) in particular satisfies
f(x) = f(g · x) = χ(g)f(x), so it must be f(x) = 0. Thus C0(X)(χ)∗C0(X)(χ)
consists of functions that vanish on the orbit of x, and thus its closure cannot
coincide with C0(X)α = C0(X/G). We deduce that χ 6= S̃p(α), which is a
contradiction.

That (2) implies (1) is a general fact; and the equivalence between (2)
and (3) is the content of the second part of Theorem 6.3.6. Finally, since
any G-invariant hereditary subalgebra of C0(X) has the form C0(U) for some
G-invariant open subset of X, and since freeness passes to ideals, another
application of Lemma 6.3.8 together with the first part of Theorem 6.3.6 shows
that (4) implies (2), thus finishing the proof.

The case of the gauge action on the irrational rotation algebra Aθ is a
particularly interesting one, that can be analyzed using the tools from this
chapter to conclude that Aθ is simple (although this is of course not the easiest
way to prove this fact!).
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Exercise 6.3.10. Let θ ∈ R \ Q and consider the irrational rotation algebra
Aθ. Let γ : S1 → Aut(Aθ) be the gauge action, which is given by

γz(u) = u and γz(v) = zv

for all z ∈ S1.

1. Compute the spectral subspaces of Aθ with respect to γ.

2. Compute Γ̃(γ).

3. Show, using Takai duality (Theorem 5.2.7) and the characterization of
ideals in the crossed product in the case of full strong Connes spectrum
(Theorem 6.3.6), that Aθ is simple.





Chapter 7

K-theory of crossed products

Many interesting C∗-algebras can be described as suitable crossed products,
and this presentation is usually used to obtain new information about the in-
ternal structure of the algebra in question. There are, for example, a number of
tools to study the ideal structure of crossed products, and in particular criteria
for deciding when a crossed product is simple. Much less can be said about
the structure of projections in crossed products (even for finite group actions,
where one can explicitly write down every element in the crossed product). In
this context, K-theoretic methods are usually very helpful, revealing a great
deal of information. Indeed, the computation of the K-theories of the irrational
rotation algebras, as well as the Cuntz algebras, were originally obtained re-
garding these objects as crossed products (by the integers, in both cases). In
particular, the computation of the K-theory for irrational rotation algebras
shows that they contain non-trivial projections, a fact that was long believed
to be false!

In this chapter, we will study the K-theory of crossed products by the reals
and the integers (and, as a consequence, by the circle). For the reals, Connes’
analog of the Thom isomorphism [14] that the K-theory of the crossed product
is independent of the action (and hence the same as for the trivial action). For
the integers, the result is not so definite but one can obtain a 6-term exact
sequence, called the Pimsner-Voiculescu exact sequence [77], relating the K-
groups of the crossed products with those of A. The methods presented here
also show that the K-groups of the crossed product only depend on those of A
and the homotopy class of the automorphism.

Both Connes’ Thom isomorphism and the Pimsner-Voiculescu exact se-
quence have by now a number of (independent) proofs. We will here take
the shortest path, by deriving the Pimsner-Voiculescu exact sequence from the
Thom isomorphism, following an argument of Connes [14].

73
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7.1 Connes’ Thom isomorphism

Connes’ analog of the Thom isomorphism1 is a generalization of Bott peri-
odicity (Theorem 2.3.18), which is the case of the trivial action. Intuitively
speaking, since R is contractible, any action of it is homotopic to the trivial
one, and their crossed products should have the same K-theory since K-theory
is homotopy invariant. This by itself is not enough to prove the theorem (ho-
motopic actions do not in general produce homotopic crossed products), but
this general intuition certainly plays a role in the proof.

Theorem 7.1.1. Let A be a C∗-algebra, and let α ∈ Aut(A). Then there are
natural isomorphisms

Kj(Aoα R) ∼= K1−j(A) for j = 0, 1.

We will only sketch the idea of the proof of Theorem 7.1.1, leaving most
details to the reader. For these, the reader is referred to either [14] or Sec-
tion 10.9 in [6]. Our goal here is to obtain a description of the isomorphisms
that is sufficient for what we do later; that the maps here described do indeed
satisfy the properties that we claim, will not be proved.

Let γ denote the action of R on R ∪ {+∞} which fixes +∞ and acts by
translation on R. We write CA for the algebra C0(R∪{+∞})⊗A, and endow
it with the action γ ⊗ α. Similarly, we write SA for C0(R)⊗A, endowed with
the action Lt⊗ α. It is relatively straightforward to check that SAoLt⊗α R is
naturally isomorphic to A⊗K(L2(R)).

Observe that there is a short exact sequence

0→ SAoR→ CAoR→ Aoα R→ 0,

whose associated 6-term exact sequence in K-theory (Theorem 2.3.20) becomes

K0(A) // K0(CAoR) // K0(Aoα R)

δ0

��
K1(Aoα R)

δ1

OO

K1(CAoR)oo K1(A).oo

The rest of the proof consists in showing that δ0 and δ1 are isomorphisms.
Next, we show that to prove this, it suffices to show that just one of the maps
above is zero.

Lemma 7.1.2. The maps δ0 and δ1 are always isomorphisms if and only if the
natural map K0(A)→ K0(CAoR) is always zero.

1The Thom isomorphism is a result relating the K-homology groups of a bundle over
a space with the K-homology groups of the space itself. For one-dimensional bundles, the
outcome is a shift by one in the indices of the homology groups.
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Proof. By exactness, if δ1 is an isomorphism, then K0(A) → K0(CA o R) is
zero. Conversely, if K0(A) → K0(CA o R) is always zero, then by taking
suspensions (with trivial R-action), and using that the suspension commutes
with the cone, we deduce that K1(A) → K1(CA o R) is always zero as well.
In particular, δ0 and δ1 are always surjective.

It follows that if Kj(Aoα R) = 0, then K1−j(A) = 0. Applying this to the
algebra AoαR and the action α̂, we deduce that if Kj(AoαRoα̂R) = 0, then
K1−j(Aoα R) = 0. Note that Aoα Roα̂ R is isomorphic to A⊗K(L2(R)) by
Takai duality.

Putting these things together, we deduce that Kj(A oα R) = 0 if and
only if K1−j(A) = 0. Applied to the algebra CA, which is contractible and
hence has trivial K-groups, we deduce that Kj(CA o R) = 0 for all algebras
A and all actions α. Now the exact sequence above implies that δ0 and δ1 are
isomorphisms, as desired.

Observe that the natural map K0(A) → K0(CA o R) is induced by the
composition

φ : A ↪→ A⊗K(L2(R)) ∼= SAoR ↪→ CAoR.

The rest of the proof uses a detailed analysis of this map, which we proceed
to sketch. The arguments presented here are not the original ones used by
Connes in [14]; instead, we follow arguments of Pimsner and Voiculescu, and
specifically Blackadar’s presentation in Section 10.9 of [6].

We assume throughout that A is unital, and treat the nonunital case later.
Observe that when A is unital, there is a canonical embedding C0(R)oLt R→
CAoR. Denote by χ the characteristic function of (0,∞), and let p, f ∈ L1(R2)
be given by

p(x, y) = ex/2e−yχ(y)χ(y − x) and f(x, y) = e−x/2χ(x)χ(y − x)

for all x, y ∈ R.

Lemma 7.1.3. The functions p and f define elements in C0(R) oLt R.

Proof. If p and f were continuous on both variables, then they would belong
to Cc(R2), which is a subalgebra of the crossed product. Although p and f
are not continuous on y, they can be approximated in norm by elements of
L1(R, Cc(R) as follows: for ε > 0, let gε : R → R be the continuous function
that agrees with χ except on [0, ε], where it is linear. Set

pε(x, y) = ex/2e−ygε(y)gε(y − x) and fε(x, y) = e−x/2gε(x)gε(y − x)

for all x, y ∈ R. Then pε and fε belong to Cc(R2), and lim
ε→0

pε = p and

lim
ε→0

fε = f in the L1-norm.
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A routine computation shows that p is a projection in C0(R) oLt R, and
hence also in CAoR. Similarly, one shows that s = 1− f is an isometry with
ss∗ = 1− p in M(CAoR).

It can also be proved that φ can be identified with the homomorphism
determined by

φ(a)(x, y) = αx(a)p(x, y)

for all a ∈ A and all x, y ∈ R. In particular, the image of φ is contained in the
corner p(CAoR)p.

Let µ : A → M(CA o R) be the canonical unital embedding as constant
functions, and let B be the subalgebra of M(CA o R) generated by CA o R
and µ(A). Then there is a split extension

0 // CAoR ι // B // A // 0

and hence the map K0(ι) : K0(CA o R) → K0(B) is injective. Set ψ = ι ◦
φ : A→ B. It thus suffices to show that K0(ψ) is the zero map.

For ε > 0, set qε(x, y) = 1
εp(x/ε, y/ε) and tε = 1

εf(x/ε, y/ε) for all x, y ∈ R.
Then qε, tε ∈ CAoR. We also set sε = 1− tε ∈M(CAoR).

Exercise 7.1.4. For ε > 0, show that sε is an isometry in M(CA o R) and
that sεsε = 1− qε.

For ε > 0, let

ωε : A→M(CAoR) and φε : A→ CAoR

be the homomorphisms given by ωε(a) = sεµ(a)s∗ε and φε(a)(x, y) = αx(a)qε(x, y)
for all a ∈ A, and for all x, y ∈ R. We set ψε = ι ◦ φε : A → B. Observe that
ωε(A) ⊆ (1 − qε)B(1 − qε) and ψε(A) ⊆ qεBqε. In particular, ωε and ψε
have orthogonal ranges and hence their sum µε = ωε + ψε is a homomorphism
A→ B.

Exercise 7.1.5. Show that K0(ωε) = K0(µ) for all ε > 0.

Note that the assignment ε 7→ ψε is norm-continuous, and in particular
K0(ψε) is independent of ε (and equal to K0(ψ)). One can also show (although
it takes somewhat more work), that ε 7→ µε is also norm-continuous, and thus
K0(µε) = K0(µ) for all ε > 0. Combining these facts with the previous exercise,
we get

K0(µ) = K0(µε) = K0(ωε) +K0(ψε) = K0(µ) +K0(ψ),

which shows that K0(ψ) = 0 and thus concludes the proof of Theorem 7.1.1.

7.2 The Pimsner-Voiculescu exact sequence

In this section, we explain how one can obtain the Pimsner-Voiculescu exact
sequence from Theorem 7.1.1. This is not the original argument of Pimsner and
Voiculescu from [77], but rather Connes’ proof from [14]. In this treatment,
the use of the mapping torus is crucial, so we define it next.
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Definition 7.2.1. Let A be a C∗-algebra and let α ∈ Aut(A). We define its
mapping torus Mα by

Mα = {f ∈ C([0, 1], A) : f(1) = α(f(0))}.

Lemma 7.2.2. Let A be a C∗-algebra and let α ∈ Aut(A).

1. There is a canonical isomorphism

Mα
∼= {f ∈ Cb(R, A) : f(x+ 1) = α(f(x)) for all x ∈ R}.

2. The action α̃ : R→ Aut(Cb(R, A)) defined by

α̃x(f)(t) = f(t− x)

for x, t ∈ R and f ∈ Cb(R, A) restricts to an action α̃ : R→ Aut(Mα).

3. There is a short exact sequence

0 // C0((0, 1))⊗A // Mα
// A // 0.

Proof. Part (1) is obvious. For part (2), it suffices to notice that Mα (using
the presentation from part (1)) is invariant under α̃.

For part (3), note that a function f ∈ C0((0, 1), A) naturally belongs to
Mα (using the presentation from Definition 7.2.1), and that C0((0, 1), A) is an
ideal in Mα. Then the quotient map Mα → A is given by evaluation at 0.

We will need the following lemma, which resembles Corollary 6.1.4.

Proposition 7.2.3. Let G be a locally compact, abelian group, let A be a
C∗-algebra, and let α : G→ Aut(A) be an action. Let C be a C∗-algebra, and

let γ : Ĝ→ C be an action. Suppose that

ϕ : (Aoα G, α̂)→ (C, γ)

is an equivariant, surjective homomorphism, and let M(ϕ) denote the extension
to the multiplier algebras. Then ϕ is injective (and hence an isomorphism) if
and only if M(ϕ)|A : A ⊆M(Aoα G)→M(C) is injective.

Proof. Since the “only if” implication is obvious, we assume that M(ϕ)|A is

injective. Denote by J the kernel of ϕ, which is a Ĝ-invariant ideal of Aoα G.
Using Theorem 5.2.7, we denote by

ϕ̂ : (A⊗K(L2(G)), α⊗Ad(λ))→ (C oγ Ĝ, γ̂)

the induced G-equivariant homomorphism, whose kernel is J oα̂ Ĝ. Let I be
the unique G-invariant ideal such that

J oα̂ Ĝ = I ⊗K(L2(G));

see Proposition 5.2.9. Then I oα G is contained in the kernel of M(ϕ), which
implies that I = {0}. We deduce that ϕ̂ is injective, and thus ϕ is injective as
well.
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Proposition 7.2.4. Let B be a C∗-algebra, and let β : R → Aut(B) be an
action which is trivial on Z ≤ R. Denote also by β the induced action of T
on B, and let β̂ ∈ Aut(B oβ T) be the dual automorphism. Then B oβ R is
canonically isomorphic to Mβ̂ . In particular, Kj(Mβ̂) is canonically isomorphic

to K1−j(B).

Proof. We use the universal picture of crossed products given in Theorem 2.3.4.
Denote by

ιB : B →M(B oβ T) and ιT : T→ U(M(B oβ T))

the universal covariant pair for (T, B, β). Given s ∈ R, we denote by χs ∈
R̂(∼= R) the character given by χs(t) = eist for all t ∈ R. We also write
π : R → R/Z ∼= T for the canonical quotient map We define a covariant pair
(jB , jR) for (R, B, β) on Mβ̂ by

jB(b) = ιB(b) and jR(t)(s) = χs(t)ιT(π(t))

for all b ∈ B and all t, s ∈ R. One checks that (jB , jR) is indeed a co-
variant pair on Mβ̂ . By Theorem 2.3.4, there is an induced homomorphism
ϕ : B oβ R → Mβ̂ . This homomorphism can be seen to be surjective, and it

is also R̂-equivariant, where Mβ̂ carries the real action described in part (2) of

Lemma 7.2.2. SinceM(ϕ) agrees with ιB on B, it follows from Proposition 7.2.3
that ϕ is injective, and hence an (equivariant) isomorphism.

The statement about the K-theory of the mapping torus now follows from
Theorem 7.1.1.

The general structure result for mapping tori given in the previous proposi-
tion is just a particular case of a much more general result for induced algebras,
which we proceed to describe (more details can be found in [37] and [68].

Definition 7.2.5. Let G be a locally compact abelian group, and let H be a
closed subgroup in G. Given an action α : H → Aut(A) of H on a C∗-algebra
A, we define the induced G-algebra (G, IndGH(A), IndGH(α)) by

IndGH(A) = {f ∈ Cb(G,A) : f(g + h) = αh(f(g)) for all g ∈ G, h ∈ H},

and we let IndGH(α) be the restriction of the translation action of G on Cb(G,A)
to IndGH(A).

Observe that if α is an automorphism of a C∗-algebra A, then IndR
Z(A) is

just Mα and the induced action IndGH(α) is the action α̃ defined in part (2) of
Lemma 7.2.2. The following is the general form of Proposition 7.2.4 for abelian
groups.

Theorem 7.2.6. Let G be a locally compact abelian group, let H be a closed
subgroup, let A be a C∗-algebra, and let α : G→ Aut(A) be an action that is
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trivial on H. We write α : G/H → Aut(A) for the induced action. Then there

is a natural Ĝ-equivariant isomorphism

ψ : (Aoα G, α̂)→
(

IndĜH⊥(Aoα G/H), IndĜH⊥(α̂)
)

The proof of this theorem is beyond the scope of these notes, so we omit it.
Some particular cases are much easier to obtain, and we leave the following as
an exercise:

Exercise 7.2.7. Give a proof of Theorem 7.2.6 for A is unital when G = Z
and H = nZ for n ∈ N.

We now turn to the Pimsner-Voiculescu exact sequence.

Theorem 7.2.8. Let A be a C∗-algebra, and let α ∈ Aut(A), and denote by
ι : A → A oα Z the canonical inclusion. Then there is a natural 6-term short
exact sequence

K0(A)
id−K0(α) // K0(A)

K0(ι) // K0(Aoα Z)

��
K1(Aoα Z)

OO

K1(A)
K1(ι)

oo K1(A).
1−K1(α)

oo

Moreover, Kj(Aoα Z) ∼= K1−j(Mα) for j = 0, 1, and thus the K-theory of
the crossed product only depends on the homotopy class of α in Aut(A).

Proof. Set B = A oα Z and let β : T → Aut(B), regarded as an action of R
which is trivial on Z. Then Boβ T ∼= A⊗K by Takai duality (Theorem 5.2.7),
and B oβ R ∼= Mβ̂ by Proposition 7.2.4. Thus, there is a short exact sequence

0 // C0((0, 1))⊗A⊗K // B oβ R // A⊗K // 0;

see part (3) of Lemma 7.2.2.
Note that the K-theory of A⊗ K is isomorphic to that of A, and that the

K-theory of C0((0, 1)) ⊗ A ⊗ K is isomorphic to that of A with a degree-one
shift (by the comments at the end of Section 2.3 and Theorem 2.3.18).

Since Kj(BoβR) ∼= K1−j(B) by Theorem 7.1.1, the 6-term exact sequence
for K-theory (Theorem 2.3.20) associated to the short exact sequence above
gives the exact sequence in the statement (rotating one place clock-wise). The
identification of the maps is left to the reader. (It involves, among others,
having a sufficiently good description of the exponential and index maps in
Theorem 2.3.20, which we have omitted.)

We turn to the last claim. Note thatMβ̂ is just the mapping torus associated

to the automorphism ̂̂α ∼= α⊗Ad(λ) of A⊗K(`2(Z)). Now, since λ is homotopic
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to 1 in B(`2(Z)) (because the unitary group of `2(Z) is connected), we have a
homotopy

α⊗Ad(λ) ∼h α⊗ idK(`2(Z)).

Since homotopic automorphisms give rise to isomorphic mapping tori (see Ex-
ercise 7.2.9), we deduce that Mβ̂ is isomorphic to Mα⊗idK(`2(Z))

. However, it is
immediate to see that there is a natural isomorphism

Mα⊗idK(`2(Z))
∼= Mα ⊗K(`2(Z)).

The result thus follows by combining these facts with the isomorphism Kj(Aoα
Z) ∼= K1−j(Mβ̂) obtained above.

Exercise 7.2.9. Complete the proof of Theorem 7.2.8 by showing the follow-
ing.

1. If α and γ are homotopic automorphisms of a C∗-algebra A, then Mα is
isomorphic to Mγ .

2. If α is an automorphism of a C∗-algebra A, then there is a natural iso-
morphism

Mα⊗idK(`2(Z))
∼= Mα ⊗K(`2(Z)).

Exercise 7.2.10. Let A be an AF-algebra and let α ∈ Aut(A).

1. If A is unital, show that Aoα Z is not AF.

2. If A is not unital, show with an example that Aoα Z may be AF.

An alternative approach using Toeplitz extensions

In this subsection, we describe a different proof of Theorem 7.2.8, not using the
Thom isomorphism Theorem 7.1.1. This approach is necessarily more difficult
than the one presented above, and for the sake of brevity we will not prove
most of the claims we make. This proof uses Topelitz extensions and has the
advantage that the maps K0(AoαZ)→ K1(A) and K1(AoαZ)→ K0(A) can
be described in a satisfactory way, unlike in the proof given before.

Recall that the Toeplitz algebra T is the universal unital C∗-algebra gen-
erated by an isometry s. Given an automorphism α ∈ Aut(A) of a C∗-algebra
A, we write Tα for the subalgebra of (A oα Z) ⊗ T generated by A ⊗ 1T and
u⊗s. We abbreviate t = u⊗s, which is clearly an isometry, and set p = 1−tt∗,
which is a projection in Tα. We identify A with a subalgebra of Tα canonically,
and write a instead of a ⊗ 1. Define matrix units in Tα with values in A by
ej,k(a) = αj(a)tjp(t∗)k for j, k ∈ N. It is relatively straightforward to show
that these generate a subalgebra of Tα isomorphic to A⊗K, and we denote by
ϕ : A⊗K → Tα the resulting map.

Lemma 7.2.11. Let the notation be as in the discussion above. There exists
a unique homomorphism ψ : Tα → A oα Z satisfying ψ(a) = a for all a ∈ A
and ψ(u) = t.
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Proof. We define a homomorphism ψ : Tα → A oα Z as follows. First, by the
universal property of T , there exists a (unique) homomorphism ψ0 : T → AoαZ
satisfying ψ0(s) = 1. Since A oα Z commutes with ψ0(1) in A oα Z, there is
a well defined homomorphism idAoαZ ⊗ ψ0 : (Aoα Z)⊗ T → Aoα Z, and its
restriction to Tα is the desired map.

We will assume the following result without providing a proof, although it
can be shown with elementary methods.

Proposition 7.2.12. Let α ∈ Aut(A) be an automorphism of a C∗-algebra
A. Let ϕ : A⊗K → Tα be the map from the discussion above, and let ψ : Tα →
Aoα Z be the homomorphism provided by Lemma 7.2.11. Then the following
is an exact sequence:

0 // A⊗K
ϕ // Tα

ψ // Aoα Z // 0.

We wish to apply the 6-term exact sequence in K-theory (Theorem 2.3.20)
to the short exact sequence provided by the previous proposition. For this,
we need to identify the K-theory of the Toeplitz extension with that of A
in a canonical way. Let κ : A → A ⊗ K be the embedding as the upper-left
corner, which induces isomorphisms of the K-groups by parts (2) and (3) of
Theorem 2.3.15. Let ι : A → Tα denote the canonical inclusion. Then ι also
induces isomorphisms on K-theory, although this is much more difficult to
prove2. Next, we need to identify how ϕ acts on K-theory, once the K-groups
of A⊗K and of Tα are identified with those of A.

Lemma 7.2.13. Adopt the notation from the discussion above, and let j =
0, 1. Then the following diagram is commutative:

Kj(A)

Kj(κ)

��

id−Kj(α) // Kj(A)

Kj(ι)

��
Kj(A⊗K)

Kj(ϕ)
// Kj(Tα).

Consider now the 6-term exact sequence associated to the short exact se-
quence in Proposition 7.2.12:

K0(A⊗K)
K0(ϕ) // K0(Tα)

K0(ψ) // K0(Aoα Z)

δ0

��
K1(Aoα Z)

δ1

OO

K1(A)
K1(ψ)

oo K1(A).
id−K1(α)

oo

2The only way I know to show this is by proving that the quasi-homomorphism Tα → A
induced by the pair (idTα ,Ad(1A⊗ s)) : Tα → Tα is an inverse for ι at the level of K-theory.



82 CHAPTER 7. K-THEORY OF CROSSED PRODUCTS

The K-groups of A ⊗ K are identified with those of A via κ, while the K-
groups of Tα are identified with those of A via ι. Since ψ ◦ ι is the canonical
inclusion of A into A oα Z, and since Kj(ι)

−1 ◦Kj(ϕ) ◦Kj(κ) = id −Kj(α)
by Lemma 7.2.13, we obtain again the Pimsner-Voiclescu exact sequence from
Theorem 7.2.8, with the extra addition that the boundary maps can be de-
scribed as follows:

K0(A)
id−K0(α) // K0(A)

K0(ι) // K0(Aoα Z)

K0(κ)−1◦δ0
��

K1(Aoα Z)

K1(κ)−1◦δ1

OO

K1(A)
K1(ι)

oo K1(A).
1−K1(α)

oo

7.3 Consequences and applications

Crossed products by the circle and cyclic groups

As a consequence of the Pimsner-Voiculescu exact sequence, in combination
with Takai duality, one can derive a 6-term exact sequence involving the K-
groups of the crossed product by a circle action. This exact sequence is not as
useful as the one in Theorem 7.2.8, since each K-group of the crossed product
appears twice and not just once, but it nevertheless gives useful information in
many cases; see Exercise 7.3.2.

Theorem 7.3.1. Let α : T → Aut(A) be a circle action on a C∗-algebra A.
Then there is an exact sequence

K0(Aoα T)
id−K0(α̂) // K0(Aoα T) // K0(A)

��
K1(A)

OO

K1(Aoα T)oo K1(Aoα T).
id−K1(α̂)
oo

The unlabeled maps can also be completely described:

1. When Kj(A) is identified with Kj(A ⊗ K(L2(T))) under the canonical
corner embedding, the maps Kj(A oα T) → Kj(A) are induced by the
canonical inclusion

Aoα T ↪→ Aoα T oα̂ Z ∼= A⊗K(L2(T)).

2. When Kj(A) is identified with K1−j(A oα R) using the Thom isomor-
phism Theorem 7.1.1, the vertical maps are induced by the canonical
quotient map Aoα R→ Aoα T.

Proof. Apply Theorem 7.2.8 to α̂ ∈ Aut(AoαT), and identify AoαToα̂Z with
A⊗K(L2(T)) using Takai duality (Theorem 5.2.7) to obtain the exact sequence
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in the statement, with the proper identification of all the horizontal maps. The
identification of the vertical maps is carried out using the description of the
vertical maps of the Pimsner-Voiclescu exact sequence given in Section 7.2,
in combination with the description of the Thom isomorphism; we omit the
details.

Exercise 7.3.2. Let α : T → Aut(A) be an action on a (nonzero) C∗-algebra
A.

1. If A is AF, show that the dual automorphism α̂ of Aoα T is not approx-
imately inner.

2. Find an example where α̂ is approximately inner.

The case of finite cyclic groups, whose proof follows the lines of the Pimsner-
Voiculescu theorem, is left as an exercise.

Exercise 7.3.3. Let A be a C∗-algebra, let n ∈ N, and let α : Zn → Aut(A)
be an action. Let π : A oα Z → A oα Zn denote the canonical quotient map.
Prove that there is an exact sequence

K0(Aoα Zn)
id−K0(α̂1) // K0(Aoα Zn) // K1(Aoα Z)

K1(π)

��
K0(Aoα Z)

K0(π)

OO

K1(Aoα Zn)oo K1(Aoα Zn).
id−K1(α̂1)
oo

Some K-theory computations

There are a number of very important applications of Theorem 7.2.8. Two
historically important consequences have been the computations of the K-
groups of rotation algebras and Cuntz algebras.

Proposition 7.3.4. Let θ ∈ R ∩ [0, 1). Then

K0(Aθ) ∼= Z2 and K1(Aθ) ∼= Z2,

with K1(Aθ) generated by [u]1 and [v]1. Moreover, there exists a projection
pθ ∈ Aθ with τ(pθ) = θ, and for θ /∈ Q, the group K0(Aθ) is generated by [1]0
and [p]0.

Proof.

The case of Cuntz algebras is left as an exercise. The reader may assume,
without proof, that Cuntz algebras are simple.

Exercise 7.3.5. Let n ∈ N with n ≥ 2.
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1. Let e ∈Mn be the projection e1,1. For m ∈ N, set Dm =
∞⊗

m=−k
Mn, and

let ψm : Dm → Dm+1 be given by

ψm(x) = e⊗ x ∈ e⊗Dm ⊆ Dm+1

for all elementary tensors x ∈ Dm. Denote by D the associated direct
limit, with canonical maps ϕm : Dm → D, for m ∈ N. Show that D is
isomorphic to Mn∞ ⊗K.

2. For m ∈ N, let θm : Dm → Dm−1 be an isomorphism (for example, just
by reindexing the tensor factors) and let αm : Dm → Dm be given by

αm(x) = e⊗ θm(x) ∈ 1⊗Dm−1 ⊆ Dm

for all elementary tensors x ∈ Dm. Show that there is an automorphism
α ∈ Aut(D) such

α ◦ ϕm = ϕm ◦ αm
for all m ∈ N.

3. Compute K0(α) and K1(α).

4. Show that D oα Z is isomorphic to On ⊗K as follows:

a) Denote by p ∈ D0 the unit of D0
∼= Mn∞ , and denote by u ∈

M(DoαZ) the canonical unitary. Set s = up. Then D0 = pDp and
p(D oα Z)p is generated by D0 and s.

b) For j = 1, . . . , n, set sj = (ej,1 ⊗ p)s ∈ D oα Z. Then s∗jsj = p and
n∑
j=1

sjs
∗
j = p.

c) Show that p(D oα Z)p ∼= On.

d) For m ∈ N, let pm ∈ Dm be the unit. Then D oα Z is isomorphic
to the inductive limit of pm(Doα Z)pm, and pm−1(Doα Z)pm−1 is
generated by pm(Aoα Z)pm and

{ej,k ⊗ pm : 1 ≤ j, k ≤ n} ⊆Mn ⊗Dm = Dm−1.

e) Conclude that D oα Z is isomorphic to On ⊗K.

5. Compute K0(On) and K1(On). Deduce that On ∼= Om if and only if
n = m.

Exercise 7.3.6. Let α : Zn → Aut(O2) be an action such that α̂1 is approxi-
mately inner. Show that

K0(O2 oα Zn) ∼= K1(O2 oα Zn) ∼= {0}.



Part II

Rokhlin-type properties for finite
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Chapter 8

Introduction

By the groundbreaking work of Murray and von Neumann, separably acting von
Neumann factors can be divided into three types: type I factors have nonzero
minimal projections, type II are those that have no minimal projections but
contain a finite projection, and type III factors have only infinite projections.
Type II factors are further divided into type II1, when there is a (normalized)
finite trace, and type II∞ if there is a semifinite trace. (The other types also
have subdivisions, but we will not go into that here.) Since factors of type II∞
are all tensor products of type II1-factors with B(`2), the study of II1-factors
is in some sense equivalent to the study of type II factors. A remarkable
result of Connes asserts that for a II1-factor, hyperfiniteness is equivalent to
injectivity, and moreover there exists a unique such II1-factor, usually denoted
by R. This factor has been extensively studied by a number of authors. A
common “regularity” property that a factor M may satisfy is absorbing R
tensorially (usually known as being McDuff ). McDuff II1-factors are much
better understood than general II1-factors. Moreover, ifM is any factor, then
M⊗R is a McDuff factor (of type II1 if so is M).

Once the classification of von Neumann factors was completed, the attention
quickly shifted to the study of their automorphisms, and, more generally, the
study of group actions on them. Automorphisms of the hyperfinite II1-factor R
which have finite order (that is, actions of a finite cyclic group) were studied by
Connes [13]. His work was considerably extended by Jones [48], who studied
and classified finite group actions on R. These advances culminated in the
remarkable work of Ocneanu [67], who classified general amenable group actions
on McDuff factors. In particular, it follows from his work that there exists a
unique, up to cocycle equivalence, outer action of any given amenable group
on R. We will say more about these results in Chapter 10.

The study of the structure and classification of C∗-algebras developed, for
quite some time, rather independently from the advances on the side of von
Neumann algebras. Matui and Sato [65] were the first ones to import techniques
from von Neumann algebras in a systematic way, obtaining groundbreaking
results. These methods were further developed by a number of authors, and
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these contributions are particularly relevant in the verifications of (3) ⇒ (2)
and (2) ⇒ (1) in the Toms-Winter conjecture:

Conjecture 8.0.1. (Toms-Winter; see, for example, [23]). Let A be a unital,
separable, simple, nuclear, infinite dimensional C∗-algebra. Then the following
are equivalent:

1. A has finite nuclear dimension.

2. A is Z-stable.

3. A has strict comparison of positive elements.

The implications (1) ⇒ (2) and (2) ⇒ (3) were shown to hold by Winter
[104] and Rørdam [85], respectively. As of (3)⇒ (2), the result is known in the
case that T (A) is a Bauer simplex and its extreme boundary is finite dimen-
sional, thanks to the independent works of Matui-Sato [64], Kirchberg-Rørdam
[53], and Toms-White-Winter [94]. For C∗-algebras with stable rank one and
locally finite nuclear dimension, the result was recently shown by Thiel [91].
Finally, the implication (2) ⇒ (1) is true whenever T (A) is a Bauer simplex,
and this was recently shown by Bosa-Brown-Sato-Tikuisis-White-Winter [10].

Now that the Elliott programme to classify simple, nuclear C∗-algebras is
almost completed (see Appendix A for a historical account), it is natural to shift
our attention to the study of their automorphisms, and, more generally, group
actions on them. By comparison, this area is considerably underdeveloped,
and there were, until recently, no systematic efforts to study their structure
and make attempts at their classification. Until around 10 years ago, only
rather restricted classes of group actions have been studied at a time. Izumi’s
study and classification of finite group actions with the Rokhlin property [46]
can be described as the first instance of a systematic study, where the actions
under consideration are not described by the way in which they are constructed
(namely, as direct limit actions of very special form), but rather characterized
by an abstract property. Roughly speaking, for a finite group action, the
Rokhlin property says that there exists a partition of unity, indexed by the
elements of the group, consisting of approximately central projections which are
cyclically translated by the group action (more details are given in Chapters 10
and 11). Izumi’s work was extended by the author and Santiago [31] to the
non-unital case, and also to actions of compact groups [32]. The structure of
crossed products by actions with the Rokhlin property has also been the object
of a number of works by Osaka-Phillips [69], Hirshberg-Winter [44], Pasnicu-
Phillips [71] and the author [25, 28].

Actions with the Rokhlin property are rare, and many algebras o not have
any. One obstruction is that the Rokhlin property, at least for finite groups,
implies certain divisibility properties on K-theory. Attempts to circumvent
obstructions of this sort led Phillips to introduce the tracial Rokhlin property
[75], where the projections are now assumed to have a left over which is small
in the tracial sense (more details are given in Chapter 12). Among other
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applications, the tracial Rokhlin property has been used by Echterhoff-Lück-
Phillips-Walters [17] to study fixed point algebras of the irrational rotation
algebra Aθ under certain finite group actions, and it was also used by Phillips
to show that any simple higher-dimensional noncommutative tori is an AT-
algebra [73]. The main result used in these works is a theorem of Phillips,
asserting that the crossed product of a C∗-algebra with tracial rank zero by
a finite group action with the tracial Rokhlin property again has tracial rank
zero.

Even the tracial Rokhlin property does not solve what is arguably the
strongest restriction that a C∗-algebra can have in order to admit Rokhlin ac-
tions: the existence of projections. For example, the Jiang-Su algebra does not
admit any action with the tracial Rokhlin property. The need to study weaker
versions of these properties was quickly recognized, leading to two further no-
tions. The weak tracial Rokhlin property, in which one replaces the projections
in the definition of the tracial Rokhlin property with positive elements, has
been considered (sometimes under different names) by Archey [1], Hirshberg-
Orovitz [42], Sato [86], Matui-Sato [63], and Wang [98], among others. The
main application of this notion has been showing that Jiang-Su absorption is
preserved by taking crossed products by actions with the weak tracial Rokhlin
property. We say more about this property in Sections 3 and 5.

A different approach was taken by Hirshberg-Winter-Zacharias [45], who
introduced the notion of Rokhlin dimension for automorphisms and actions
of finite groups. In this formulation, the partition of unity appearing in the
Rokhlin property is replaced by a multi-tower partition of unity consisting of
positive elements, each of which is indexed by the group elements and per-
muted by the group action (see Chapter 13 for more details). It is built into
the definition that the lowest value of the Rokhlin dimension (which is zero),
is equivalent to the Rokhlin property discussed above. Not requiring the exis-
tence of projections, actions with finite Rokhlin dimension are more abundant:
for actions on the Jiang-Su algebra, Rokhlin dimension equal to one is in fact
generic. Despite it being so seemingly common, finite Rokhlin dimension is a
powerful tool to prove bounds of the nuclear dimension of crossed products.
An advantage of this approach is that the definition of Rokhlin dimension does
not require the C∗-algebra to be simple; in particular, the theory can be ap-
plied to actions on compact Hausdorff spaces. The works of Hirshberg-Winter-
Zacharias for Z-actions, and of Szabo [89] for Zd-actions, illustrate this fact
nicely. Rokhlin dimension has been defined for actions of much more general
groups: for residually finite groups by Szabo-Wu-Zacharias [90], for compact
groups by the author [27] and [26], and further by the author, Hirshberg and
Santiago [30], and for the reals by Hirshberg-Szabo-Winter-Wu [43].

With all these seemingly different Rokhlin-type properties, a natural ques-
tion arises: when does one of these properties imply another one? Except for
the obvious implications, it is not clear what the relationship between them is.
This is explored in Chapter 14, where we show that for a large class of simple
C∗-algebras, the weak tracial Rokhlin property and having Rokhlin dimension
at most one are equivalent. The goal of this series of lectures is to familiarize
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the audience with all these Rokhlin-type properties, as well as giving a sample
of the techniques that are used to work with each of them.

Throughout, we will work mostly with separable, unital C∗-algebras and
finite groups. Removing the unitality and separability assumptions assump-
tion is, for the most part, not difficult, and we omit this issue completely here.
(The results in Chapter 14 have really only been proved for separable, uni-
tal algebras.) Moving away from finite groups involves more complications.
Some results hold in general for compact groups, while others hold for discrete
amenable groups, and those concerning Rokhlin dimension require the group
to be moreover residually finite. While definitions and proofs will be given for
finite groups mostly, we will mention, when appropriate, what generalizations
have been obtained in the literature.



Chapter 9

Preliminaries

9.1 Strongly self-absorbing C∗-algebras.

A bit strange to have it before McDuff’s result...
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Chapter 10

Classification of outer actions on
the hyperfinite II1-factor

In [48], Vaughan Jones gave a complete classification, up to conjugacy, of all
actions of a finite group on the hyperfinite II1-factor R, using invariants that
are essentially algebraic. His result does not generalize to arbitrary II1-factors,
although there is a version for approximately inner actions on McDuff factors.
Jones’ classification theorem generalizes previous results of Connes [13] for
actions of Zn, and was subsequently extended by Ocneanu, who obtained a
similar classification for amenable group actions.

Since the invariants used to classify actions on R vanish in the case of outer
actions, it follows that there is a unique outer action of any finite (or of any
amenable) group on R. This particular case is in fact an important step in
the proof of the general theorem, arguably the most difficult one, and in this
chapter we will outline the argument to obtain this uniqueness result. The
proof consists in showing that outer actions on R have the so-called Rokhlin
property, and then proving that two actions with the Rokhlin property are
conjugate.

The material contained in this chapter inspired many C∗-algebraists to
study actions on C∗-algebras, trying to obtain results similar to those of Connes,
Jones and Ocneanu. The rest of these notes cover some of the latest develop-
ments in the study of C∗-dynamical systems, particularly in what concerns
the C∗-algebraic versions of Jones’ Rokhlin property for finite group actions
on von Neumann algebras. This chapter therefore provides a historical per-
spective on one of the first uses of the Rokhlin property, specifically in what
refers to classification of finite group actions on R. Since these lecture notes
are devoted to the study of actions on C∗-algebras rather than von Neumann
algebras, some of the results in this chapter will be only sketched and many
facts about the structure theory of II1-factors, presented in the first section,
will be used without proof.
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10.1 Preliminaries on von Neumann algebras and factors

A von Neumann algebra is a C∗-subalgebra of B(H) that is closed in the weak
operator topology. Von Neumann algebras have been abstractly characterized
by Sakai as those C∗-algebras that admit an isometric predual. Despite the
fact that von Neumann algebras are C∗-algebras in their own right, it is not
usually helpful to think of von Neumann algebras as C∗-algebras. It may be il-
lustrative to mention that, while C∗-algebras are regarded as noncommutative
toplogical spaces, von Neumann algebras are usually regarded as noncommuta-
tive measure spaces. Behind this philosophy is the fact that if M is an abelian
von Neumann algebra, then there exists a measure space (X,µ) such that M
is isomorphic to L∞(X,µ)1.

The foundations for the advancement of the theory of von Neumann alge-
bras were laid by Murray and von Neumann in their groundbreaking works in
the early 1940’s. Among other fundamental results, they showed that any von
Neumann algebra decomposes as a direct integral (a generalization of a direct
sum) of von Neumann algebras with trivial center (also called factors). Since
many problems about von Neumann algebras can be reduced to the case of a
factor, it is important to understand the structure of the latter. Factors can
be classified into three types, with corresponding subtypes:

• Type I: there is a nonzero minimal projection.

– Type In, for n ∈ N: the unit can be written as the sum of n minimal
projections.

– Type I∞: otherwise.

• Type II: there are no minimal projections and there is a finite projection;

– Type II1: the unit is a finite projection.

– Type II∞: the unit is an infinite projection.

• Type III: all nonzero projections are infinite;

– Type IIIλ, for 0 ≤ λ ≤ 1 depending on the Connes spectrum.

Factors of type I can be completely described: Mn is the unique factor of
type In, while every factor of type I∞ has the form B(H) for some infinite-
dimensional Hilbert space H. Moreover, every factor of type II∞ is a tensor
product2 of a factor of type II1 and B(H). Further, every factor of type III can
be written as the crossed product of a factor of type II with an R-action. In
other words, the study of von Neumann factors in some sense can be reduced
to the study of II1-factors.

1There is also a topological space Y such that M is isomorphic to C(Y ), but this space
is from many points of view a very pathological one, and it is not useful when analyzing the
structure of M .

2Tensor products of von Neumann algebras are defined spatially, similarly to how minimal
tensor products of C∗-algebras are constructed. The von Neumann algebraic tensor product
is usually denoted by ⊗.
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II1-factors.

There are a number of constructions that give rise to factors of type II1. For
this, we briefly discuss crossed products of von Neumann algebras.

Crossed products of actions on von Neumann algebras are defined analo-
gously as the reduced crossed products of C∗-algebras, except that one needs to
construct a universal regular covariant representation and construct the crossed
product spatially.3 As in the C∗-algebra case, if the group is discrete, then the
crossed product can be defined more directly as follows. Take any faithful
representation of the von Neumann algebra, consider the associated regular
covariant representation, and take its integrated form. Then the crossed prod-
uct is isomorphic to the von Neumann algebra generated by its image. If M
is a von Neumann algebra and a group G acts on it, we denote the associ-
ated crossed product by MoG to distinguish it from the C∗-algebraic crossed
product. Note, however, that MoαG and M oα G coincide when G is finite.

Crossed products can be used to construct a number of examples of II1-
factors.

Example 10.1.1. Let G be a discrete group, let (X,µ) be a probability space,
and let G act on (X,µ) in a measure-preserving way. Then L∞(X) oG has a
trace, which is induced by µ. If the action is free and ergodic, and µ has full
support, then L∞(X) oG is a II1-factor.

Example 10.1.2. Let G be a discrete group. Then its group von Neumann
algebra L(G) = CoG, which can be alternatively be defined as the weak closure
of C∗λ(G) in B(`2(G)), has a trace. Moreover, L(G) is a factor (necessarily of
type II1) if and only if G has infinite conjugacy classes (ICC).

Perhaps the most important example of a II1-factor is the one constructed
in the following4:

Example 10.1.3. The II1-factor R is defined as the weak closure of the UHF-
algebra M2∞ in the GNS representation associated to its unique trace. It is a
factor because τ is an extreme state, and it is of type II1 because by definition
the trace on M2∞ extends to a trace on R.

Factors of type II1 enjoy two fundamental properties that are used repeat-
edly: the existence of a unique trace, and the fact that the order of its pro-
jections is determined by the values of this trace. Recall that if p and q are
projections in a C∗-algebra A, we write p � q if there exists a projection q′ ≤ q
such that p ∼M−vN q′.

Theorem 10.1.4. Let M be a II1-factor.

3There is no obvious or useful analog of the full crossed product, so this distinction is
not incorporated in the terminology or notation.

4It also arises in the constructions from Example 10.1.1 and Example 10.1.2 whenever G
is amenable.



96 CHAPTER 10. CLASSIFICATION OF OUTER ACTIONS ON R

1. There exists a unique weakly continuous trace τ : M → C, which is nec-
essarily faithful.

2. Comparison: projections p, q ∈ M , one has p � q if and only if τ(p) ≤
τ(q). Moreover, p ∼u q if and only if τ(p) = τ(q).

3. For every t ∈ R there exists a projection p ∈M with τ(p) = t.

4. If p is a projection in M , then pMp is also a II1-factor.

A useful consequence of this fact is given in the following exercise:

Exercise 10.1.5. Let n ∈ N.

1. Let A be a C∗-algebra, and let p1, . . . , pn be projections in A that are
Murray-von Neumann equivalent. Show that A contains a subalgebra
isomorphic to Mn.

2. If M is a II1-factor and n ∈ N, then M contains a subalgebra isomorphic
to Mn.

Hyperfiniteness

A key notion in the study of factors is that of hyperfiniteness, which we define
next.

Definition 10.1.6. A von Neumann algebra is said to be hyperfinite if it
contains an increasing net of finite dimensional subalgebras whose union is
dense in the weak operator topology.

Example 10.1.7. The II1-factor R from Example 10.1.3 is hyperfinite by
construction.

A groundbreaking result of Connes [12] asserts that for a separably act-
ing von Neumann factor, hyperfiniteness is equivalent to injectivity, and also
equivalent to amenability.

Major breakthroughs by Murray and von Neumann, Connes, Haagerup,
Krieger, and Popa culminated in the classification of hyperfinite factors:

Theorem 10.1.8. There is a unique hyperfinite factor of type In, for n ∈ N,
I∞, II1, II∞, and IIIλ, for 0 < λ ≤ 1. On the other hand, the hyperfinite
factors of type III0 correspond to certain ergodic flows.

It may be interesting to mention that the study of group actions on von
Neumann factors was instrumental in obtaining the results above. Concretely,
the classification of outer automorphisms on the hyperfinite II1-factor R was
key in Connes’ award-winning proof of the uniqueness of hyperfinite factors
of type IIIλ, for 0 < λ < 1. Indeed, he showed that if M is a hyperfinite
IIIλ-factor, then there is an outer automorphism θ of R⊗B(`2) which scales
the trace by λ, and such that M is isomorphic to the crossed product by θ. In
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order to show that any two hyperfinite IIIλ-factors are isomorphic, it therefore
suffices to show that any two outer automorphisms of R⊗B(`2) which scale
the trace by λ, are cocycle conjugate5. In this way, classification of actions on
von Neumann algebras arose as an area with fundamental applications to the
structure of factors.

Here, we give a brief proof of the uniqueness of R. In its proof, we will need
the trace (semi-)norm ‖ · · · ‖2 associated to a trace τ in a von Neumann algebra
M , which is defined by ‖a|2 = τ(a∗a)1/2 for a ∈M . It is an easy consequence
of Kaplansky’s density theorem that, for a II1-factor M , the topology on the
norm-unit ball of M generated by ‖ · ‖2 agrees with the weak topology.

Theorem 10.1.9. The II1-factor R from Example 10.1.3 is the unique sepa-
rable hyperfinite II1-factor.

Proof. Let M be a hyperfinite II1-factor with trace τM .
Claim 1: given ε > 0 and a finite-dimensional subalgebra N ⊆ M , there

exist n ∈ N and an embedding M2n → M such that d‖·‖2(M2n , x) ≤ ε‖x‖ for
all x ∈ N . To simplify the argument, we will assume that N is a matrix
subalgebra of M , say N ∼= Mr for some r ≥ 2. Let {ẽj,k : 1 ≤ j, k ≤ r} be a
system of matrix units in M generating N . Find a rational of the form m/2n

satisfying
∣∣τ(ẽ1,1)− m

2n

∣∣ < ε
r2 , and use Exercise 10.1.5 to find a projection

p ≤ ẽ
(r)
1,1 with trace m/2n. For j, k = 1, . . . , r, set e

(r)
j,k = ẽ

(r)
j,1pẽ

(r)
1,k ∈ M . Then

{e(r)
j,k : 1 ≤ j, k ≤ r} is a system of matrix units in M (it may not be unital),

and the algebra P that they generate satisfies d‖·‖2(P, x) ≤ ε‖x‖ for all x ∈ N .
Set q = 1−1P . Then both p and q have dyadic rational traces, so there exist

s, t ∈ N and n ∈ N with τ(p) = s/2n and τ(q) = t/2n. Use Theorem 10.1.4 to
find unital copies

Ms ↪→ pMp and Mt ↪→ qMq,

and choose the corresponding matrix units {f (s)
j,k : 1 ≤ j, k ≤ s} and {f (t)

j,k : 1 ≤
j, k ≤ t} in M . Now, the projections

f
(s)
1,1 , . . . , f

(s)
s,s , e

(r)
2,1f

(s)
1,1e

(r)
1,2, . . . ,e

(r)
2,1f

(s)
s,s e

(r)
1,2, . . . , e

(r)
r,1f

(s)
1,1e

(r)
1,r, . . . , e

(r)
r,1f

(s)
s,s e

(r)
1,r,

f
(t)
1,1, . . . , f

(t)
t,t

are orthogonal, add up to the unit of M , and have all the same trace, which
equals 1

sr+t = 1
2n . The algebra they generate, which is isomorphic to M2n ,

contains P , and hence satisfies the conditions in the claim.
Claim 2: M contains M2∞ as a weakly-dense subalgebra.
Claim 3: M is isomorphic to R. Consider the GNS-representation of M

associated to τM . By the previous claim, M contains M2∞ as a weakly-dense
subalgebra. Since the restriction of τM to M2∞ is the unique trace of M2∞ ,

5Two automorphisms ϕ and ψ are cocycle conjugate if and only if there are a unitary
u and an automorphism θ such that θ ◦ Ad(u) ◦ ϕ ◦ θ−1 = ψ. Once ϕ and ψ are regarded
as Z-actions, this means that there is a cocycle perturbation of one of them (in the sense of
Definition 10.2.2) which is conjugate to the other one.
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this representation restricts to the GNS representation of M2∞ , and hence the
von Neumann algebra generated by its image, which is isomorphic to M by
weak density, must agree with R.

Finish the proof?

Central sequences and McDuff’s theorem

Sequences algebras and relative commutants (also called central sequence alge-
bras) are fundamental tools not only in the study of the structure of operator
algebras, but also in the study and classification of group actions on them.

The first use of central sequence algebras can be traced to the work of
McDuff [66], who characterized those II1-factors that tensorially absorption of
R in terms of the existence of a unital embedding ofR into the central sequence
algebra of the factor. Later on, Jones used central sequence algebras in order
to classify outer actions of finite groups on R.

In this subsection, we define the central sequence algebra of a II1-factor.
We begin with a discussion about (free) ultrafilters on N.

Definition 10.1.10. A ultrafilter over N is a set ω of subsets of N satisfying

1. ∅ 6= ω;

2. If S, T ∈ ω, then S ∩ T ∈ ω;

3. For every S ⊆ N, either S ∈ ω or N \ S ∈ ω.

An ultrafilter gives a notion of largeness in N, where one regards a subset
of N to be large if it belongs to the ultrafilter. Limits along ultrafilters are
defined naturally, as follows:

Definition 10.1.11. Let X be a topological space, let (xn)n∈N be sequence in
X, let x ∈ X, and let ω be an ultrafilter over N. We say that (xn)n∈N converges
to x along ω if for every open set U ⊆ X containing x, the set {n ∈ N : xn ∈ U}
belongs to ω. In this case, we write lim

n→ω
xn = x.

A remarkable properties of ultrafilters is that bounded sequences always
converge along an ultrafilter.

Lemma 10.1.12. Let X be a compact Hausdorff space, let (xn)n∈N be se-
quence in X, and let ω be an ultrafilter over N. Then there exists a unique
x ∈ X such that (xn)n∈N converges to x along ω.

Proof. Uniqueness of x is clear since X is Hausdorff. For S ∈ ω, set

XS = {xn : n ∈ S} ⊆ X,

which is closed in X. Note that the family {XS : S ∈ ω} has the finite inter-
section property, by condition (2) in Definition 10.1.11. By compactness of X,
the intersection of this family is nonempty, so let x be an element in

⋂
S∈ω

XS .
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We will show that (xn)n∈N converges to x along ω. Let U ⊆ X be an open
subset containing x. Arguing by contradiction, assume that {n ∈ N : xn ∈ U}
does not belong to ω. Hence there exists S ∈ ω such that XS ⊆ X\U . However,
this contradicts the fact that x belongs to XS , thus proving the claim and the
lemma.

We can now define the (central) sequence algebra of a II1-factor.

Definition 10.1.13. Let M be a II1-factor, and let ω be an ultrafilter over N.
We denote by `∞(N,M) the von Neumann algebra of all bounded sequences
with values on M (endowed with the supremum norm)6. Set

Jω = {x ∈ `∞(N,M) : lim
n→ω
‖xn‖2 = 0},

which is a weakly-closed two sided ideal in `∞(N,M). The quotient is denote by
Mω, and called the sequence algebra of M . We denote the canonical quotient
map by κωM : `∞(N,M)→Mω, or just κ if no confusion is likely to arise.

The sequence algebra Mω is endowed with the canonical trace τω : Mω → C
given by τω(κ(x)) = lim

n→ω
τ(xn) for all x ∈ `∞(N,M).

The factor M can be identified with the subalgebra of `∞(N,M) consisting
of the constant sequences, and with a subalgebra of Mω via κ. We define the
central sequence algebra of M to be the relative commutant Mω ∩M ′.

Note that by definition, every representing sequence (an)n∈N in M of an
element a ∈Mω ∩M ′ satisfies limn→ω ‖anx− xan‖2 = 0 for all x ∈M .

The construction of Mω ∩M ′ is sufficiently functorial that any automor-
phism ϕ of M induces an automorphism ϕω of Mω ∩M ′.

Definition of free ultrafilter.
A special feature of the hyperfinite II1-factor R, is that its central sequence

algebra (associated to a free ultrafilter) is again a II1-factor, and that an auto-
morphism of R is outer if and only if it induces an outer automorphism of the
central sequence algebra.

Theorem 10.1.14. Let ω be a free ultrafilter. Then Rω ∩ R′ is a II1-factor.
Moreover, an automorphism ϕ of R is outer if and only if ϕω ∈ Aut(Rω ∩R′)
is outer.

We close this subsection with McDuff’s characterization of absorption of R.

Theorem 10.1.15. Let M be a II1-factor, and let ω be a free ultrafilter. Then
the following are equivalent

1. There is an isomorphism M ∼= M⊗R;

2. There is a unital embedding R →Mω ∩M ′;

3. For some (any) n ≥ 2, there is a unital embedding Mn →Mω ∩M ′.
6If M is concretely represented on the Hilbert space H, then the algebra `∞(N,M) can

be represented concretely on `2(N)⊗H in a canonical way.
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10.2 Outer actions on II1-factors

Recall that an automorphism ϕ of a C∗-algebra A is said to be outer if there
does not exist a unitary u ∈ M(A) with ϕ = Ad(u). Moreover, an action
α : G→ Aut(M) is said to be outer if αg is outer for all g ∈ G \ {1}.

Proposition 10.2.1. Let G be a discrete group, let M be a factor, and let
α : G→ Aut(M) be an outer action. Then MoαG is a factor. If M is of type
II1, then so is MoαG. Finally, if G is finite, then the same conclusions apply
to the fixed point algebra MG.

Proof. Set N = MoαG. We begin by showing that N is a factor. Let x ∈ N
be a central contraction. We will show that x belongs to M , in which case it
belongs to the center of M and hence it is a scalar. Denote by E : N →M the
canonical conditional expectation. We argue by contradiction, so we assume
that there exists g ∈ G such that E(xug) is not zero. (Such a group element
exists by faithfulness of E, which can be proved analogously to Theorem 4.3.4.)
We claim that αg is inner.

Given a ∈M , we have

E(xug)a = E(xuga) = E(xαg(a)ug) = E(αg(a)xug) = αg(a)E(xug).

Now set z = E(xug), which is an element in M satisfying za = αg(a)z for
all a ∈M . By taking adjoints, we also get az∗ = z∗αg(a) for all a ∈M . Hence

z∗za = z∗αg(a)z = az∗z,

and thus z∗z belongs to the center of M . Take the polar decomposition z = v|z|
of z in M , where v is a unitary in M and |z| = (z∗z)1/2. Then |z| is a (nonzero)
scalar, and thus the identity za = αg(a)z gives va = αg(a)v for all a ∈ M .
Hence v ∈M implements αg, as desired. This is a contradiction, which shows
that N is a factor.

Assume that M is of type II1. Then the factor N = MoαG cannot be of
type I since it contains the II1-factor M , and it admits a (normalized) trace
given by τ ◦ E. Hence M is of type II1.

When G is finite, one can show as in Theorem 6.1.5 that the element p =
1
|G|

∑
g∈G

ug is a projection in N and that pNp is isomorphic to Mα. Since

a corner of a factor (of type II1) is again a factor (of type II1), the result
follows.

We will need the notion of a 1-cocycle for a group action.

Definition 10.2.2. Let G be a discrete group, let A be a unital C∗-algebra,
and let α : G → Aut(A) be an action. A function w : G → U(A) is said to be
an α-cocycle if

wgh = wgαg(wh)
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for all g, h ∈ G. We moreover say that w is a coboundary if there exists
v ∈ U(A) such that wg = vαg(v

∗).
Given an α-cocycle w, we denote by αw : G→ Aut(A) the action given by

αwg = Ad(wg) ◦ αg for all g ∈ G.

For finite group actions, deciding whether a cocycle is a coboundary or not
amounts to comparing two projections in the crossed product.

Proposition 10.2.3. Let G be a finite group, let A be a unital C∗-algebra,
let α : G → Aut(A) be an action, and let w : G → U(A) be an α-cocycle. For
g ∈ G, let ug ∈ Aoα G denote the canonical unitary implementing αg. Then

p =
1

|G|
∑
g∈G

wgug and q =
1

|G|
∑
g∈G

ug

are projections, and w is a coboundary if and only if p ∼M−vN q.

Since the proof is straightforward, we leave it as an exercise, together with
other claims made in Definition 10.2.2.

Exercise 10.2.4. Let G be a discrete group, let A be a unital C∗-algebra, let
α : G→ Aut(A) be an action, and let w : G→ U(A) be an α-cocycle.

1. Show that the map αw : G→ Aut(A) given by αwg = Ad(wg) ◦ αg for all
g ∈ G, is an action.

2. Show that Aoα G and Aoαw G are canonically isomorphic.

Suppose now that G is finite. For g ∈ G, let ug ∈ AoαG denote the canonical
unitary implementing αg. Set

p =
1

|G|
∑
g∈G

wgug and q =
1

|G|
∑
g∈G

ug.

3. Show that p and q are projections.

4. Show that w is a coboundary if and only if p ∼M−vN q.

Theorem 10.2.5. Let M be a II1-factor, let G be a finite group, and let
α : G→ Aut(M) be an outer action. Then every α-cocycle is a coboundary.

Proof. Let w : G→ U(M) be an α-cocycle, and let p, q ∈M be as in Proposi-
tion 10.2.3. Denote by τM the unique trace of M . By Proposition 10.2.1, the
crossed product M oα G is a II1-factor with trace given by τ(

∑
g∈G agug) =

τM (a1) for all
∑
g∈G agug ∈ M oα G. Since II1-factors have comparison by

Theorem 10.1.4, it suffices to show that τ(p) = τ(q). It is clear that τ(p) = w1

and τ(q) = 1, so we shall only prove that w1 = 1. However, this follows from
the following identity

w1 = w12 = w1α1(w1) = w1w1.
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10.3 Classification of outer actions on R

In this section, we will sketch Jones’ proof that there exists a unique outer
action of any finite group on R. Roughly speaking, the argument has two
main steps:

• Any outer action on R has the Rokhlin property.

• Two actions on R with the Rokhlin property are conjugate.

We will concentrate mostly on the first part, for two reasons. First, because
this part is really very special to the hyperfinite II1-factor, and nothing like this
is true in the C∗-algebraic context. And second, because the second part of the
argument can be proved using techniques similar to those we will present in
chapter 11, and there the von Neumann algebraic techniques are not as crucial.

We therefore begin by defining the Rokhlin property for finite group actions
on II1-factors (which we will call the W ∗-Rokhlin property, to distinguish it
from the property we will study in chapter 11).

Definition 10.3.1. Let G be a finite group, let M be a II1-factor, and let
α : G→ Aut(M) be an action. We say that α has the W ∗-Rokhlin property if
for every finite subset F ⊆M and every ε > 0, there exist mutually orthogonal
projections pg ∈M , for g ∈ G, satisfying

1. ‖αg(ph)− pgh‖2 < ε for all g, h ∈ G;

2.
∑
g∈G

pg = 1;

3. ‖pga− apg‖2 < ε for all g ∈ G and all a ∈ F .

A family of (necessarily orthogonal) projections that add up to the unit is
also referred to as a partition of unity.

Remark 10.3.2. Let ω be a free ultrafilter. When M is separable, an action
α : G → Aut(M) as above has the W ∗-Rokhlin property if and only if there
exists a unital equivariant embedding

(L∞(G), Lt)→ (Mω ∩M ′, αω).

The following is the canonical example of a Rokhlin action.

Example 10.3.3. Let G be a nontrivial finite group. Consider the conjugation
action Ad(λ) : G→ Aut(B(`2(G))). There is an infinite tensor product action
δ =

⊗
n∈N

Ad(λ) of G on the UHF-algebra of type M|G|∞ . Since the unique trace

of M|G|∞ is invariant under δ, it follows that there is a well-defined action
µ : G → Aut(R) which extends δ. We claim that this action has the W ∗-
Rokhlin property. Given a finite subset F ⊆ R and ε > 0, there is a unital
equivariant embedding ϕ : (B(`2(G)),Ad(λ)) → (R, µ) that satisfies ‖ϕ(x)a −
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aϕ(x)‖2 < ε‖x‖ for all x ∈ B(`2(G)) and all a ∈ F 7. If {eg,h : g, h ∈ G} denotes
the matrix units of B(`2(G)), we set pg = eg,g for all g ∈ G. It is then easy to
verify that these projections satisfy conditions 1, 2 and 3 in Definition 10.3.1.

Let G be a finite group and let X be a finite G-space. We endow B(`2(X))
with the G-action γ : G → Aut(B(`2(X))) given by γg(ex,y) = eg·x,g·y for all
x, y ∈ X and all g ∈ G. When X = G with the translation action, we obtain
the action of conjugation by the left regular representation.

Lemma 10.3.4. Let M be a II1-factor, let G be a finite group, and let X be a
finite G-space, and let α : G→ Aut(M) be an outer action. Then there exists
a unital, G-equivariant embedding

(B(`2(X)), γ)→ (M,α).

Proof. Since MG is a II1-factor by Proposition 10.2.1, we use Exercise 10.1.5
to find matrix units fx,y ∈ MG, for x, y ∈ X. For g ∈ G, set wg =

∑
x∈X

fg·x,x,

which is a unitary in MG. For g, h ∈ G, we have

wgwh =
∑
x,y∈X

fg·x,xfh·y,y =
∑
x∈X

fg·x,h−1x =
∑
x∈X

f(gh)·x,x,

as well as w∗g = wg−1 . It follows that w is a unitary representation of G with

values in MG, and hence it is an α-cocycle when regarded as a map w : G →
U(M). By Theorem 10.2.5, there exists v ∈ U(M) such that wg = v∗αg(v) for
all g ∈ G. For x, y ∈ X, set ex,y = vfx,yv

∗ ∈ M . Clearly these are matrix
units generating a copy of B(`2(X)). Moreover,

αg(ex,y) = αg(v)fg,hαg(v
∗) = vwgfx,yw

∗
gv
∗ = vfg·x,g·yv

∗ = eg·x,g·y,

for all g ∈ G and all x, y ∈ X. We conclude that the induced unital embedding
B(`2(X))→M is equivariant.

We can now prove that outer actions on R have the W ∗-Rokhlin property.

Theorem 10.3.5. Let G be a finite group, let α : G→ Aut(M) be an action,
and let ω be a free ultrafilter over N. Then the following are equivalent:

1. α is outer;

2. α has the W ∗-Rokhlin property ;

3. There is a unital equivariant embedding

ψ : (B(`2(G)),Ad(λ))→ (Rω ∩R′, αω).

7This follows by identifying R with the weak closure of the infinite tensor product of
B(`2(G)), approximating F in the seminorm ‖ · ‖2 by elements in the UHF-algebra M|G|∞ ,

then further by elements in some finite tensor product of B(`2(G)) in the C∗-norm, and
finally choosing a tensor copy of B(`2(G)) that commutes with those approximations.
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Proof. The implication (2) ⇒ (1) is completely general for actions on a II1-
factor M : suppose there exist g0 ∈ G and u ∈ U(M) such that αg0 = Ad(u).
Choose projections pg ∈ M , for g ∈ G, satisfying the conditions of Defini-
tion 10.3.1 for F = {u} and ε = 1/2. Complete the proof!

To prove (3)⇒ (2), observe that (`∞(G), Lt) embeds into (B(`2(G)),Ad(λ))
canonically as multiplication operators. Hence the restriction of ψ to `∞(G) is
the desired homomorphism as in Remark 10.3.2.

It therefore remains to prove (1) ⇒ (3), so suppose that α is outer. By
Theorem 10.1.14, α induces an outer action on the II1-factor Rω ∩ R′. By
Lemma 10.3.4, there exists a unital equivariant embedding

ψ : (B(`2(G)),Ad(λ))→ (Rω ∩R′, αω).

The above result is quite remarkable, since a very strong global property
(the W ∗-Rokhlin property) is obtained from an a priori much weaker pointwise
property (outerness)

Once the Rokhlin property for outer actions has been established, there
are at least two ways of proving the classification of outer actions. The first
proof, which is outlined in the rest of this chapter, one of the main tools is
that, consists in “splitting off” a tensorial copy of the model action µ from
Example 10.3.3, and then showing that what is left over is the trivial action
on the relative commutant. The second proof uses arguments that are much
closer in spirit to those used in C∗-algebras (specifically, the Evans-Kishimoto
intertwining argument), and does not depend on the model action µ. This
alternative proof is not explicitly presented in these notes, but it can be easily
reconstructed from the classification of actions with the C∗-Rokhlin property
given in Section 11.2.

We proceed to sketch the first of the proofs described above. For this, we
need an equivariant version of McDuff’s result Theorem 10.1.15, in which the
conclusion is that a given action absorbs an action on R tensorially. We cannot
allow arbitrary actions on R, and the class of actions that are suitable for our
purposes is what we call McDuff actions.

Definition 10.3.6. Let G be a finite group and let δ : G→ Aut(R) be an ac-
tion. We say that γ is a McDuff action if there are an equivariant isomorphism
θ : (R⊗R, δ ⊗ δ)→ (R, δ) and unitaries un ∈ (R⊗R)G, for n ∈ N, satisfying

lim
n→∞

‖unθ(x)u∗n − x⊗ 1R‖2 = 0

for all x ∈ R.

The next exercise contains some examples of McDuff actions.

Exercise 10.3.7. Let G be a finite group, and let X be a finite G-space. De-
note by γX : G→ Aut(B(`2(G))) the induced action, and by δX : G→ Aut(R)
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the action given by δ =
⊗
n∈N

γX , using the identification R ∼=
⊗
n∈N
B(`2(X)).

Prove that δX is McDuff. Deduce that the trivial action of G on R is McDuff,
and also that the model action µ : G→ Aut(R) with the W ∗-Rokhlin property
(see Example 10.3.3) is McDuff.

Virtually the same proof as in Theorem 10.1.15 allows one to prove the
desired equivariant McDuff result (see [29] for a more general version):

Theorem 10.3.8. Let M be a separable II1-factor, let G be a finite group, let
α : G→ Aut(M) be an action, let δ : G→ Aut(R) be a McDuff action, and let
ω be a free ultrafilter. Then the following are equivalent

1. There is an equivariant isomorphism (M,α) ∼= (M⊗R, α⊗ δ);

2. There is a unital equivariant embedding (R, δ)→ (Mω ∩M ′, αω).

Moreover, if there exists a finite G-space X such that δ = δX as in Exer-
cise 10.3.7, then the above are also equivalent to

3. There is a unital equivariant embedding (B(`2(X)), γX)→ (Mω∩M ′, αω).

Combining Theorem 10.3.5 and Theorem 10.3.8, we immediately deduce
the following.

Corollary 10.3.9. Let G be a finite group and let α : G → Aut(M) be an
outer action. Then there are equivariant isomorphisms

(R⊗R, α⊗ µ) ∼= (R, α) ∼= (R⊗R, α⊗ idR).

Classification, once the Rokhlin property is established, can be proved along
the exact same lines of classification of C∗-Rokhlin actions; see next chapter.
We don’t do it for vNa.





Chapter 11

The Rokhlin property

The works of Connes [13] and Jones [48] motivated the search for analogs of the
results from chapter 10 in the context of finite group actions on C∗-algebras,
particularly in what refers to their classification. Early studies came in the
works of Fack-Marechal [24] and Herman-Jones [40], who studied what we now
call the Rokhlin property for Zn-actions on UHF-algebras. A few decades
later, Izumi’s groundbreaking work [46] laid the foundations for a systematic
study of the Rokhlin property. There, he gave a complete classification of
finite group actions with the Rokhlin property in terms of the approximate
unitary equivalence classes of the individual automorphisms. Later works by
Hirshberg-Winter [44] Osaka-Phillips [69], and the author [25], focused on the
structure of the crossed product as well as the internal properties of Rokhlin
actions.

In this chapter, we give an overview of the results concerning finite group
actions with the Rokhlin property, including the most prominent uses: their
classification (including existence and uniqueness results for homomorphisms)
and the structure of their crossed products. We restrict the analysis to unital
C∗-algebras throughout, in order to avoid unnecessary technicalities.

11.1 Finite group actions with the Rokhlin property

In this section, we introduce the Rokhlin property for actions of finite groups
and study some basic properties and examples.

We begin by introducing the Rokhlin property for finite group actions on
unital C∗-algebras.

Definition 11.1.1. Let G be a finite group, let A be a unital C∗-algebra, and
let α : G → Aut(A) be an action. We say that α has the Rokhlin property if
for every finite subset F ⊆ A and every ε > 0, there exist mutually orthogonal
projections pg ∈ A, for g ∈ G, satisfying

1. ‖αg(ph)− pgh‖ < ε for all g, h ∈ G;
107
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2.
∑
g∈G

pg = 1;

3. ‖pga− apg‖ < ε for all g ∈ G and all a ∈ F .

The Rokhlin property is clearly invariant under equivariant isomorphism.
In the next exercise it is shown that it is also invariant under cocycle conjugacy.

Example 11.1.2. Let G be a finite group, let A be a unital C∗-algebra, let
α : G→ Aut(A) be an action, and let w : G→ U(A) be an α-cocycle.

1. Show that α has the Rokhlin property if and only if αw does.

2. Suppose that α has the Rokhlin property. Show that there exists v ∈
U(A) with wg = vαg(v

∗) for all g ∈ G. (Hint: use Proposition 10.2.3
together with an approximation argument.)

As in the case of von Neumann algebras, an equivalent characterization
when A is separable can be given in terms of central sequence algebras. We
denote by A∞ the quotient of `∞(N, A) by the ideal c0(N, A), and call it the
sequence algebra of A. We write A∞ ∩ A′ for the relative commutant of A
in the sequence algebra, and call it the central sequence algebra of A. Note
that C∗-algebraic sequence algebras are decorated with subscripts, while von
Neumann algebraic sequence algebras are decorated with superscripts. We do
so because for a II1-factor M , its von Neumann algebraic central sequence and
its C∗-algebraic central sequence never agree.

Proposition 11.1.3. Let G be a finite group, let A be a separable unital C∗-
algebra, and let α : G→ Aut(A) be an action. Then α has the Rokhlin property
if and only if there is a unital, equivariant homomorphism ϕ : (C(G), Lt) →
(A∞ ∩A′, α∞).

Exercise 11.1.4. Give a proof of Proposition 11.1.3.

In order to solve the above exercise, one needs to represent a projection
in the (central) sequence algebra with a sequence of projections, which is an
easy application of functional calculus. The sum of these projections will then
be very close to the unit of the algebra, and a further perturbation argument
needs to be performed to find nearby projections that add up exactly to the
unit.

Arguments of this nature involve, either explicitly or implicitly, the notion
of weak semiprojectivity. For algebras that admit a finite presentation in terms
of generators and relations (see Section 2.1), this notion can be expressed very
nicely1. Suppose that A = C∗(G : R) is the universal C∗-algebra on the finite
set of generators G subject to the finite set of relations R. Then A is weakly
semiprojective if and only if for every ε > 0 there exists δ > 0 such that
whenever B is a C∗-algebra and bx ∈ B, for x ∈ G, are elements satisfying

1A more thorough treatment of the subject can be found in [62].
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all the relations from R up to δ, then there exist cx ∈ B, for x ∈ G, which
satisfy the relations from R exactly and moreover ‖bx − cx‖ < ε for all x ∈ G.
Examples of weakly semiprojective algebras include Cn and C(S1). In the
context of Proposition 11.1.3, weak semiprojectivity of C(G) ∼= C|G| allows one
to replace projections that add up to almost one by projections that add up to
exactly one.

There is an equivariant version of weak semiprojectivity, called equivariant
weak semiprojectivity, that has been studied in [74] and [76]. We will not
discuss this notion in these notes, but we do want to mention one consequence
of the results in [74]. In Theorem 2.5 there, it is shown that for a finite group
G, the translation action on C(G) is equivariantly weakly semiprojective (this
also appears, with an easier proof and for abelian G, in Section 5 of [28]),
meaning that projections that are “almost” translated by G can be perturbed
to find projections that are exactly translated. In particular, this leads to the
following strengthening of the Rokhlin property.

Remark 11.1.5. Let G be a finite group, let A be a unital C∗-algebra, and
let α : G → Aut(A) be an action. We say that α has the Rokhlin property if
and only if for every finite subset F ⊆ A and every ε > 0, there exist mutually
orthogonal projections pg ∈ A, for g ∈ G, satisfying

1. αg(ph) = pgh for all g, h ∈ G;

2.
∑
g∈G

pg = 1;

3. ‖pga− apg‖ < ε for all g ∈ G and all a ∈ F .

The difference between the conditions above and those listed in Defini-
tion 11.1.1 is that in condition (1) in Remark 11.1.5, the projections are exactly
permuted by the group action. This strengthening makes a number of argu-
ments much shorter and conceptually clearer, and will be used in a number of
proofs in this chapter. This simplification is not strictly necessary, since all the
results presented here can be proved using projections as in Definition 11.1.1.

The following is the canonical example of a Rokhlin action; see also Exam-
ple 10.3.3.

Example 11.1.6. Let G be a nontrivial finite group. Consider the conjugation
action Ad(λ) : G→ Aut(B(`2(G))). Then the infinite tensor product action δ =⊗
n∈N

Ad(λ) of G on the UHF-algebra of type M|G|∞ has the Rokhlin property.

We collect some preservation properties for the Rokhlin property that will
be needed later. Their proofs are easy, and are mostly left to the reader.

Proposition 11.1.7. Let G be a finite group, let (An, ιn)n∈N be a direct
system of unital C∗-algebras with unital connecting maps, and for each n ∈ N,

let α(n) : G → Aut(An) be an action such that ιn ◦ α(n)
g = α

(n+1)
g ◦ ιn for all

n ∈ N and all g ∈ G. Set A = lim−→An and α = lim−→α(n). If α(n) has the Rokhlin
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property for infinitely many values of n, then α has the Rokhlin property as
well.

Proof. Let F ⊆ A be a finite subset and let ε > 0. Find n ∈ N and a finite
subset F0 ⊆ An such that dist(F, ιn,∞(F0)) < ε/2. By increasing n, we may
assume that α(n) has the Rokhlin property. Find projections qg ∈ An, for
g ∈ G, satisfying the conditions in Definition 11.1.1 for α(n), ε/2 and F0. One
easily checks that the projections pg = ιn,∞(qg) ∈ A, for g ∈ G, satisfy the
conditions in Definition 11.1.1 for α, ε and F , as desired.

Proposition 11.1.8. Let A be a unital C∗-algebra, let G be a finite group,
and let α : G→ Aut(A) be an action with the Rokhlin property.

1. Let B be a unital C∗-algebra, and let β : G→ Aut(B) be an action of G
on B. Let A ⊗ B be any C∗-algebra completion of the algebraic tensor
product of A and B for which the tensor product action α⊗β is defined2.
Then α⊗ β has the Rokhlin property.

2. Let I be an α-invariant ideal in A, and denote by α : G→ Aut(A/I) the
induced action on A/I. Then α has the Rokhlin property.

3. Let p be an α-invariant projection in A. Set B = pAp and denote by
β : G → Aut(B) the compressed action of G. Then β has the Rokhlin
property.

Exercise 11.1.9. Prove Proposition 11.1.8.

Using Proposition 11.1.7 and Proposition 11.1.8, we can construct more
actions with the Rokhlin property.

Example 11.1.10. Let G be a finite group, and let δ be the Rokhlin action
of G on M|G|∞ from Example 11.1.6, and consider the tensor product action

δ ⊗ idO2 : G→ Aut(M|G|∞ ⊗O2).

This action has the Rokhlin property by part (1) of Proposition 11.1.8. Since
M|G|∞ ⊗O2 is isomorphic to O2, we have thus constructed an action of G on
O2 with the Rokhlin property.

Proposition 11.1.11. Let G be a finite group, and let m ∈ N. Then there is
action of G on Mm∞ with the Rokhlin property if and only if |G| divides m.

Proof. Suppose that |G| divides m. Then Mm∞
∼= Mm∞ ⊗M|G|∞ , and hence a

tensor product construction similar to the one given in Example 11.1.10 shows
that there is an action of G on Mm∞ with the Rokhlin property.

Conversely, suppose that there is an action α : G → Aut(Mm∞) with the
Rokhlin property. In particular, there is a projection p = p1 ∈ Mm∞ that

2See Exercise 3.3.7, and observe that the action α described in that exercise has the
Rokhlin property.
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satisfies
∑
g∈G

αg(p) = 1. Since αg is approximately inner for all g ∈ G, we

deduce that [αg(p)]0 = [p]0 for all g ∈ G; see Exercise 2.3.17. It follows that
[1]0 = |G|[p]0 in K0(Mm∞) ∼= Z

[
1
m

]
. This is only possible if |G| divides m, as

desired.

Exercise 11.1.12. Let θ ∈ R\Q, and let G be a nontrivial finite group. Show
that there is no action of G on Aθ with the Rokhlin property.

Exercise 11.1.13. Let G be a finite group and let n ∈ {2, . . . ,∞}. Show that
there is an action of G on On with the Rokhlin property if and only if |G|
divides n− 1.

11.2 Classification of equivariant homomorphisms

The main result of this section asserts that finite group actions with the Rokhlin
property are classified, up to conjugation by an approximately inner auto-
morphism, by the approximate equivalence classes of the individual automor-
phisms; see Corollary 11.2.6. This result is due to Izumi in the unital case [46],
and to the author and Santiago in the nonunital case [31]. We only treat the
unital case here, but we follow the arguments from [31], since they allow us to
prove a more general result regarding equivariant homomorphisms.

We begin by introducing a useful definition.

Definition 11.2.1. Let A and B be unital C∗-algebras, let G be a finite group,
let α : G→ Aut(A) and β : G→ Aut(B) be actions, and let

ϕ,ψ : (A,α)→ (B, β)

be equivariant homomorphisms. We say that ϕ and ψ are G-approximately
unitarily equivalent, written ϕ ∼

G-aue
ψ, if for every ε > 0 and every finite subset

F ⊆ A, there exists a G-invariant unitary u ∈ Bβ satisfying ‖uϕ(a)u∗−ψ(a)‖ <
ε for all a ∈ F .

Note that when α and β are trivial, then G-approximate unitary equivalence
is just the usual approximate unitary equivalence, which we denote by ∼

aue
.

In the proof of Proposition 11.2.3, we will repeatedly use the fact that,
whose proof is left as an exercies.

Exercise 11.2.2. Let p1, . . . , pn be orthogonal projections in a C∗-algebra A,
and let x1, . . . , xn, y1, . . . , yn ∈ A. Prove that∥∥∥∥∥∥

n∑
j=1

pjxj −
n∑
j=1

pjyj

∥∥∥∥∥∥ ≤ max
j=1,...,n

‖xj − yj‖.

Without orthogonality of the projections, the best bound is
n∑
j=1

‖xj − yj‖.
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Proposition 11.2.3. Let A and B be unital C∗-algebras, let G be a fi-
nite group, let α : G → Aut(A) and β : G → Aut(B) be actions, and let
ϕ,ψ : (A,α) → (B, β) be equivariant homomorphisms. Suppose that β has
the Rokhlin property. Then ϕ ∼

aue
ψ if and only if ϕ ∼

G-aue
ψ.

Proof. We only need to prove the “only if” implication, so let F ⊆ A be a finite
subset and let ε > 0. Without loss of generality, we assume that ‖a‖ ≤ 1 for all
a ∈ F . Find δ > 0 such that whenever z is an element in a unital C∗-algebra
satisfying ‖zz∗ − 1‖ < δ and ‖z∗z − 1‖ < δ, then there exists a unitary u with
‖u− z‖ < ε/6.

Set F ′ =
⋃
g∈G

αg(F ), which is a G-invariant finite subset of A. Since ϕ ∼aue

ψ, there exists v ∈ U(B) such that

‖vϕ(a′)v∗ − ψ(a′)‖ < ε/6

for all a′ ∈ F ′.
Fix g ∈ G and a ∈ F . Then a′ = αg−1(a) belongs to F ′. Using the

inequality above and the fact that ϕ and ψ are equivariant, we get

‖vβg−1(ϕ(a))v∗ − βg−1(ψ(a))‖ < ε/6.

Apply βg to the inequality above to get

‖βg(v)ϕ(a)βg(v)∗ − ψ(a)‖ < ε/6.

Using the Rokhlin property for β and Remark 11.1.5, choose a partition of
unity of projections pg ∈ B, for g ∈ G, satisfying βg(ph) = pgh for all g, h ∈ G,
and ‖pgx − xpg‖ < min{δ/2, ε/6} for all x ∈ ϕ(F ) ∪ {βg(v), βg(v

∗) : g ∈ G}.
Set

z =
∑
g∈G

pgβg(v) ∈ B.

Then

zz∗ =
∑
g,h∈G

pgβg(v)βh(v∗)ph ≈
2δ
2

∑
g,h∈G

pgphβg(v)βh(v∗) =
∑
g∈G

pgβg(vv
∗) = 1.

Similarly, one checks that ‖z∗z − 1‖ < δ. Moreover, given g ∈ G, one has

βg(z) =
∑
h∈G

βg(ph)βgh(v) =
∑
h∈G

pghβgh(v) = z,

so z belongs to Bβ . By the choice of δ, we can find a unitary u ∈ Bβ satisfying
‖u− z‖ < ε/6.
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Given a ∈ F , we have

uϕ(a)u∗ ≈
2ε
6

zϕ(a)z∗ =
∑
g,h∈G

pgβg(v)ϕ(a)βh(v∗)ph

≈
3ε
6

∑
g,h∈G

pgphβg(v)ϕ(a)βh(v∗)

=
∑
g∈G

pgβg(v)ϕ(a)βg(v
∗)

≈
ε
6

ψ(a).

Thus ‖uϕ(a)u∗ − ψ(a)‖ < ε for all a ∈ F . We conclude that ϕ ∼
G-aue

ψ, as

desired.

In the next proposition, we show that equivariant homomorphisms can be
classified if the codomain action has the Rokhlin property.

Proposition 11.2.4. Let A and B be unital C∗-algebras, let G be a finite
group, let α : G → Aut(A) and β : G → Aut(B) be actions, and let ϕ : A →
B be a homomorphism. Suppose that β has the Rokhlin property and that
βg ◦ ϕ ∼

aue
ϕ ◦ αg for all g ∈ G. Then:

1. For any ε > 0 and for any finite set F ⊆ A there exists a unitary w ∈ U(B)
satisfying the following inequalities for all g ∈ G and all a ∈ F :

‖(βg ◦Ad(w) ◦ ϕ)(a)− (Ad(w) ◦ ϕ ◦ αg)(a)‖ < ε, and

‖(Ad(w) ◦ ϕ)(a)− ϕ(a)‖ < ε+ sup
h∈G
‖(βh ◦ ϕ ◦ αh−1)(a)− ϕ(a)‖.

2. When A is separable, there is an equivariant homomorphism ψ : (A,α)→
(B, β) with ψ ∼

aue
ϕ.

Proof. (1). Let F be a finite subset of A and let ε > 0. Without loss of
generality, we may assume that F consists of contractions. Set F ′ =

⋃
g∈G

αg(F ),

which is a finite subset of A. Since βg ◦ ϕ ∼
aue

ϕ ◦ αg for all g ∈ G, there exist

unitaries ug ∈ U(B), for g ∈ G, such that

‖(βg ◦ ϕ)(b)− (Ad(ug) ◦ ϕ ◦ αg)(b)‖ <
ε

10
,

for all b ∈ F ′ and g ∈ G. For a ∈ F and g, h ∈ G, we have

‖(Ad(ug) ◦ ϕ ◦ αh)(a)− (βh ◦Ad(uh−1g) ◦ ϕ)(a)‖
=
∥∥(Ad(ug) ◦ ϕ ◦ αg)(αg−1h(a))− (βh ◦Ad(uh−1g) ◦ ϕ ◦ αh−1g)(αg−1h(a))

∥∥
≤
∥∥(Ad(ug) ◦ ϕ ◦ αg)(αg−1h(a))− (βg ◦ ϕ)(αg−1h(a))

∥∥
+
∥∥(βg ◦ ϕ)(αg−1h(a))− (βh ◦Ad(uh−1g) ◦ ϕ ◦ αh−1g)(αg−1h(a))

∥∥
≤ ε

10
+

ε

10
=
ε

5
.
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Let δ > 0 such that whenever x ∈ B satisfies ‖x∗x − 1‖ < δ and ‖xx∗ −
1‖ < δ, then there exists a unitary w ∈ U(B) with ‖w − x‖ < ε/5. Using
the Rokhlin property for β and Remark 11.1.5, choose a partition of unity
of projections pg ∈ B, for g ∈ G, satisfying βg(ph) = pgh for all g, h ∈ G,
and ‖pgx − xpg‖ < min{δ/2, ε/5} for all x ∈ ϕ(F ′) ∪ {ug, u∗g : g ∈ G}. Set
x =

∑
g∈G

pgug ∈ B. Using an argument similar to the one in the proof of

Proposition 11.2.3, it is easily seen that ‖x∗x−1‖ < δ and ‖xx∗−1‖ < δ. Find
w ∈ U(B) with ‖w− x‖ < ε/5. In particular, ‖xbx∗ −wbw∗‖ < ‖b‖2ε/5 for all
b ∈ B. Moreover, for b ∈ B, one has

xbx∗ =
∑
g∈G

pg(ugbu
∗
g) =

∑
g∈G

pgAd(ug)(b).

Fix a ∈ F and h ∈ G. Then

(βh ◦Ad(w) ◦ ϕ)(a) ≈
2ε
5

∑
g∈G

phg(βh ◦Ad(ug) ◦ ϕ)(a)

=
∑
g∈G

pg(βh ◦Ad(uh−1g) ◦ ϕ)(a),

and

(Ad(w) ◦ ϕ ◦ αh)(a) ≈
2ε
5

∑
g∈G

pg(Ad(ug) ◦ ϕ ◦ αh)(a).

Using that the pg are orthogonal projections, we get

‖(βh ◦Ad(w) ◦ ϕ)(a)− (Ad(w) ◦ ϕ ◦ αh)(a)‖

≤ 4ε

5
+ sup
g∈G

∥∥(Ad(ug) ◦ ϕ ◦ αh)(a)− (βh ◦Ad(uh−1g) ◦ ϕ)(a)
∥∥

<
5ε

5
= ε.

Thus,

‖(Ad(w) ◦ ϕ)(a)− ϕ(a)‖ =

∥∥∥∥∥∥
∑
g∈G

pg((Ad(ug) ◦ ϕ)(a)− ϕ(a))

∥∥∥∥∥∥
≤ sup
g∈G
‖(Ad(ug) ◦ ϕ)(a)− ϕ(a)‖

≤ sup
g∈G

(∥∥(Ad(ug) ◦ ϕ ◦ αg)(αg−1(a))− (βg ◦ ϕ)(αg−1(a))
∥∥

+
∥∥(βg ◦ ϕ ◦ αg−1)(a)− ϕ(a)

∥∥)
≤ ε+ sup

g∈G

∥∥(βg ◦ ϕ ◦ αg−1)(a)− ϕ(a)
∥∥ ,

as desired.
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(2) Let (Fn)n∈N be an increasing sequence of finite subsets of A whose
union is a G-invariant dense ∗ −Q[i]-subalgebra of A3. Set ϕ1 = ϕ and find a
unitary w1 ∈ U(B) such that the conclusion of the first part of the proposition is
satisfied with ϕ1 and ε = 1. Set ϕ2 = Ad(w1)◦ϕ1, and find a unitary w2 ∈ U(B)
such that the conclusion of the first part of the proposition is satisfied with ϕ2

and ε = 1
2 . Iterating this process, there exist ∗-homomorphisms ϕn : A → B,

with ϕ1 = ϕ, and unitaries (wn)n∈N in U(B) such that ϕn+1 = Ad(wn) ◦ ϕn,
for all n ∈ N, which moreover satisfy

max
g∈G
‖(βg ◦ ϕn)(a)− (ϕn ◦ αg)(a)‖ < 1

2n

for all n ∈ N and for all a ∈ Fn, and

‖ϕn+1(a)− ϕn(a)‖ < 3

2n

for all n ∈ N and for all a ∈ Fn. Then the sequence (ϕk(a))k∈N is Cauchy
in B for every a ∈

⋃
n∈N

Fn, which is a dense ∗-subalgebra of A. Denoting

by ψ0(x) its limit, it follows that the map ψ0 :
⋃
n∈N

Fn → B is well-defined,

linear, ∗-multiplicative and contractive. Therefore, it extends by continuity
to a map ψ : A → B. By construction, each ϕn is unitarily equivalent to ϕ,
so ϕ is approximately unitarily equivalent to ϕ. Finally, it is clear that ψ is
equivariant.

By combining Proposition 11.2.4 with an intertwining argument, we will
show that Rokhlin actions can be classified up to conjugacy by approximately
inner automorphisms; see Corollary 11.2.6. The required intertwining tech-
nique, known as the Evans-Kishimoto intertwining, is an equivariant version of
Elliott’s intertwining argument, which we present next.

Theorem 11.2.5. Let A and B be separable unital C∗-algebras, let G be
a finite group, and let α : G → Aut(A) and β : G → Aut(B) be actions.
Suppose that there exist equivariant homomorphisms ϕ : (A,α) → (B, β) and
ψ : (B, β)→ (A,α) such that

ψ ◦ ϕ ∼
G-aue

idA and ϕ ◦ ψ ∼
G-aue

idB .

Then there exists an equivariant isomorphism θ : (A,α) → (B, β) with θ ∼
G-aue

ϕ.

3To accomplish this, one starts with any increasing sequence (F̃n)n∈N of self-adjoint finite

subsets of A with dense union. By replacing each F̃n with
⋃
g∈G

αg(Fn), we may assume that

these sets are G-invariant. Also fix an exhausting sequence (Qn)n∈N of finite subsets of Q[i].

One then takes F1 = F̃1. Inductively, set Fn = (Qn−1 · Fn−1) ∪ (Fn−1 · Fn−1) ∪ F̃n. Then
the sequence (Fn)n∈N satisfies the desired conditions.
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Proof. Let (FAn )n∈N and (FBn )n∈N be increasing sequences of G-invariant finite
subsets of A and B, respectively, whose unions are G-invariant dense ∗ −Q[i]-
subalgebras of A and B, respectively. Set ϕ0 = ϕ and ψ0 = ψ. Since ψ0 ◦
ϕ0 ∼

G-aue
idA, there exists a G-invariant unitary u1 ∈ U(Aα) such that

‖(Ad(u1) ◦ ψ0 ◦ ϕ0)(a)− a‖ < 1

2

for all a ∈ FA1 . Set ψ1 = Ad(u1) ◦ ψ0, which is also equivariant and satisfies
ψ1 ∼

G-aue
ψ0. Since ϕ0 ◦ ψ1 ∼

G-aue
ϕ0 ◦ ψ0 ∼

G-aue
idB , there exists a G-invariant

unitary v1 ∈ U(Bβ) such that

‖(Ad(v1) ◦ ϕ0 ◦ ψ1)(b)− b‖ < 1

2

for all b ∈ FB1 . Set ϕ1 = Ad(v1) ◦ ϕ0, which is also equivariant and satisfies
ϕ1 ∼

G-aue
ϕ0. Proceeding inductively, we find a G-invariant unitary un ∈ U(Aα)

such that

‖(Ad(un) ◦ ψn−1 ◦ ϕn−1)(a)− a‖ < 1

2n

for all a ∈ FAn . We then set ψn = Ad(un) ◦ ψn−1, and continue to find a
G-invariant unitary vn ∈ U(Bβ) such that

‖(Ad(vn) ◦ ϕn−1 ◦ ψn)(b)− b‖ < 1

2n

for all b ∈ FBn . Then we set ϕn = Ad(vn) ◦ ϕn−1, and continue. The result is
a so-called approximate intertwining diagram, which is a diagram of the form

A
idA //

ϕ0
��

A
idA //

ϕ1
��

A
idA //

ϕ2
��

A //

ϕ3
  

· · ·

B
idB

//
ψ0

??

B
idB

//
ψ1

??

B
idB

//
ψ2

??

B // · · · ,

where the n-th triangle that has A as two of its vertices is commutative within
1/2n on FAn , and the n-th triangle that has B as two of its vertices is commu-
tative within 1/2n on FBn .

Given a ∈
⋃
n∈N

FAn , the sequence (ϕk(a))k∈N is Cauchy in B, and we denote

by θ0(a) ∈ B its limit. Similarly, (ψk(b))k∈N is Cauchy in A for all b ∈
⋃
n∈N

FBn ,

and we denote by π0(b) ∈ A its limit. The resulting maps

θ0 :
⋃
n∈N

FAn → B and π0 :
⋃
n∈N

FBn → A

are easily seen to be well-defined, Q[i]-linear, contractive, self-adjoint and
equivariant. Thus, they extend to equivariant homomorphisms θ : (A,α) →
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(B, β) and π : (B, β) → (A,α), respectively. Since π0 ◦ θ0 is the identity on⋃
n∈N

FAn , and θ0 ◦ π0 is the identity on
⋃
n∈N

FBn , we deduce that π ◦ θ = idA and

θ ◦ π = idB . In other words, θ is an equivariant isomorphism with inverse π.
Finally, since ϕn ∼

G-aue
ϕ for all n ∈ N, and ψn ∼

G-aue
ψ for all n ∈ N, it is easy

to see that θ ∼
G-aue

ϕ and π ∼
G-aue

ψ, thus completing the proof.

We are now ready to prove the main result of this section.

Corollary 11.2.6. Let G be a finite group, let A be a separable unital C∗-
algebra, and let α, β : G→ Aut(A) be actions with the Rokhlin property. Then
there exists an approximately inner automorphism θ ∈ Inn(A) satisfying

θ ◦ αg ◦ θ−1 = βg

for all g ∈ G, if and only if αg ∼
aue

βg for all g ∈ G.

Proof. We use part (2) of Proposition 11.2.4 for idA : A → A to obtain an
equivariant homomorphism ϕ : (A,α) → (B, β) with ϕ ∼

aue
idA. Exchanging

the roles of α and β and applying part (2) of Proposition 11.2.4 again, we
obtain an equivariant homomorphism ψ : (A, β) → (B,α) with ψ ∼

aue
idA. In

particular, the equivariant homomorphisms

ψ ◦ ϕ : (A,α)→ (A,α) and ϕ ◦ ψ : (A, β)→ (A, β)

satisfy ψ ◦ ϕ ∼
aue

idA and ϕ ◦ ψ ∼
aue

idA. By Proposition 11.2.3, we deduce that

ψ ◦ ϕ ∼
G-aue

idA and ϕ ◦ ψ ∼
G-aue

idA. Finally, by Theorem 11.2.5, we conclude

that there exists an equivariant isomorphism θ : (A,α)→ (B, β) with θ ∼
G-aue

ϕ.

In particular, θ ∼
aue

ϕ ∼
aue

idA, so θ is approximately inner.

The assumption in the corollary above that both α and β have the Rokhlin
property cannot be removed. For example, the action δ from Example 11.1.6
has the Rokhlin property, and it is pointwise approximately unitarily equivalent
to the trivial action.

We note some immediate consequences of Corollary 11.2.6.

Corollary 11.2.7. Let G be a finite group. Then there is, up to conjugacy, a
unique action of G on O2 with the Rokhlin property.

Proof. Since any automorphism of O2 is approximately inner, Corollary 11.2.6
implies that there is at most one Rokhlin action of G on O2. Hence, it suf-
fices to argue that there exists some Rokhlin action, and this follows from
Example 11.1.10.

Corollary 11.2.8. Let G be a finite group, and let m ∈ N.

1. If |G| divides m, then there is, up to conjugacy, a unique action of G on
Mm∞ with the Rokhlin property.
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2. If |G| does not divide m, then there is no action of G on Mm∞ with the
Rokhlin property.

Proof. This follows from Proposition 11.1.11, together with the fact that any
automorphism of Mm∞ is approximately inner.

11.3 Existence of Rokhlin actions

Corollary 11.2.6 asserts that Rokhlin actions are classified in terms of the ap-
proximate unitary equivalence classes of the automorphisms. In this subsection,
which is based on results of Barlak-Szabo from [3], we will study the prob-
lem of finding Rokhlin actions that induced prescribed approximate unitary
equivalence classes. While it is in general difficult to obtain general existence
theorems for Rokhlin actions, this satisfactory results can be obtained in the
case of UHF-absorbing C∗-algebras.

To state this question rigorously, we need to introduce some notation.

Notation 11.3.1. Let A be a unital C∗-algebra. We denote by Autaue(A)
the quotient of Aut(A) by the relation of approximate unitary equivalence.
One readily checks that Autaue(A) is a group, with the operation induced by
composition on Aut(A). For an automorphism ϕ ∈ Aut(A), we denote by
[ϕ]aue the associated class in Autaue(A).

Corollary 11.2.6 can be restated by saying that [·]aue is a complete invariant
for actions with the Rokhlin property. It is therefore natural to wonder what
is the range of this invariant. In other words, we wish to answer the following
question:

Question 11.3.2. Let G be a finite group, let A be a unital C∗-algebra, and
let Θ: G→ Autaue(A) be a group homomorphism. Does there exist an action
α : G→ Aut(A) with the Rokhlin property satisfying [α]aue = Θ?

The above question does not always have an affirmative answer: for A =
C(Z2), the (trivial) homomorphism Θ: Z2 → Autaue(A) with Θ−1 = [idA]aue

cannot be realized by a Rokhlin action. This is due to the fact that two auto-
morphisms of a commutative C∗-algebra are approximately unitarily equivalent
if and only they are equal.

Remark 11.3.3. Question 11.3.2 has two difficulties: first, given a map Θ
as in the statement, it is not a priori clear that there exists some action that
implements Θ (this is in fact often a very difficult problem). But even once this
is overcome, a second difficulty is finding a Rokhlin action that implements Θ.

A general characterization of those homomorphisms G → Autaue(A) that
can be realized by Rokhlin actions is probably out of reach, but we will see
that when A absorbs the UHF-algebra M|G|∞ , then Question 11.3.2 always has
an affirmative answer; see Theorem 11.3.5. This result in fact shows that the
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trivial homomorphism G→ Autaue(A) can be realized by Rokhlin action if and
only if A absorbs M|G|∞ .

We need a preparatory lemma.

Lemma 11.3.4.

Theorem 11.3.5. Let G be a finite group, and let A be a unital C∗-algebra.
Then the following are equivalent:

1. For every group homomorphism Θ: G → Autaue(A), there exists an ac-
tion α : G→ Aut(A) with the Rokhlin property satisfying [α]aue = Θ.

2. There is an isomorphism A⊗M|G|∞ ∼= A.

Proof.

For a finite group G and a unital C∗-algebra A, we denote by RokG(A) the
set of all Rokhlin actions of G on A, and by RokG(A) the set of all conjugacy
classes of Rokhlin actions using approximately inner automorphisms.

The results of this section imply the following.

Corollary 11.3.6. Let G be a finite group, and let A be a unital C∗-algebra
satisfyingA⊗M|G|∞ ∼= A. Then the natural map RokG(A)→ Hom(G,Autaue(A))

is bijective and induces a bijection between RokG(A) and Hom(G,Autaue(A)).

Proof. This follows immediately from Corollary 11.2.6 and Theorem 11.3.5.

11.4 Duality for Rokhlin actions

11.5 Crossed products of Rokhlin actions

In this section, we present a systematic study of the structure of crossed prod-
ucts and fixed point algebras by finite group actions with the Rokhlin property.
Our main technical result is the existence of an approximate homomorphism
from the algebra to its subalgebra of fixed points, which is a left inverse for the
canonical inclusion. Combining this with arguments involving weak semipro-
jectivity, it is shown that a number of classes, characterized by inductive limit
decompositions with weakly semiprojective building blocks, are closed under
formation of crossed products by such actions. We will also show that a number
of structural properties, which have been thoroughly studied in the classifica-
tion of simple, nuclear C∗-algebras, are also inherited by the crossed product
and the fixed point algebra whenever the action has the Rokhlin property.

The results and arguments in this section are based on [25]. Some of the
results here presented were also independently obtained in [44], [69], and [2],
but we chose to follow [25] since the methods there developed, specifically the
existence of a sequence of completely positive contractive maps A → Aα that
asymptotically fix Aα, lead to the most general results.
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One feature of the approach we follow here, is that the attention is shifted
from the crossed product to the fixed point algebra. We have seen in Theo-
rem 6.1.5 that if a finite (or even compact) group G acts on a C∗-algebra A,
then AG is a corner in A o G. Using this, one can many times obtain infor-
mation about the fixed point algebra through the crossed product. When this
corner is full, then one may also use this result to transfer information from
the fixed point algebra to the crossed product. We therefore begin by showing
that this is indeed the case whenever the action has the Rokhlin property.

Proposition 11.5.1. Let G be a finite group, let A be a unital C∗-algebra,
and let α : G → Aut(A) be an action with the Rokhlin property. Then Aα is
Morita equivalent to Aoα G, and hence they are stably isomorphic.

Proof. We will use the notation from Proposition 6.1.10. Fix g ∈ G, and denote
by ug the canonical unitary in the crossed product A oα G implementing αg.
We claim that it is enough to show that ug is in the closed linear span of the

functions ã∗ ∗ b̃, for a, b ∈ A. Indeed, if this is the case, and if x ∈ A, then xug
also belongs to the closed linear span, and elements of this form span Aoα G.

For n ∈ N, find projections p
(n)
g ∈ A, for g ∈ G, such that

1.
∥∥∥αg(p(n)

h )− p(n)
gh

∥∥∥ < 1
n for all g, h ∈ G; and

2.
∑
g∈G

p
(n)
g = 1.

For a, b ∈ A, the function ã∗ ∗ b̃ ∈ A oα G can be written as a linear
combination of the canonical unitaries in the following way:

ã∗ ∗ b̃ =

(∑
h∈G

αh(b)uh

)
.

Thus, for n ∈ N and k ∈ G, we have

p̃
(n)∗

gk ∗ p̃(n)
k = p

(n)
gk

(∑
h∈G

αh(p
(n)
k )uh

)
.

We use pairwise orthogonality of the projections p
(n)
g , for g ∈ G, at the third

step, to get∥∥∥∥p̃(n)∗

gk ∗ p̃(n)
k − p(n)

gk ug

∥∥∥∥ =

∥∥∥∥∥p(n)
gk

(∑
h∈G

p
(n)
gk αh(p

(n)
k )uh

)
− p(n)

gk ug

∥∥∥∥∥
≤
∥∥∥p(n)

gk αg(p
(n)
k )uh − p(n)

gk uh

∥∥∥+
∑

h∈G,h 6=g

∥∥∥p(n)
gk αh(p

(n)
k )uh

∥∥∥
<
∥∥∥αg(p(n)

k )− p(n)
gk

∥∥∥+
∑

h∈G,h 6=g

∥∥∥αh(p
(n)
k )− p(n)

hk

∥∥∥
<

1

n
+ (|G| − 1)

1

n
=
|G|
n
.
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It follows from condition (2) above that

lim sup
n→∞

∥∥∥∥∥∑
k∈G

p̃
(n)∗

gk ∗ p̃(n)
k − ug

∥∥∥∥∥ ≤ lim sup
n→∞

|G|2

n
= 0.

By Proposition 6.1.10, we deduce that ug belongs to the closed two sided ideal
in AoαG generated by Aα. In particular, Aα is Morita equivalent to AoαG.
Since both algebras are unital, we conclude that they are stably isomorphic by
Theorem 2.5.11.

In view of the previous proposition, in order to understand the structure
of the crossed product of an action with the Rokhlin property, it suffices to
understand the structure of its fixed point algebra. Indeed, we will show that
a number of properties pass from A to Aα and AoαG. The properties we will
consider are all preserved by stable isomorphism, and hence our strategy will
be to show first that the property in question passes to the fixed point algebra,
and then use Proposition 11.5.1 to deduce the same for the crossed product.

Our main tool to obtain information about the fixed point algebra is the
following.

Theorem 11.5.2. Let A be a unital C∗-algebra, let G be a finite group, and let
α : G→ Aut(A) be an action with the Rokhlin property. Given a finite subset
F1 ⊆ A, a finite subset F2 ⊆ Aα and ε > 0, there exists a unital completely
positive map ψ : A→ Aα such that

1. For all a, b ∈ F1, we have

‖ψ(ab)− ψ(a)ψ(b)‖ < ε;

2. For all a ∈ F2, we have ‖ψ(a)− a‖ < ε.

In particular, when A is separable, there exists an approximate homomor-
phism (ψn)n∈N consisting of unital completely positive linear maps ψn : A →
Aα for n ∈ N, such that lim

n→∞
‖ψn(a)− a‖ = 0 for all a ∈ Aα.

Proof. Set F = F 2
1 ∪ F2. Without loss of generality, we may assume that

‖a‖ ≤ 1 for all a ∈ F . Use the Rokhlin property for α, in the form given in
Remark 11.1.5, to find projections pg ∈ A, for g ∈ G, satisfying

(a) αg(ph) = pgh for all g, h ∈ G;

(b)
∑
g∈G

pg = 1;

(c) ‖pga− apg‖ < ε for all g ∈ G and all a ∈ F .
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Define a linear map ψ : A→ Aα by

ψ(a) =
∑
g∈G

pgαg(a)pg

for all a ∈ A. We claim that ψ has the desired properties. We first check that
the range of ψ really is contained in Aα. For h ∈ G and a ∈ A, we use condition
(a) above at the second step te get

αh(ψ(a)) =
∑
g∈G

αh(pg)αhg(a)αh(pg) =
∑
g∈G

phgαhg(a)phg = ψ(a),

as desired.
It is also clear that ψ is unital and completely positive. Let a, b ∈ F1. We

use condition (c) at the third step to get

ψ(a)ψ(b) =
∑
g,h∈G

pgαg(a)pgphαh(a)ph

=
∑
g∈G

pgαg(a)pgαg(b)pg

≈
ε

∑
g∈G

pgαg(a)αg(b)pg

= ψ(ab).

Finally, given a ∈ F2 ⊆ Aα, we use condition (c) at the second step to get

ψ(a) =
∑
g,h∈G

pgαg(a)pg ≈
ε

∑
g,h∈G

pgαg(a) = a,

thus completing the proof of the theorem.

In some concrete applications, it may be more convenient to have a map
ψ : A → Aα that is exactly the indentity on Aα. This is possible, at the cost
that the resulting map will not in general be completely positive. Since we will
not use this variant of Theorem 11.5.2, we leave it as an exercise.

Exercise 11.5.3. Let A be a unital C∗-algebra, let G be a finite group, and
let α : G → Aut(A) be an action with the Rokhlin property. Given a finite
subset F ⊆ A and ε > 0, show that there exists a unital map ψ : A→ Aα such
that

1. For all a, b ∈ F1, we have

‖ψ(ab)− ψ(a)ψ(b)‖ < ε and ‖ψ(a)∗ − ψ(a∗)‖ < ε;

2. For all x ∈ Aα, we have ψ(x) = x.
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Using Theorem 11.5.2, it is possible to show that a variety of structural
properties pass from A to Aα and AoαG. The following result, which combines
results from [69], [44] and [25], summarizes some of the most important ones:

Theorem 11.5.4. The following classes of unital C∗-algebras are closed under
formation of crossed products and passage to fixed point algebras by actions
of finite groups with the Rokhlin property:

1. C∗-algebras that are direct limits of certain weakly semiprojective C∗-
algebras. This includes UHF-algebras, AF-algebras, AI-algebras, AT-al-
gebras, countable inductive limits of one-dimensional NCCW-complexes,
and several other classes;

2. Kirchberg algebras;

3. Simple C∗-algebras with tracial rank at most one;

4. Simple, separable, C∗-algebras satisfying the Universal Coefficient The-
orem;

5. C∗-algebras with nuclear dimension at most n, for n ∈ N;

6. C∗-algebras with decomposition rank at most n, for n ∈ N;

7. C∗-algebras with real rank zero or stable rank one;

8. C∗-algebras with strict comparison of positive elements;

9. Separable D-absorbing C∗-algebras, for a strongly self-absorbing C∗-
algebra D;

10. C∗-algebras whose K-groups are either: trivial, free, torsion-free, torsion,
or finitely generated;

11. Weakly semiprojective C∗-algebras.

All of the properties listed in the theorem above are stable under Morita
equivalence, so it suffices to prove the claims for the fixed point algebra. To
do this, one should first prove that if ι : B → A is a unital inclusion of C∗-
algebras and there exists a sequence (ψn)n∈N of unital compeltely positive
maps ψn : A→ B that is asymptotically multiplicative and asymptotically the
identity on B, then all of the properties listed in Theorem 11.5.4 pass from A
to B. The proof of the theorem is then completed by applying this observation
with B = Aα in combination with Theorem 11.5.2.

As an example, we explain in detail how to prove the part of item (7) that
refers to stable rank one4.

4Recall that a unital C∗-algebra has stable rank one if the invertible elements are dense.
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Proof. Suppose that A has stable rank one. Let a ∈ Aα and let ε > 0. Without
loss of generality, we may assume that ε < 2. Find x ∈ A invertible with
‖x− a‖ < ε/2. Let ψ : A→ Aα be a unital completely positive map as in the
conclusion of Theorem 11.5.2 for F1 = {x, x−1} and F2 = {a} with tolerance
ε/2. Then

‖ψ(x)ψ(x−1)− 1‖ < ε

2
< 1 and ‖ψ(x−1)ψ(x)− 1‖ < ε

2
< 1.

It follows that ψ(x)ψ(x−1) and ψ(x−1)ψ(x) are invertible, so there exist b, c ∈
Aα with ψ(x)ψ(x−1)b = 1 and cψ(x−1)ψ(x) = 1. In particular, ψ(x) is left
and right invertible in Aα, so it is invertible. Since

‖ψ(x)− a‖ ≤ ε

2
+ ‖ψ(x)− ψ(a)‖ ≤ ε,

we conclude that Aα has stable rank one.

With the exception of preservation of the UCT, the remaining statements in
Theorem 11.5.2 can be proved using similar ideas, and we leave the verification
as an exercise.

Exercise 11.5.5. Complete the proof of Theorem 11.5.2, possibly skiping item
(4).



Chapter 12

The (weak) tracial Rokhlin
property
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Chapter 13

Rokhlin dimension

The noncommuting tower version is easy to cover: just prove finiteness of
nuclear dimension is preserved. Duality theory, ideals in crossed products.
It would make sense to have a second subsection with the commuting tower
version. There I can add the stuff from GHS, example of difference, the non-
existence results of Hirshberg-Phillips and myself. One has to be careful be-
cause this will take more than one lecture...
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Z-stable C∗-algebras
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Appendix A

Structure and classification of
C∗-algebras

In this appendix, we give an overview of the historical developments surround-
ing one of the main driving forces in C∗-algebra theory in the last three decades:
the Elliott classification programme. The material contained here will help in
the understanding and contextualization of the topics covered in the second
part of these lecture notes. No proofs will be given here, and we will refer the
reader to the literature for further details instead.

A.1 The beginnings of the Elliott programme

In the early 1990s, George Elliott initiated a programme to classify simple, sep-
arable, nuclear C∗-algebras in terms of K-theory. The evidence available at the
time was in retrospect rather limited, and it consisted of Glimm’s classification
of UHF-algebras [33]; the subsequent work of Elliott on AF-algebras [18]; and
Elliott’s classification of AT-algebras1 of real rank zero [19]. The precise form
of the invariant saw some changes once it was realized that K-theory by itself
would not be enough to classify algebras without sufficiently many projections.
This invariant is now known as the Elliott invariant, and is defined as follows.

Definition A.1.1. LetA be a unital C∗-algebra. We define its Elliott invariant
Ell(A) to be the quadruple

Ell(A) = ((K0(A),K0(A)+, [1A]0),K1(A), T (A), ρ),

where ρ : K0(A)×T (A)→ R is the canonical pairing determined by ρ([p]0, τ) =
τ(p) for all projections p ∈ A⊗K and all traces τ ∈ T (A).

There is a natural notion of equivalence of Elliott invariants, where the
objects involved are supposed to be isomorphic in such a way that the pairings
of the different tuples fit into a commutative diagram.

1An AT-algebra is a direct limit of algebras of the form F ⊗ C(T), where F is a finite
dimensional C∗-algebra.
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APPENDIX A. STRUCTURE AND CLASSIFICATION OF

C∗-ALGEBRAS

Elliott’s original conjecture is the following:

Conjecture A.1.2. Let A and B be simple, separable, unital, nuclear C∗-
algebras. Then A and B are isomorphic if and only if Ell(A) ∼= Ell(B).

Some words about the conditions in Conjecture A.1.2 are in order. Unitality
is the least crucial of all assumptions, and it is in fact not strictly necessary
(although the invariant in the non-unital case is slightly different). Simplicity
is a very common assumption throughout mathematics, and the classification
of simple C∗-algebras is a very natural place to start if one wishes to classify
more complicated algebras. Finally, separability and nuclearity are included as
assumptions because one should not expect to obtain reasonable classification
results for C∗-algebras whose weak closures in their GNS representations are
not classified or even properly understood. Weak closures in GNS constructions
are separable (in the sense of tracial von Neumann algebras) if the original C∗-
algebra is separable, and they are all hyperfinite if and only if the C∗-algebra is
nuclear. (And if the state is an extreme trace, then the weak closure is a factor,
indeed the hyperfinite II1-factor R.) In particular, separability and nuclearity
are conditions that guarantee the classifiability of the weak closures.

In this formulation, Elliott’s conjecture saw remarkable success in the 1990’s.
For example, Elliott’s classification of AF-algebras is a confirming example,
since for unital AF-algebras the Elliott invariant can be seen to be equivalent
to the triple (K0(A),K0(A)+, [1A]0). The same is true for Elliott’s classification
of AT-algebras of real rank zero in terms of K0 and K1.

A.2 Kirchberg algebras: a major success, modulo the
UCT

Perhaps the most outstanding success of this programme came with the clas-
sification of purely infinite C∗-algebras, so we define this notion next.

Definition A.2.1. A simple, unital C∗-algebra A is said to be purely infinite
if for all a ∈ A \ {0} there exist x, y ∈ A such that xay = 1.

Examples of purely infinite simple algebras are the Cuntz algebrasOn (these
are also nuclear and separable), as well as the Calkin algebra (which is not
nuclear, or even separable). Purely infinite simple C∗-algebras do not admit
any trace, so their Elliott invariant reduces to K-theory.

A highly praised result of Kirchberg and Phillips [51, 72] from the late 1990’s
confirms Elliott’s conjecture in the purely infinite case. This result builds on
vast amounts of work of several authors, among which Kirchberg stands out.
For this reason, a purely infinite, simple, separable and nuclear C∗-algebras is
commonly referred to as a Kirchberg algebra.

Theorem A.2.2. [Kirchberg-Phillips]. Let A and B be unital Kirchberg alge-
bras satisfying the Universal Coefficient Theorem (UCT). Then A and B are
isomorphic if and only if (K0(A), [1A]0) ∼= (K0(B), [1B ]0) and K1(A) ∼= K1(B).
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The Cuntz algebras O2 and O∞ played a pivotal role in the proof of the
above theorem (at least in the approach taken in [72]), thanks to the following
facts (known as Kirchberg’s Geneva Theorems [52]):

• If A is a Kirchberg algebra, then A⊗O∞ ∼= A;

• If A is a simple, separable, unital, exact C∗-algebra, then A⊗O2
∼= O2.

The reader will note that Theorem A.2.2 has an unexpected assumption:
the UCT. Accordingly, we define it next.

Definition A.2.3. Let A and B be separable C∗-algebras. We say that the
pair (A,B) satisfies the UCT if the following conditions are satisfied:

1. The natural map τA,B : KK(A,B) → Hom(K∗(A),K∗(B)) defined by
Kasparov in [50], is surjective.

2. The natural map µA,B : ker(τA,B)→ Ext(K∗(A),K∗+1(B)) is an isomor-
phism.

If this is the case, by setting εA,B = µ−1
A,B : Ext(K∗(A),K∗+1(B))→ KK(A,B),

we obtain a short exact sequence

0 // Ext(K∗(A),K∗+1(B))
εA,B// KK(A,B)

τA,B// Hom(K∗(A),K∗(B)) // 0,

which is natural on both variables because so are τA,B and µA,B .
We further say that A satisfies the UCT, if (A,B) satisfies the UCT for

every separable C∗-algebra B.

Phillips also showed that any Kirchberg algebra, satisfying the UCT or not,
has the same K-theory as a Kirchberg algebra that does satisfy the UCT. In
particular, if there exist Kirchberg algebras that do not satisfy the UCT, then
these algebras will not be able to be classified using the Elliott invariant.

Not being able to prove that it holds automatically in the nuclear case2, the
community began to regard the UCT as an additional condition that ought to
be added to the Elliott conjecture. The UCT assumption remains until today
as a rather mysterious one, and the problem of whether a nuclear C∗-algebra
satisfies the UCT is a very relevant one, known as the UCT problem.

A.3 AH-algebras and the power of Elliott’s intertwining
argument

The arguments used by Glimm in the classification of UHF-algebras [33], and by
Elliott both in the classification of AF-algebras [18] and of AT-algebras [19],
relied on a very powerful technique of “intertwining” two inductive systems
corresponding to different algebras to obtain an isomorphism between them.

2There are counterexamples for exact C∗-algebras.
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This technique, which became known as the Elliott intertwining, allows for
a surprising level of flexibility, and it was then quickly realized that it could be
adapted to deal with much more general cases. In the equivariant setting, the
reader will find an application of a basic form of this intertwining argument in
Theorem 11.2.5.

Elliott’s intertwining argument is particularly powerful whenever the alge-
bras in question can be constructed as inductive limits of algebras in a specified
class, which are usually referred to as “building blocks”. For AF-algebras, the
building blocks are the finite dimensional C∗-algebras, while for AT-algebras
the building blocks are the circle algebras, namely sums of algebras of the
form Mn(C(T)). In this context, one wishes to understand when an isomor-
phism between the Elliott invariants is induced by homomorphisms between
the building blocks, so as to “intertwine” the inductive systems. Once one
knows that a certain map between building blocks exists, it is also necessary
to know when two such maps are (approximately) unitarily equivalent. The
proof of Theorem 11.2.5 showcases how existence and uniqueness results for
maps can be used to obtain a classification theorem.

Despite the fact that some inductive limit C∗-algebras may appear to have
a very particular, perhaps even artificial, form, the study of such objects gained
significant impetus once it was proved by Elliott and Evans [20] that all irra-
tional rotation algebras are AT-algebras. Furthermore, and at least shortly
after Elliott formulated his conjecture, it was surprising that K-theory does
indeed classify non-trivial classes of C∗-algebras, and particular inductive lim-
its were among the first classes for which this could be established. The extent
to which this could be pushed is surprising, and we describe next the most
advanced result in this direction.

A homogeneous algebra is a sum of algebras of the form pMn(C(X))p, where
X is a compact, Hausdorff space and p ∈ Mn(C(X)) is a projection. An AH-
algebra is a direct limit of homogeneous algebras. Finally, an AH-algebra is
said to have very slow dimension growth if, very roughly speaking, the covering
dimensions of the spaces appearing in some AH-decomposition increase much
slower than the ranks of the projections in the decomposition.

AH-algebras are automatically separable, nuclear, and satisfy the UCT. In
particular, when they are simple and unital, they fall within the class of algebras
covered by Elliott’s conjecture. Indeed, building on vasts amount of previous
work, simple AH-algebras with very slow dimension growth were classified by
Elliott-Gong-Li [22] and Gong [35]:

Theorem A.3.1. Let A and B be simple, unital AH-algebras of very slow
dimension growth. Then A and B are isomorphic if and only if Ell(A) ∼= Ell(B).

Later results show that the assumption of very slow dimension growth is
equivalent to formally weaker conditions on the growth of the AH-algebra
(specifically what is known as slow dimension growth); see [104].

homogeneous is something else, and ASH classification missing.
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A.4 Classification through tracial approximations

Despite the power of Elliott’s intertwining argument, most of the natural ex-
amples of simple, nuclear C∗-algebras rarely come with canonical inductive
limit decompositions using more tractable building blocks. It was thus quickly
realized that it was necessary to obtain classification results using assumptions
that could be checked in cases where the algebra is not given as a direct limit.

A major breakthrough in this direction was Lin’s study and classification
of C∗-algebras of tracial rank zero. Roughly speaking3, a simple unital C∗-
algebra A is said to have tracial rank zero if for every finite subset F ⊆ A and
for every ε > 0 there exist a projection p ∈ A, a finite dimensional C∗-algebra
C, and a unital homomorphism ϕ : C → pAp such that, with p⊥ = 1 − p, one
has ‖a− pap− p⊥ap⊥‖ < ε for all a ∈ F and τ(p⊥) < ε for all τ ∈ T (A).

Lin’s result from [57] reads as follows:

Theorem A.4.1. Let A and B be separable, simple, unital, nuclear C∗-
algebras of tracial rank zero satisfying the UCT. Then A and B are isomorphic
if and only if Ell(A) ∼= Ell(B).

One of the main advantages of the above result is that its main hypothesis,
tracial rank zero, can be verified for a wide variety of C∗-algebras, including
many arising from topological dynamical systems ??, or even noncommutative
dynamical systems ??, without having to prove that the algebras in question
admit tractable inductive limit decompositions.

Lin’s tracial rank zero classification was shortly after extended to algebras
of tracial rank one [58].

A.5 Exotic examples: from Jiang-Su to Villadsen,
Rørdam and Toms

The mid 1990s saw the construction of simple nuclear C∗-algebras which were
not believed (or hoped) to exist. These examples would later revolutionize the
Elliott programme, since some of these pathological examples unequivocally
demonstrated the need to modify Elliott’s conjecture.

In his monograph [49], Kaplansky asked whether every simple C∗-algebra
must contain a nontrivial projection. The consensus at the time seems to be
that this would not be the case, and that the most likely counterexample would
be either the irrational rotation algebra Aθ or the reduced group C∗-algebra
C∗λ(F2). The first candidate turned out to have lots of nontrivial projections
(see [83]), while the second one was indeed proved to be simple [79] and pro-
jectionless [78]. It was then asked whether a nuclear simple C∗-algebra must
contain a nontrivial projection. Even this question has a negative answer, as
Blackadar showed in [8] and [9]. A later construction due to Jiang and Su [47]
(which, with today’s knowledge, is known to be the same as the one constructed

3This formulation is only correct whenever A has strict comparison of positive elements
by traces.
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by Blackadar in [9]) attracted a great deal of attention due to its connections
to Elliott’s classification programme. Indeed, the algebra Z constructed in
[47], now known as the Jiang-Su algebra, is an infinite-dimensional simple, sep-
arable, unital, nuclear C∗-algebra satisfying the UCT with the same Elliott
invariant as the complex numbers. Even more, under a very mild condition on
K0(A) called weak unperforation4, any C∗-algebra A as in the assumptions of
Conjecture A.1.2 satisfies Ell(A) ∼= Ell(A⊗Z); see [36].

It follows that at the level of the Elliott invariant, and when K0 is weakly
unperforated, the Jiang-Su algebra Z acts as a tensorial unit. Hence, if the
Elliott Conjecture were to hold, every C∗-algebra with weakly unperforated
K0-group should be isomorphic to its tensor product with Z. These obser-
vations motivated significant efforts to understand the structure of Z-stable
C∗-algebras, which were regarded as the C∗-algebraic analogs of the McDuff
factors. Among many other remarkable properties, Z-stable C∗-algebras enjoy
a formidable dichotomy relative to the structure of their projections: a simple
Z-stable C∗-algebra is either stably finite or purely infinite; see [36]. In partic-
ular, simple Z-stable C∗-algebras admit a type-like characterization analogous
to von Neumann factors.

The question of whether every infinite-dimensional C∗-algebra as in Con-
jecture A.1.2 has weakly unperforated K0-group was open at the time, and it
was settled shortly after by Villadsen [97]. Villadsen’s construction of a sim-
ple, separable, nuclear C∗-algebra whose K0-group is not weakly unperforated
answered a long-standing question of Blackadar, the order on projections in
this algebra is not determined by their behavior on traces. (This is in stark
contrast to the situation for II1-factors; see Theorem 10.1.4.) The methods
and constructions used by Villadsen were later refined and extended to con-
struct a number of “pathological” examples of nuclear C∗-algebras, two which
we proceed to discuss.

In [84], Rørdam showed that there exists a simple, separable, nuclear C∗-
algebra containing a finite and an infinite projection; this C∗-algebra is in
particular infinite but not purely infinite, and hence does not satisfy the di-
chotomy that Z-stable C∗-algebras do. Perhaps most importantly, Rørdam’s
example showed that Elliott’s conjecture, at least in its original form, was not
true (even if the UCT is added as an assumption): the C∗-algebra he con-
structed has the same Elliott invariant as a purely infinite algebra (namely, its
tensor product with Z), yet it is not itself a Kirchberg algebra. Shortly after,
Toms [93] constructed two C∗-algebras A and B that could not be distinguished
by virtually any “reasonable” functor5, including the Elliott invariant, the real
and stable ranks, and any homotopy-invariant continuous functor, yet were not
isomorphic. The construction of these algebras follows ideas of Villadsen and
is simpler than related constructions: the algebra A is constructed as a direct
limit of algebras of the form Mk(C([0, 1]n)), with connecting maps defined us-

4An ordered group G is said to be weakly unperforated if for any g ∈ G, one has g ≥ 0 if
and only if for some (for all) n ∈ {2, 3, . . .} one has ng ≥ 0.

5One for which it was conceivable that a range result could also be proved.
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ing diagonal maps and point evaluations. (Of course, the choice of matrix sizes,
dimension of the space, and connecting maps must be done with extreme care.)
The C∗-algebra B is then the tensor product of A with any UHF-algebra (and
it could also be taken to be A⊗Z).

A natural reaction to the incompleteness of the Elliott invariant is to ex-
pand it to include whatever data was used to prove its incompleteness. This
is, however, not always a good idea. For once, it is possible that the resulting
invariant is still incomplete, thus requiring further modifications. Even worse,
one may incorporate so much new information that a result proving its com-
pleteness may lack any practical impact. In this sense, not all counterexamples
are of the same quality.

While the examples of Rørdam could be distinguished using their stable
rank, Tom’s examples required a much finer invariant: the Cuntz semigroup.
However, since range results for Cuntz semigroups are still until today out of
reach, any classification using this invariant would not be accompanied with
any result describing the range of the invariant (which all previous results did).
Toms’ counterexample was therefore regarded as evidence not of the fact that
the invariant must be enlargened, but rather that the class of C∗-algebras
one wishes to classify must be restricted. The results from [36] that were
discussed above strongly suggest that the class of separable, simple, nuclear,
unital C∗-algebras that are Z-stable may be particularly tractable, and that
the Elliott invariant may not be the right invariant to use outside the Z-stable
case. Further evidence of the fact that Z-stable C∗-algebras are distinctly
tame, was provided by Rørdam in [85], where it is shown that Z-stable C∗-
algebras always have strict comparison of positive elements by quasitraces6;
and that they have stable rank one whenever they are finite.

The possibility that Z-stability had to be added to the assumptions in the
Elliott conjecture was quickly agreed upon, and this led to the revised Elliott
conjecture:

Conjecture A.5.1. Let A and B be simple, separable, unital, nuclear, Z-
stable C∗-algebras. Then A and B are isomorphic if and only if Ell(A) ∼=
Ell(B).

In retrospect, the necessity of some form of tensorial absorption should
not come as a surprise, since tensorial stability is ubiqutous in results about
classification and structure of operator algebra. For example, a major step in
Connes’ groundbreaking work [12] involved showing that an injective II1-factor
absorbs the hyperfinite II1-factor tensorially; similarly, a highly praised result
of Kirchberg [52] asserts that a simple, nuclear, separable C∗-algebra is purely
infinite if and only if it absorbs the Cuntz algebra O∞ tensorially.

Whether the UCT has to be included as an assumption in the above con-
jecture is still up to debate. In particular, a verification of Conjecture A.5.1
would imply a positive solution to the UCT question. The fact that a simple

6This means the following: for positive elements a, b ∈M∞(A), one has a - b whenever
dτ (a) < dτ (b) for all 2-quasitraces τ on A, where dτ (a) = lim

n→∞
τ(a1/n).
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Z-stable C∗-algebra is either stably finite or purely infinite, implies that Con-
jecture A.5.1 has two cases: the (purely) infinite and the (stably) finite. Since
the infinite case was beautifully settled by the work of Kirchberg and Phillips,
all efforts towards confirming the revised version of Elliott’s conjecture focused
on the stably finite case. In this setting, a combination of very deep results
of Cuntz [16], Blackadar-Handelman [7], and Haagerup [38], implies that any
stably finite, simple, nuclear, unital C∗-algebra has a tracial state. This fact
was of enormous significance since it opened the doors to the use of techniques
from II1-factors in the study of stably finite, nuclear C∗-algebras, via the GNS
construction.

A.6 The Toms-Winter regularity conjecture

The study of C∗-algebra theory is usually referred to as noncommutative topol-
ogy, since Gelfand’s theorem establishes a duality between commutative C∗-
algebras and locally compact Hausdorff spaces. This point of view has been
very fruitful, particularly as topological tools, such as K-theory, have been
successfully adapted to the C∗-algebraic setting. In this vein, it is natural to
extend other topological notions to the noncommutative world. In the case of
covering dimension, several different approaches have been proposed, includ-
ing the real and stable rank. In the early 2000’s, Winter studied new notions
of covering dimension for C∗-algebras, which are finite only for nuclear C∗-
algebras; see [100, 102]. Later, two new dimensional notions were introduced,
which would play a revolutionary role in the study of the structure of nuclear
C∗-algebras: the decomposition rank [54], and the nuclear dimension [106]. As
in the case of their precursors, these are defined by regarding a completely
positive approximation (Fλ, ψλ, ϕλ)λ∈Λ of a nuclear C∗-algebra7 as a noncom-
mutative analog of an open covering, and the imposition of extra conditions on
the maps ϕλ can be used to define a dimensional invariant for the C∗-algebra
in question. In order to describe what extra conditions are used, we introduce
a definition.

Definition A.6.1. Let ϕ : A→ B be a completely positive map between C∗-
algebras A and B.

1. We say that ϕ has order zero if ϕ(a)ϕ(b) = 0 whenever a, b ∈ A+ satisfy
ab = 0.

2. For n ∈ N, we say that ϕ is n-decomposable if A can be written as a
direct sum A = A0 ⊕ · · · ⊕An and ϕ|Aj is order zero for all j = 0, . . . , n.

7This means that Fλ is finite dimensional, the maps ψλ : A → Fλ and ϕλ : Fλ → A are
completely positive, with ψλ contractive, and lim

λ
‖ϕλ(ψλ(a)) − a‖ = 0 for all a ∈ A. One

obtains an equivalent notion if one requires that the maps ϕλ be contractive, which is how
this notion is usually defined. However, for the purposes of this discussion, a completely
positive approximation has bounded maps into the given C∗-algebra.
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3. We say that ϕ is decomposable if there exists n ∈ N such that ϕ is n-
decomposable.

In order to motivate the definitions of decomposition rank and nuclear di-
mension, we reproduce here a characterization of nuclearity using order zero
approximations which was obtained by Hirshberg-Kirchberg-White [41].

Theorem A.6.2. Let A be a C∗-algebra. Then A is nuclear if and only if
there exists a completely positive approximation (Fλ, ψλ, ϕλ)λ∈Λ for A, where
ψλ is decomposable for all λ ∈ Λ.

The notions of nuclear dimension and decomposition rank are refinements of
the above result, where one moreover imposes a uniform bound on the number
of components of the maps ψλ.

Definition A.6.3. Let A be a C∗-algebra, and let n ∈ N.

1. We say that A has nuclear dimension at most n, and write dimnuc(A) ≤ n,
if there exists a completely positive approximation (Fλ, ψλ, ϕλ)λ∈Λ for A,
where ψλ is n-decomposable for all λ ∈ Λ.

2. We say that A has decomposition rank at most n, and write dr(A) ≤ n, if
there exists a completely positive approximation (Fλ, ψλ, ϕλ)λ∈Λ for A,
where ψλ is n-decomposable and contractive for all λ ∈ Λ.

The nuclear dimension dimnuc(A) and decomposition rank dr(A) of A are de-
fined as the smallest integers for which condition (1) or (2), as appropriate, are
satisfied.

These dimensional notions enjoy a number of good properties: they do
not increase when passing to ideals, hereditary subalgebras, or quotients; are
invariant under Morita equivalence; behave well with respect to extensions
and direct limits; and agree with covering dimension of the spectrum in the
commutative setting. One clearly always has dimnuc(A) ≤ dr(A).

The difference between nuclear dimension and decomposition rank (contrac-
tivity of ψλ) seems like a minor one, perhaps even one that could be arranged
via rescaling. However, as it turns out, there is a dramatic difference between
both notions: while the decomposition rank is only possibly finite for (strongly)
quasidiagonal C∗-algebras, nuclear dimension is finite for all Kirchberg alge-
bras. However, when the decomposition rank of a simple C∗-algebra is finite,
its value tends to agree with the nuclear dimension of the algebra8.

The connections between finiteness of the nuclear dimension or decomposi-
tion rank, on the one hand, and classification and structure, on the other, were
noticed early on. A first result in this direction draws a connection between
finiteness of the decomposition rank and tracial rank zero: a unital, separable,
simple Z-stable C∗-algebra with finite decomposition rank has tracial rank zero
if and only if it has real rank zero [101]9.

8This is now known to always be the case when the algebra satisfies the UCT, as we
discuss later.

9As it was proved later in [103], the assumption of Z-stability is automatic in this context.
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In the light of the above result and the counterexamples to Elliott’s conjec-
ture mentioned in Section A.5, it is interesting to understand when the nuclear
dimension of Villadsen’s algebras is finite. This task was carried out by Toms
and Winter in [95], where they showed that these algebras, finiteness of the
decomposition rank, Z-stability, and strict comparison, are equivalent, and
the class of Villadsen algebras that satisfy these conditions is covered by El-
liott’s conjecture. These conditions make sense for arbitrary C∗-algebras not
necessarily of Villadsen type, and the suspicion that the equivalence between
them may hold in much greater generality began to emerge. This speculation
chrystalized in the following regularity conjecture of Toms and Winter:

Conjecture A.6.4. Let A be a simple, separable, unital, nuclear C∗-algebra.
Then the following conditions are equivalent:

1. dimnuc(A) <∞.

2. A is Z-stable.

3. A has strict comparison of positive elements.

When A is finite, the above conditions are also equivalent to

4. dr(A) <∞.

Thus, the Toms-Winter conjecture predicts the equivalence between three
seemingly unrelated properties of topological, analytic, and algebraic flavors.
Despite their diverse nature, these regularity properties are all satisfied by those
classes of C∗-algebras which have been successfully classified by the Elliott
invariant, and they all fail for the exotic algebras that provide counterexamples
to Elliott’s conjecture.

The only obvious implication is (4) ⇒ (1), while the implication (2) ⇒ (3)
had been verified by Rørdam [85]. Perhaps one of the major breakthroughs
in the first decade of this century was the fact that Z-stability, a necessary
assumption to obtain classification by K-theory, is implied by finiteness of
the decomposition rank [103], and even by finiteness of the nuclear dimension
[104], at least in the simple, unital, and separable case, thus proving (1) ⇒ (2)
and hence establishing an expected implication between a topological property
(finiteness of a “noncommutative covering dimension”) and an algebraic prop-
erty (tensorial absorption of Z). This result had huge implications, since it is
often much easier to verify that the nuclear dimension of a given C∗-algebra is
finite, than verifying that it is Z-stable. A remarkable example of this situation
is given by a result of Toms-Winter [96], stating that minimal crossed product
of homeomorphisms of finite dimensional spaces have finite nuclear dimension,
and are hence Z-stable.

These developments gave great impetus to the study of the structure of
nuclear C∗-algebras, which underwent revolutionary and fast-paced progress,
verifying several particular cases of Conjecture A.6.4. In one of their celebrated
works, Matui and Sato [64] used novel von Neumann algebra methods to prove
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that (3) ⇒ (2) whenever A has finitely many extreme traces. This implication
is now known to hold whenever the extreme boundary ∂eT (A) is compact and
finite dimensional; see the independent works [53, 94, 87], which largely build on
Ozawa’s notion [70] of W ∗-bundle. Using radically different techniques, Thiel
has also shown that this implication holds whenever A has stable rank one and
“locally finite nuclear dimension”, without any restrictions on the geometry of
T (A); see [91].

For a long time, the implication (2) ⇒ (1) was only accessible through
classification: the strategy was to identify a classifiable C∗-algebra with an
explicit model which has finite nuclear dimension. Besides depending on vast
amounts of technical machinery, this approach is necessarily restricted to C∗-
algebras satisfying the UCT. In later breakthroughs, Matui and Sato [65], and
Sato, White, and Winter [88], proved this implication under the assumption
that A has a unique trace. Finally, the implication (2) ⇒ (1) has been very
recently proved by Castillejos-Evington-Tikuisis-White-Winter in [11]. There,
the authors also showed that, in the finite case, the combination of (1) and
quasidiagonality of all traces is known to be equivalent to (4), and in this
case one even gets dr(A) = dimnuc(A) ∈ {0, 1}, the value zero being realized
precisely by the AF-algebras. For stably finite algebras satisfying the UCT,
quasidiagonality of all of its traces is automatic by the main result of [92].

The proofs of (3)⇒ (2) and (2)⇒ (1), in most of the situations where they
are known to hold, use fair amounts of von Neumann algebra techniques. In
this context, the passage from von Neumann algebras to C∗-algebras is, how-
ever, not completely direct. Among other things, it is necessary to reinterpret
notions from von Neumann algebras in the C∗-algebraic setting. This rephras-
ing process is now usually referred to as “coloring”; we elaborate on this idea
next.

Let us consider, for example, the notion of hyperfiniteness. If one wants
to obtain its C∗-algebraic analog, the most naive thing to do is to replace the
weak operator topology with the norm topology, and the resulting notion is the
property of being AF. Such C∗-algebras, albeit being very tractable, represent
a rather small class, and therefore are not a satisfactory conceptual analog of
the hyperfinite von Neumann algebras. A more flexible and useful counterpart
is played by those algebras that have finite nuclear dimension. The difference
between these two notions is that in the definition of nuclear dimension, instead
of having homomorphisms from finite dimensional C∗-algebras, one allows for a
finite number of maps of order zero. Regarding these maps as having different
“colors”, we usually say that having finite nuclear dimension is the colored
analog of hyperfiniteness, while being AF is the strict analog. As a further
example, the strict analog of the W ∗-Rokhlin property (10) is the C∗-algebraic
Rokhlin property (11), while its colored analog is Rokhlin dimension (13).

The above reasoning motivates the principle of coloring von Neumann alge-
braic properties. Intuitively, this amounts to replacing projections with a sum
of finitely many positive elements, and homomorphisms with a sum of finitely
many order zero maps. The minimum number of positive elements (or order
zero maps) needed is used to define a notion of dimension, in such a way that
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dimension zero corresponds to the strict analog of the property in question.
For example, nuclear dimension zero is equivalent to being AF. This general
philosophy is the guiding principle behind many recent advances, including
many recent developments in C∗-dynamics.

A.7 The end of the story

One of the most striking developments in the “new era” of the Elliott pro-
gramme is what is sometimes referred to as Winter’s deformation technique
[105], which uses Z-stability in an innovative way. Denote by Q the universal
UHF-algebra, and let p and q be different prime numbers. In this context, the
basic idea is to regard A⊗Z as a stationary inductive limit of paths in A⊗Q
with endpoints in A ⊗Mp∞ and A ⊗Mq∞ . Assuming that A ⊗ Q, A ⊗Mp∞

and A⊗Mq∞ are classifiable in terms of their Elliott invariants, and that iso-
morphisms can be constructed in a continuous way, Winter showed that A⊗Z
can also be classified in terms of its Elliott invariant.

This breakthrough provided a new framework to obtain positive classifica-
tion results, but it also demanded much stronger uniqueness results for isomor-
phisms, not only up to approximate unitary equivalence, but up to asymptotic
unitary equivalence. In this context, several variants of the Basic Homotopy
Lemma played key roles. Once the difficulties associated to this new approach
were sorted out, it was proved that the class of simple, separable, nuclear, Z-
stable unital C∗-algebras which satisfy the UCT and whose tensor products
with UHF-algebras have tracial rank at most one, can be classified in terms
of their Elliott invariants; see [61, 105, 60, 59]. This class is indeed much
larger than those classes that had been previously classified: for example, the
Jiang-Su algebra itself has infinite tracial rank, but its tensor product with
each UHF-algebra has tracial rank zero. This class was however known not to
contain every separable, simple, nuclear, Z-stable unital C∗-algebra satisfying
the UCT 10, so more general classification theorems were needed.

In terms of proving isomorphism theorems, the final step in this direction
was taken by Gong-Lin-Niu in [34], where they introduced the notion of gen-
eralized tracial rank, which is inspired in the notion of tracial rank but where
point-line algebras are used in the tracial approximation. Again with the aid
of Winter’s deformation technique, the authors showed that the class B of sim-
ple, separable, nuclear, Z-stable unital C∗-algebras which satisfy the UCT and
whose tensor products with UHF-algebras have generalized tracial rank at most
one, can be classified in terms of their Elliott invariants. Moreover, this class
of algebras exhausts the possible values of the Elliott invariant, in the sense
that if A is a simple, separable, nuclear, Z-stable unital C∗-algebra, then there
exists a C∗-algebra B in B such that Ell(A) ∼= Ell(B). This, however, does not
on the face of it complete the proof of Conjecture A.5.1, since one does not

10The K0-group of any algebra in this class is a simple, rational Riesz group, and there are
also some constraints on the pairing map. For example, certain inductive limits of “point-
line” algebras (also called Elliott-Thomsen building blocks) do not belong to this class.
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a priori know whether one gets an isomorphism A ∼= B. It does nevertheless
show that, in order to complete the proof of the revised Elliott conjecture, it is
necessary to understand the structure of simple, nuclear Z-stable C∗-algebras,
and in particular show that any such algebra automatically belongs to B.

That this is the case follows, under the ever-present assumption of the UCT,
by the combination of the works of Elliott-Gong-Lin-Niu [21], Tikuisis-White-
Winter [92], and Castillejos-Evington-Tikuisis-White-Winter [11]. Indeed, in
[21] it is shown that every finite, separable, simple, unital C∗-algebra with
finite nuclear dimension (hence nuclear and Z-stable), all of whose traces are
quasidiagonal and which satisfies the UCT, belongs to B. By the main result of
[92], quasidiagonality of all traces is automatic in the previous setting, and this
confirmed the Elliott conjecture for UCT algebras of finite nuclear dimension.
Finally, it is shown in [11] that finiteness of the nuclear dimension follows from
Z-stability for algebras as in Conjecture A.5.1, and hence this conjecture is
verified in the presence of the UCT. Whether this assumption is also automatic
remains unknown, and this is one of the main open problems in the structure
of nuclear C∗-algebras.
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