C*-DYNAMICS AND CROSSED PRODUCTS Fourth exercise sheet

EUSEBIO GARDELLA

You must hand in a minimum of four exercises by January 9th.

Exercise 1.

(1) Let

$$0 \longrightarrow I \xrightarrow{\iota} A \xrightarrow{\pi} B \longrightarrow 0$$

be a short exact sequence of C^* -algebras, and suppose that there is a homomorphism $s: B \to A$ satisfying $\pi \circ s = \mathrm{id}_B$. Show that $K_j(A) \cong K_j(I) \oplus K_j(B)$.

- (2) Let A be a C^* -algebra. Use the previous part to compute the K-theory of $C(S^1) \otimes A$. (This computation can of course also be done using the Pimsner-Voiculescu 6-term exact sequence, but you are not supposed to use it here.)
- (3) Find examples of short exact sequences as in (1) where:
 - (a) $K_0(\iota)$ is not injective.
 - (b) $K_1(\iota)$ is not injective.
 - (c) $K_0(\pi)$ is not surjective.
 - (d) $K_1(\pi)$ is not surjective.

Exercise 2. Write a rigorous proof of the fact that $K_0(\mathcal{K}) \cong \mathbb{Z}$ and $K_1(\mathcal{K}) \cong \{0\}$, without using continuity of the K-groups. Be particularly careful with the identification of $V(\tilde{\mathcal{K}})$.

Exercise 3. Complete the proof of the Pimsner-Voiculescu exact sequence given in class by showing the following.

- (1) If α and γ are homotopic automorphisms of a C^* -algebra A, then M_{α} is isomorphic to M_{γ} .
- (2) If α is an automorphism of a C^* -algebra A, and B is any other C^* -algebra, let $\alpha \otimes \operatorname{id}_B$ denote the associated automorphism of $A \otimes_{\min} B$. Then there is a natural isomorphism

$$M_{\alpha \otimes \mathrm{id}_B} \cong M_\alpha \otimes_{\min} B.$$

How about the maximal tensor product?

Exercise 4. Let A be a C^* -algebra, let $n \in \mathbb{N}$, and let $\alpha \in \operatorname{Aut}(A)$ be an automorphism of order n. We write $\overline{\alpha} \colon \mathbb{Z}_n \to \operatorname{Aut}(A)$ for the induced action. Prove, rigorously, that there is a natural \mathbb{T} -equivariant isomorphism

 $\psi \colon (A \rtimes_{\alpha} \mathbb{Z}, \widehat{\alpha}) \to \left(\operatorname{Ind}_{\mathbb{Z}_{n}^{\perp}}^{\mathbb{T}}(A \rtimes_{\overline{\alpha}} \mathbb{Z}_{n}), \operatorname{Ind}_{\mathbb{Z}_{n}^{\perp}}^{\mathbb{T}}(\widehat{\overline{\alpha}}) \right),$

where $\mathbb{Z}_n^{\perp} = \{ z \in \mathbb{T} \colon z^n = 1 \}.$

Date: December 18, 2018.

Exercise 5. Let A be a C^* -algebra, let $n \in \mathbb{N}$, and let $\alpha \colon \mathbb{Z}_n \to \operatorname{Aut}(A)$ be an action. Let $\pi \colon A \rtimes_{\alpha} \mathbb{Z} \to A \rtimes_{\alpha} \mathbb{Z}_n$ denote the canonical quotient map. Prove that there is an exact sequence

$$\begin{array}{c|c} K_0(A\rtimes_{\alpha}\mathbb{Z}_n) \xrightarrow{\operatorname{id}-K_0(\widehat{\alpha}_1)} & K_0(A\rtimes_{\alpha}\mathbb{Z}_n) \xrightarrow{} & K_1(A\rtimes_{\alpha}\mathbb{Z}) \\ \hline & & & & \downarrow \\ K_0(\pi) & & & & \downarrow \\ K_0(A\rtimes_{\alpha}\mathbb{Z}) & \longleftarrow & K_1(A\rtimes_{\alpha}\mathbb{Z}_n) \xrightarrow{} & K_1(A\rtimes_{\alpha}\mathbb{Z}_n). \end{array}$$

Exercise 6. Let $n \in \mathbb{N}$ with $n \geq 2$. Recall that the *Cuntz algebra* \mathcal{O}_n is the universal unital C^* -algebra generated by isometries s_1, \ldots, s_n satisfying $\sum_{j=1}^n s_j s_j^* =$

- 1. In this exercise, you may use without proof that this algebra is simple.
 - (1) Let $e \in M_n$ be the projection $e_{1,1}$. For $m \in \mathbb{N}$, set $D_m = \bigotimes_{m=-k}^{\infty} M_n$, and let $\psi_m \colon D_m \to D_{m+1}$ be given by

$$\psi_m(x) = e \otimes x \in e \otimes D_m \subseteq D_{m+1}$$

for all elementary tensors $x \in D_m$. Denote by D the associated direct limit, with canonical maps $\varphi_m \colon D_m \to D$, for $m \in \mathbb{N}$. Show that D is isomorphic to $M_{n^{\infty}} \otimes \mathcal{K}$.

(2) For $m \in \mathbb{N}$, let $\theta_m \colon D_m \to D_{m-1}$ be an isomorphism (for example, just by reindexing the tensor factors) and let $\alpha_m \colon D_m \to D_m$ be given by

$$\alpha_m(x) = e \otimes \theta_m(x) \in 1 \otimes D_{m-1} \subseteq D_m$$

for all elementary tensors $x \in D_m$. Show that there is an automorphism $\alpha \in \operatorname{Aut}(D)$ such

$$\alpha \circ \varphi_m = \varphi_m \circ \alpha_m$$

for all $m \in \mathbb{N}$.

- (3) Compute $K_0(\alpha)$ and $K_1(\alpha)$.
- (4) Show that $D \rtimes_{\alpha} \mathbb{Z}$ is isomorphic to $\mathcal{O}_n \otimes \mathcal{K}$ as follows:
 - (a) Denote by $p \in D_0$ the unit of $D_0 \cong M_{n^{\infty}}$, and denote by $u \in M(D \rtimes_{\alpha} \mathbb{Z})$ the canonical unitary. Set s = up. Then $D_0 = pDp$ and $p(D \rtimes_{\alpha} \mathbb{Z})p$ is generated by D_0 and s.
 - (b) For j = 1, ..., n, set $s_j = (e_{j,1} \otimes p)s \in D \rtimes_{\alpha} \mathbb{Z}$. Then $s_j^* s_j = p$ and $\sum_{j=1}^n s_j s_j^* = p.$
 - (c) Show that $p(D \rtimes_{\alpha} \mathbb{Z})p \cong \mathcal{O}_n$.
 - (d) For $m \in \mathbb{N}$, let $p_m \in D_m$ be the unit. Then $D \rtimes_{\alpha} \mathbb{Z}$ is isomorphic to the inductive limit of $p_m(D \rtimes_{\alpha} \mathbb{Z})p_m$, and $p_{m-1}(D \rtimes_{\alpha} \mathbb{Z})p_{m-1}$ is generated by $p_m(A \rtimes_{\alpha} \mathbb{Z})p_m$ and

$$\{e_{j,k} \otimes p_m \colon 1 \le j, k \le n\} \subseteq M_n \otimes D_m = D_{m-1}.$$

(e) Conclude that $D \rtimes_{\alpha} \mathbb{Z}$ is isomorphic to $\mathcal{O}_n \otimes \mathcal{K}$.

(5) Compute $K_0(\mathcal{O}_n)$ and $K_1(\mathcal{O}_n)$. Deduce that $\mathcal{O}_n \cong \mathcal{O}_m$ if and only if n = m.

Exercise 7.

(1) Let $\alpha \colon \mathbb{Z}_n \to \operatorname{Aut}(\mathcal{O}_2)$ be an action such that $\widehat{\alpha}_1$ is approximately inner. Show that

$$K_0(\mathcal{O}_2 \rtimes_\alpha \mathbb{Z}_n) \cong K_1(\mathcal{O}_2 \rtimes_\alpha \mathbb{Z}_n) \cong \{0\}.$$

- (2) Let $\gamma \colon \mathbb{T} \to \operatorname{Aut}(A)$ be an action on a (nonzero) AF-algebra A. Show that the dual automorphism $\widehat{\gamma}$ of $A \rtimes_{\gamma} \mathbb{T}$ is not approximately inner.
- (3) What happens in the item above if A is not required to be AF?

Exercise 8. Let A be an AF-algebra and let $\alpha \in Aut(A)$.

- (1) Let $p \in A$ be a nonzero projection. Show that $[p]_0$ is not the trivial element in $K_0(A)$.
- (2) If A is unital, show that $A \rtimes_{\alpha} \mathbb{Z}$ is not AF.
- (3) If A is not unital, show with an example that $A \rtimes_{\alpha} \mathbb{Z}$ may be AF.

Exercise 9. Let G be a discrete group, let A be a unital C^* -algebra, let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action, and let $w \colon G \to \mathcal{U}(A)$ be an α -cocycle.

- (1) Show that the map $\alpha^w \colon G \to \operatorname{Aut}(A)$ given by $\alpha_g^w = \operatorname{Ad}(w_g) \circ \alpha_g$ for all $g \in G$, is an action.
- (2) Show that $A \rtimes_{\alpha} G$ and $A \rtimes_{\alpha^{\omega}} G$ are canonically isomorphic.

Suppose now that G is finite. For $g \in G$, let $u_g \in A \rtimes_{\alpha} G$ denote the canonical unitary implementing α_g . Set

$$p = \frac{1}{|G|} \sum_{g \in G} w_g u_g$$
 and $q = \frac{1}{|G|} \sum_{g \in G} u_g$.

- (3) Show that p and q are projections.
- (4) Show that w is a coboundary if and only if $p \sim_{M-vN} q$.

Exercise 9. Let $n \in \mathbb{N}$.

- (1) Let A be a C^* -algebra, and let p_1, \ldots, p_n be projections in A that are Murray-von Neumann equivalent. Show that A contains a subalgebra isomorphic to M_n .
- (2) If M is a II₁-factor and $n \in \mathbb{N}$, then M contains a subalgebra isomorphic to M_n .

Eusebio Gardella Mathematisches Institut, Fachbereich Mathematik und Informatik der Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany.

 $E\text{-}mail \ address: \texttt{gardellaQuni-muenster.de}$

URL: www.math.uni-muenster.de/u/gardella/