C*-DYNAMICS AND CROSSED PRODUCTS Second exercise sheet

EUSEBIO GARDELLA

You must hand in a minimum of four exercises: at least one of 1 or 2; at least one of 3 or 4, and at least two of 5, 6, 7, 8, by November 28th.

Exercise 1. Let A be a C^* -algebra. Show in full detail (by completing the proofs given in class) that there exists a unique unital C^* -algebra M(A) containing A as an essential ideal such that whenever A is an ideal in some C^* -algebra B, then there is a unique homomorphism $\varphi \colon B \to M(A)$ extending the identity on A and satisfying ker $(\varphi) = \{b \in B \colon bA = \{0\}\}$. In other words, the following diagram commutes:

Exercise 2. Let $\pi: A \to \mathcal{B}(\mathcal{H})$ be a non-degenerate, injective representation of a C^* -algebra A on a Hilbert space \mathcal{H} . Show that M(A) can be canonically identified with

$$\{T \in \mathcal{B}(\mathcal{H}) \colon T\pi(A) \subseteq \pi(A), \pi(A)T \subseteq \pi(A)\}.$$

For Exercise 3, you will need to understand the definition of an A-compact operator on a Hilbert A-module, and use the following lemma.

Lemma. Let A be a C^* -algebra, let \mathcal{E} be a countably generated Hilbert A-module, and let $T \in \mathcal{K}_A(\mathcal{E})$ be a positive element. Then T is strictly positive if and only if it has dense range.

Exercise 3. Let A be a C^* -algebra, and let \mathcal{E} be a countably generated Hilbert A-module. Show that

$$\mathcal{E} \oplus \mathcal{H}_A \cong \mathcal{H}_A,$$

as follows:

- (1) If A^+ denotes the one-dimensional unitization of A, denote by \mathcal{E}^+ the Hilbert A^+ -module which as a vector space is identical to \mathcal{E} , with the obvious extended action and the same A-valued inner product as \mathcal{E} . Show that if $\mathcal{E}^+ \oplus \mathcal{H}_{A^+} \cong \mathcal{H}_{A^+}$, then $\mathcal{E} \oplus \mathcal{H}_A \cong \mathcal{H}_A$. Deduce that it is enough to prove the theorem when A is unital (which we will assume from now on).
- (2) Let $(\xi_n)_{n\in\mathbb{N}}$ be an enumeration of a countable generating set for \mathcal{E} , with each element repeated an infinite number of times, and let $(\delta_n)_{n\in\mathbb{N}}$ be the canonical orthonormal basis of \mathcal{H}_A . Show that there is a well-defined operator $T \in \mathcal{K}_A(\mathcal{H}_A, \mathcal{E} \oplus \mathcal{H}_A)$ that satisfies $T(\delta_n) = (\xi_n/2^n, \delta_n/4^n)$ for all $n \in \mathbb{N}$.

Date: November 22, 2018.

EUSEBIO GARDELLA

(3) Show that T is injective and has dense range.

 $\mathbf{2}$

- (4) Show that T^*T has dense range, and is hence strictly positive.
- (5) Show that there is a unique well-defined operator $U \in \mathcal{L}(\mathcal{H}_A, \mathcal{E} \oplus \mathcal{H}_A)$ satisfying $U((T^*T)^{1/2}\xi) = T(\xi)$ for all $\xi \in \mathcal{E}$.
- (6) Show that U is a unitary, concluding the proof of the theorem.

Exercise 4. Let A and B be C^* -algebras. Prove that $A \sim_M B$ if and only if there exist a C^{*}-algebra C and a projection $p \in M(C)$ with $\overline{CpC} = \overline{C(1-p)C} = C$ such that $pCp \cong A$ and $(1-p)C(1-p) \cong B$. For the "only if" implication, let \mathcal{E} be an imprimitivity bimodule and consider

$$C = \left[\begin{array}{cc} A & \mathcal{E} \\ \mathcal{E}^* & B \end{array}\right] = \left\{ \left(\begin{array}{cc} a & \xi \\ \eta^* & b \end{array}\right) : a \in A, b \in B, \xi, \eta \in \mathcal{E} \right\}.$$

Define a canonical matrix-type product and involution on C. Let C act on $\mathcal{E} \oplus B$ by

$$\left(\begin{array}{cc}a&\xi\\\eta^*&b\end{array}\right)\left(\begin{array}{c}\zeta\\c\end{array}\right) = \left(\begin{array}{c}a\cdot\zeta+\xi\cdot c\\\langle\eta,\zeta\rangle_B+bc\end{array}\right),$$

- (1) Prove that C is a C^* -algebra with the induced operator norm. This C^* algebra is called the *linking algebra* associated to \mathcal{E} .
- (2) Show that C and $p = \begin{pmatrix} 1_{M(A)} & 0 \\ 0 & 0 \end{pmatrix}$ satisfy the conclusion of the theorem. (3) Where is fullness of \mathcal{E} used?

Exercise 5. Let G be a compact group, let A be a C*-algebra, and let $\alpha \colon G \to$ Aut(A) be an action. For $a \in A$, let $\tilde{a} \in C(G, A)$ be given by $\tilde{a}(g) = \alpha_q(a)$ for all $g \in G$. Prove that the ideal in $A \rtimes_{\alpha} G$ generated by $c(A^{\alpha})$ agrees with

$$\overline{\operatorname{span}}\{\widetilde{a}^* \ast b \colon a, b \in A\}.$$

Moreover, show that for $a, b \in A$ we have $(\widetilde{a}^* * \widetilde{b})(g) = a^* \alpha_a(b)$ for all $g \in G$.

Exercise 6. Let G be a compact abelian group, let A be a C^* -algebra, and let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action. Show that

$$\widetilde{\operatorname{Sp}}(\alpha) = \{ \chi \in \widehat{G} \colon \overline{A(\chi)AA(\chi^{-1})} = A \}.$$

Exercise 7. Let G be a compact group abelian, let A be a C^* -algebra, and let $\alpha: G \to \operatorname{Aut}(A)$ be an action. For $a, b \in A$, for $\chi \in \widehat{G}$, and for $p \in M(A \rtimes_{\alpha} G)$ the projection associated to the corner-embedding $c: A^{\alpha} \to A \rtimes_{\alpha} G$, show that

$$p * (\chi^{-1}\tilde{a}^*) * (\chi^{-1}b) * p = c_{E_{\chi}(a)^* E_{\chi}(b)}.$$

Exercise 8. Let G be a compact group abelian, let A be a C^* -algebra, and let $\alpha: G \to \operatorname{Aut}(A)$ be an action. The goal of this exercise is to show that if every ideal in $A \rtimes_{\alpha} G$ is a crossed product ideal, that it, it has the form $I \rtimes_{\alpha} G$ for some G-invariant ideal I in A, then $\widetilde{\Gamma}(\alpha) = \widehat{G}$.

(1) Let $\chi \in \widehat{G}$. Regard $\chi \in C(G) \subseteq M(A \rtimes_{\alpha} G)$ and show that $\overline{(A \rtimes_{\alpha} G)\chi(A \rtimes_{\alpha} G)} = A \rtimes_{\alpha} G.$

$$(A \rtimes_{\alpha} G)\chi(A \rtimes_{\alpha} G) = A \rtimes_{\alpha} G$$

(2) Deduce that $\widetilde{\operatorname{Sp}}(\alpha) = \widehat{G}$. Conclude that in order to show that $\widetilde{\Gamma}(\alpha) = \widehat{G}$, it suffices to show that for every $B \in \operatorname{Her}_G(A)$, all ideals in $B \rtimes_{\alpha} G$ are crossed product ideals.

(3) Let $B \in \operatorname{Her}_G(A)$. Show that $B \rtimes_{\alpha} G$ is a hereditary subalgebra of $A \rtimes_{\alpha} G$, by showing that

 $C(G, B, \alpha)C(G, A, \alpha)C(G, B, \alpha) \subseteq C(G, B, \alpha).$

(4) Let J be an ideal in $B \rtimes_{\alpha} G$. Show that there exists a G-invariant ideal I of A such that

$$J = (B \rtimes_{\alpha} G) \cap (I \rtimes_{\alpha} G).$$

(5) Prove that $(B \rtimes_{\alpha} G) \cap (I \rtimes_{\alpha} G) = (B \cap I) \rtimes_{\alpha} G$, and deduce that $\widetilde{\Gamma}(\alpha) = \widehat{G}$.

Eusebio Gardella Mathematisches Institut, Fachbereich Mathematik und Informatik der Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany.

 $E\text{-}mail \ address: \texttt{gardellaQuni-muenster.de}$

URL: www.math.uni-muenster.de/u/gardella/