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1. Introduction to C0(X)-algebras and continuous fields

The focus of this series of talks will be C∗-algebras over locally compact second countable Hausdorff spaces. We recall
the definition.

Definition 1.1. (Kasparov) Let A be a C∗-algebra and let X be a locally compact second countable Hausdorff space.
We say that A is a C0(X)-algebra if there exists a homomorphism θ : C0(X)→ Z(M(A)) such that

θ(C0(X))A = A.

The homomorphism θ is called the structure homomorphism. We usually suppress θ from the notation and write fa
for θ(f)a = aθ(f) for f ∈ C0(X) and a ∈ A.

If U is an open subset of X, we write A(U) = C0(U)A which is an ideal of A, and if F is closed in X, we write
A(F ) = A/A(X \ F ). When F = {x}, we write A(x) for A(F ), and call this the fiber of A over x.

There is an inclusion

A ↪→
∏
x∈X

A(x)

sending a ∈ A to (a(x))x∈X . It is a fact that for all a ∈ A, the map X → R≥0 given by x 7→ ‖a(x)‖ is upper-
semicontinuous. (Notice that there is no well-defined map if we omit the norm, since the a(x) live in different C∗-algebras
for different x ∈ X.)

Definition 1.2. We say that A is a continuous C0(X)-algebra (also called continuous field C∗-algebra) if x 7→ ‖a(x)‖ is
continuous.

It is a fact that if A is separable and Prim(A) is Hausdorff, then A is a continuous field over X = Prim(A).
The following is an example of a C0(X)-algebra which is not a continuous field.

Example 1.3. Take A = C as a C([0, 1])-algebra, with the action given by f · a = f(1)a for f ∈ C([0, 1]) and a ∈ C.
The function x 7→ ‖a(x)‖ is given by

‖a(x)‖ =

{
0, x < 1;
|a|, x = 1.

Hence x 7→ ‖a(x)‖ is not continuous unless a = 0.

For now, we will restrict our attention to separable exact C∗-algebras which are continuous fields. (Exactness is
equivalent to sub-nuclear by Kirchberg’s theorem.)

Theorem 1.4. (Blanchard-Kirchberg) If A is a separable exact continuous field over a compact space X, then there
exists an injective equivariant C(X)-linear homomorphism

A ↪→ C(X,O2) ↪→ C(X,B(H)).
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In other words the algebras we are focusing on are generic C(X)-invariant subalgebras of C(X,O2). If A is as in
the theorem and U,F ⊆ X are open and closed respectively, then one can show that the given embedding respects
restriction/inclusion in the sense that there is a commutative diagram

A(U)� _

��

C0(U,O2)� _

��

oo

A �
�

//

����

C(X,O2)

����

A(F ) �
�

// C(F,O2).

Definition 1.5. We say that A is locally trivial if for all x ∈ X there exists an open set U ⊆ X containing x such that

A(U) ∼= C0(U,D)

for some C∗-algebra D.

We will discuss locally triviality of a few examples now.

Example 1.6. Consider
A1 = {f ∈ C([0, 1],M3) : f(1/2) ∈ C · 13}.

It is easy to see that A1 is not locally trivial because the fibers are M3 for x 6= 1/2 and C for x = 1/2. The following
examples have isomorphic fibers, so this is no longer an obstruction.

Example 1.7. Set A2 = A1 ⊗K. The fibers are K.

Example 1.8. Set A3 = A1 ⊗M3∞ . The fibers are M3∞ .

Example 1.9. Set A4 = A1 ⊗K ⊗O3. The fibers are K ⊗O3.

Example 1.10. Set A5 = A1 ⊗K ⊗O4. The fibers are K ⊗O4.

We will use K-theory to explore these examples. We start with Example 1.6 again. Consider the extension

0→ A([0, 1] \ {1/2})→ A→ A(1/2)→ 0

which is just
0→ C0([0, 1/2))⊗M3 ⊕ C0((1/2, 1])⊗M3 → A→ C→ 0.

Since cones are contractible, they are trivial on K-theory, and we get an isomorphism K0(A) ∼= K0(C) ∼= Z, with gener-
ator given by [1A]. On the other hand, the map K0(A) ∼= Z[1A] → K0(A(0)) ∼= K0(M3), is multiplication by 3, which
is not an isomorphism. Local triviality would imply that A→ A(x) induces an isomorphism on K-theory for all x ∈ X.
Hence Example 1.6 is not locally trivial (we already knew this, though).

Since tensoring with K does not change the K-theory, it follows that Example 1.7 is not locally trivial either.
We will deal with Example 1.8, Example 1.9 and Example 1.10 at the same time and in a more abstract framework.

Let D be a C∗-algebra and let γ : D → D be an injective homomorphism. Hence γ(D) is isomorphic to D abstractly,
but it is concretely a different C∗-algebra. Consider the continuous field

Aγ = {f ∈ C([0, 1], D) : f(1/2) ∈ γ(D)},
and look at the extension

0→ CD ⊕ CD → A→ γ(D) ∼= (D)→ 0

where the map A→ γ(D) is evaluation at 1/2. Sice cones are contractible, the above extension induces an isomorphism
K0(A) ∼= K0(D). Moreover, for x 6= 1/2 we have

K0(A)
(πx)∗

//

∼=
��

K0(A(x))

∼=
��

K0(D)
γ∗
// K0(D).

It follows that if γ∗ is not an isomorphism, then A is not locally trivial.

In Example 1.10, the K-theory of the fibers is K0(O4) ∼= Z3 and the map γ∗ is multiplication by 3, which is the
zero map on this group. Hence it is not locally trivial. In Example 1.8 and Example 1.9, the maps γ∗ are, respectively:

Z[1/3]
·3 // Z[1/3] Z2

·3 // Z2 .

Since both these maps are isomorphisms, we do not get an obstruction to local triviality. It turns out that both these
examples are locally trivial, but this requires a proof.
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Remark 1.11. Since [0, 1] is contractible, a locally trivial continuous field over [0, 1] is the same as a trivial continuous
field, this is, one of the form C([0, 1], D) for some C∗-algebra D.

Theorem 1.12. There is an isomorphism Aγ ∼= C([0, 1], D) if and only if there exists a path [0, 1/2] → End(D) such
that θt ∈ Aut(D) for all t < 1/2 and θ1/2 = γ.

Proof. Notice that one may use the same path on the other half of the interval. The isomorphism is then C([0, 1/2], D)→
A([0, 1/2]) given by f(t) = θt(f(t)). �

Corollary 1.13. If Aγ is trivial, then γ is a KK-equivalence since it is homotopic to an automorphism. The converse is
true if D is a stable Kirchberg algebra, since a result by Kirchberg and Phillips states that a full KK-trivial endomorphism
D → D is homotopic to an automorphism.

Let A be a continuous field over [0, 1] and assume that A([0, 1)) ∼= C0([0, 1), D) for some unital C∗-algebra D. We
would like to show that A ha the form Aγ for some γ, except that now we cannot expect γ to be an endomorphism, just
an asymptotic homomorphism.

Consider the extension

0→ C0([0, 1), D)→ A→ A(1)→ 0.

Its Busby invariant is the map

σ : D →M(I)/I = Cb(([0, 1), D)/C0([0, 1), D).

Then σ is an asymptotic homomorphism (σt)t∈[0,1) from D into itself. One then shows that A is isomorphic to Aσ, where

Aσ = {(f, d) ∈ Cb([0, 1), D)⊕D : lim
t→1
‖f(t)− θt(d)‖ = 0}.

In this way, asymptotic morphisms are in one-to-one correspondences with C([0, 1])-algebras with a singularity at x = 1
(or x = 0). The case σt = γ for all t ∈ [0, 1) corresponds to Aγ . This is due to Connes-Higson.

One can easily product finitely many singular points, but how many can one produce? We will show an example
of a C([0, 1])-continuous field where all the fibers are isomorphic yet every point in [0, 1] is singular.

Example 1.14. (Dadarlat-Elliott) Let D be a UCT unital Kirchberg algebra such that K0(D) ∼= Z⊕Z with [1D] = (1, 0).
Choose a dense sequence (xn)n∈N in [0, 1]. Let γ be a unital endomorphism of D such that

K0(γ) : Z2 → Z2 is given by

(
1 0
0 0

)
.

Let An = {f ∈ C([0, 1], D) : f(xn) ∈ γ(D)}, and set

B =

∞⊗
n=1

C([0,1])An,

where the symbol
⊗

C([0,1]) is the balanced tensor product over [0, 1], which gives a C([0, 1])-algebra as opposed to a

C([0, 1]∞)-algebra. It is easy to see that B(x) ∼= ⊗∞n=1D, but every point in [0, 1] is singular. Indeed, for every open
interval (a, b) ⊆ [0, 1], there exists x ∈ (a, b) such that

(πx)∗ : K0(B)→ K0(B(x))

is not injective. Hence B is nowhere trivial, and all points are singular.

Remark 1.15. Any continuous field with fibers that are constant and finite-dimensional is necessarily locally trivial.

2. Local triviality of continuous fields

Semiprojective C∗-algebras are crucial in describing the structure of continuous fields. Any continuous field with
stable Kirchberg algebras as fibers such that moreover K1 of the fibers is torsion free is an inductive limit of continuous
fields with finitely many singular points with semiprojective fibers. One then looks at the asymptotic gluing morphisms
to treat these continuous fields.

Application. Any continuous field over [0, 1] with fibers O2 ⊗K is trivial.

Proof. Approximate the given continuous field by continuous fields with finitely many singularities. One can arrange that
the fibers are again O2⊗K, so the approximating continuous fields are determined by some asymptotic homomorphisms
on O2. Any such asymptotic homomorphism is necessarily KK-trivial, and hence any continuous field over [0, 1] with
fibers O2 ⊗K and finitely many singularities is trivial. The result now follows from the fact that a direct limit of trivial
continuous fields is again a trivial continuous field. �
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Definition 2.1. (n-pullbacks) Let X be compact, and let Y0, . . . , Yn ⊆ X closed subsets such that X = Y0 ∪ · · · ∪ Yn.
For j = 0, . . . , n, let Ej be a locally trivial field over Yj . Suppose there are C(Yj ∩ Yi)-linear homomorphisms

γij : Ei|Yi∩Yj → Ej |Yi∩Yj

such that (γjk(x◦(γij)x = (γik)x for all x ∈ Yi ∩ Yj ∩ Yk. We define the pullback continuous field A by

A = {(e0, . . . , en) ∈ E0 ⊕ · · ·En : ej(x) = (γij)x(ei(x)) for all x ∈ Yi ∩ Yj , i < j}.

Theorem 2.2. Let A be a separable nuclear continuous field over a compact space X of dimension dim(X) < ∞.
Suppose that A(x) is a Kirchberg UCT algebra and that K1(A(x)) is torsion free for all x ∈ X. Then there exist
subalgebras A1 ⊆ A2 ⊆ · · · ⊆ A such that ∪n∈NAn = A, where the inclusions are C(X)-linear, and such that Ak is an
n-pullback of locally trivial continuous fields for all k ∈ N.

Corollary 2.3. If A is a separable nuclear continuous field such that each fiber satisfied the UCT, then A itself satisfies
the UCT.

Proof. Show that every such field is KKX -equivalent to a Kirchberg field and approximate this one by using the Theorem
above. �

Theorem 2.4. Let X be a compact Hausdorff space of finite dimension. Suppose that A is a continuous field over X
such that A(x) ∼= O2 ⊗K for all x ∈ X. Then A ∼= C(X)⊗O2 ⊗K.

The point is that the gluing maps γij : Yi ∩ Yj → End(O2 ⊗K) are KK-equivalent to automorphisms, and thus each
of the pullbacks is trivial.

There exist proofs of this result that use the classification developed by Kirchberg. See work by Hirshberg-Rørdam-
Winter where they show that over finite dimensional spaces, if all of the fibers absorb O2 (or any strongly self-absorbing
C∗-algebra), then the continuous field itself absorbs O2.

Definition 2.5. Let A be a C∗-algebra. A sequence (Ak)k∈N of sub-C∗-algebras of A is said to be exhaustive in A if for
every finite subset F ⊆ A and every ε > 0, there exists k ∈ N such that F ⊆ε Ak.

Example 2.6. If A = lim−→Ak, then (ι∞,k(Ak))k∈N is exhaustive in A.

Theorem 2.7. Let A be a separable continuous field over a compact metrizable space X with dim(X) = n < ∞.
Suppose that each A(x) is a UCT Kirchberg algebra. Then A admits an exhaustive sequence (Ak)k∈N where each Ak is
an n-pullback.

If moreover K1(A(x)) is torsion-free for every x ∈ X, then one can arrange that Ak ⊆ Ak+1 for all k ∈ N.

Remark 2.8. If A(x) ∼= O2 ⊗ K for all x ∈ X, then one can arrange that Ak(x) ∼= O2 ⊗ K for all k ∈ N and all
x ∈ X as well. Since Ak has finitely many singularities, it follows that Ak ∼= C(X,O2 ⊗ K) for all k ∈ N and hence
A ∼= C(X,O2 ⊗K).

In particular, we obtain the following result.

Corollary 2.9. All O2 ⊗ K continuous fields over finite dimensional spaces are trivial. Similarly, if A is unital and
A(x) ∼= O2 for all x ∈ X, then A ∼= C(X,O2).

The case X = ∗ in the following theorem is the well-known fact proved by Kirchberg that any separable nuclear
C∗-algebra is KK-equivalent to a Kirchberg algebra.

Theorem 2.10. Any separable nuclear continuous field is KKX -equivalent to a Kirchberg field.

Proof. Assume that A is unital. Find a C(X)-linear unital embedding α : C(X) ⊗ O2 → A. By Blanchard-Kirchberg,
there is a C(X)-linear unital embedding β : A→ C(X)⊗O2. Consider the composition

A
β
// C(X)⊗O2

α // A,

and denote it by θ. Let s1, s2 ∈ A be the images of the canonical generators of O2 via α, and define ϕ : A→ A by

ϕ(a) = s1as
∗
1 + s2θ(a)s∗2

for a ∈ A. The inductive limit A] = lim−→(A,ϕ) is a Kirchberg field. Since KKX(ϕ) = [idA], it follows that the inclusion
A ↪→ A] is a KKX -equivalence. �

We would like to have a useful criterion to determine when an element σ ∈ KKX(A,B) is invertible.

Theorem 2.11. Let A and B be separable nuclear continuous fields over a finite dimensional space X. An element
σ ∈ KKX(A,B) is invertible if and only if it is pointwise invertible, this is, if σx ∈ KK(A(x), B(x))−1 for all x ∈ X.

A priori, it is not clear that such restrictions preserve fibers. We explain how this is the case when A and B are
stable Kirchberg fields. The class σ ∈ KKX(A,B) contains a C(X)-linear homomorphism, and these preserve fibers.
The general case uses Theorem 2.10.
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Proof. We may assume that A and B are Kirchberg fields and that σ = KKX(ϕ) for some C(X)-linear homomorphism
ϕ : A→ B. The cone Cϕ → A→ B is KKX -contractible if and only if ϕ is a KKX -equivalence. Notice that (Cϕ)x = Cϕx

for all x ∈ X, and ϕx is a KK-equivalence by assumption. One has Cϕ ∼KKX
(Cϕ)]. Moreover, the fibers satisfy

((Cϕ)] ⊗K)x
∼= O2 ⊗K

for all x ∈ X, which by a previous theorem implies that (Cϕ)] ⊗K is trivial itself, hence KKX contractible. The result
now follows. �

Notice that finite dimensionality of X was used only to conclude that (Cϕ)] ⊗K is trivial.

Corollary 2.12. (Criterion for local triviality) Let A be a Kirchberg field over a finite dimensional space X. Suppose
that there exists a Kirchberg algebra D and σ ∈ KK(D,A) such that σx ∈ KK(D,A(x))−1 for all x ∈ X. Then

A⊗K ∼= C(X,D ⊗K).

Proof. The map KKX(C(X)⊗D,A)→ KK(D,A) is a bijection. �

Corollary 2.13. Let A be a separable unital field over a metrizable compact finite dimensional space X. Suppose that
A(x) ∼= On for all x ∈ X, with n ∈ {2, . . . ,∞}. Then A is locally trivial. Moreover, it is trivial if and only if either
n =∞ or (n− 1)[1A] = 0 in K0(A).

In particular, any separable unital field over X with fibers O2 or O∞ is trivial.

Proof. For k ∈ N, denote by Vk = B(x, 1/k) ⊆ X the ball of radius 1/k centered at x in X. Using that A(x) = lim←−A(Vk)

and the fact that On is semiprojective, there exists k ∈ N and a unital homomorphism σ : On → A(Vk) making the
following diagram commute

A(Vk)

��

On

σ

<<

// A(x).

Hence the map σx : On → On send [1n] to [1n] and is thus a KK-equivalence by the UCT. Since it is a fiber-wise
equivalence, it is an equivalence itself. �

We will construct an example of a unital continuous field A over the Hilbert cube X = [0, 1]∞ such that A(x) ∼= O2

for every x ∈ X but A � C(X,O2). The example is a modification of an example by Hirshberg-Rørdam-Winter which
shows that absorption of a strongly self-absorbing C∗-algebra by all fibers does not pass to the continuous field if the
underlying space is infinite dimensional.

Example 2.14. Let e ∈M2(C(S2)) be the Bott projection (with rank one), and let p =

(
1 0
0 e

)
∈M3(C(S2)). Note

that p has rank 2. Set B =
⊗∞

n=1 pM3(C(S2))p, so that B(y) = M2∞ for all y ∈ Y =
∏
n∈N S

2. Notice that B is a

continuous field over Y . We compute its K-theory as follows. The map C⊕ C→ pM3(C(S2))p determined by

(1, 0) 7→
(

1 0
0 02

)
and (0, 1) 7→

(
0 0
0 e

)
is a KK-equivalence, so the map

⊗
n∈N C2 ∼= C(K)→ B is a KK-equivalence as well. (Here K denotes de Cantor set.)

Thus,

K0(B) ∼= C(K,Z).

Now let A = B ⊗O3, whose fibers are unital UCT Kirchberg algebras with trivial K-theory. It follows from Kirchberg-
Phillips that A(y) ∼= O2 for all y ∈ Y . On the other hand,

K0(A) = K0(B ⊗O3) ∼= K0(B)⊗K0(O3) ∼= C(K,Z)⊗ Z2
∼= C(K,Z2) � 0,

so in particular A is not trivial (this is, does not have the form C(Y ) ⊗ O2). We now show how we can replace
Y =

∏
n∈N S

2 with X = [0, 1]∞ to get the desired example. One can embed Y into X by universality of the Hilbert cube.
By Blanchard-Kirchberg, there is an embedding η : B ↪→ C(Y )⊗O2. Under this inclusion, one has

A = {f ∈ C(X,O2) : f |Y ∈ η(B)}.
In particular, A(x) ∼= O2 for all x ∈ X and there is a short exact sequence

0→ C0(X \ Y )⊗O2 → A→ A(x) ∼= η(B) ∼= B → 0.

Since C0(X \ Y )⊗O2 is KK-contractible, one concludes that K0(A) ∼= K0(B) and thus A is not trivial either.

The same example can e modified to get one such continuous field with fibers On for 2 ≤ n <∞, but not for n =∞
so far. The following natural question remains open, but is expected to be answered positively.

Question 2.15. Is there a continuous field over [0, 1]∞ whose fibers are O∞ that is not trivial?
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The main issue is detecting local triviality of continuous fields over infinite dimensional spaces. Equivariant E-theory
EX(A,B), as developed by Dadarlat-Meyer, is useful in this context.

Theorem 2.16. Let A be a separable nuclear C∗-algebra with Prim(A) = X Hausdorff. (Recall that any such algebra
is a continuous field over X with simple fibers.) Suppose that KK(I, I) = 0 for all ideals I in A. Then

A⊗O∞ ⊗K ∼= C0(X)⊗O2 ⊗K.

We recall the definition of X-equivariant E-theory.

Definition 2.17. If X is a second countable topological space, a C∗-algebra A is said to be a C∗-algebra over X if there
is a function O(X)→ Ideals(A), denoted by U 7→ A(U), satisfying

(1) A(∅) = 0 and A(X) = A,
(2) A(U1 ∩ U2) = A(U1) ·A(U2) (= A(U1) ∩A(U2)) for open sets U1 and U2 in X.

(3) A(
⋃
n∈N Un) = lim−→A(U1) + · · ·+A(Un) which in some sense can be interpreted as

∑
n∈NA(Un).

The bivariant functor EX(A,B) is constructed using asymptotic morphisms ϕ : A→ Cb([0,∞), B) satisfying

ϕ(A(U)) ∈ Cb([0,∞), B(U)) + C0([0,∞), B)

for all U ⊆ X open. (It is enough to check this condition on a basis for the topology of X.)
It is a fact that if A is a nuclear continuous field over a Hausdorff space X, then KKX(A,B) ∼= EX(A,B) for any

C∗-algebra B. Nevertheless, EX -theory is more suitable for some computations.

We illustrate the difference between EX -theory and KKX -theory in the following example.

Example 2.18. Consider the following extension of algebras over [0, 1]:

0→ C0((0, 1])→ C([0, 1])→ C→ 0.

It induces an element δ ∈ KK1(C, C0((0, 1])), but it does not induce an element δ[0,1] ∈ KK1
[0,1](C, C0((0, 1])). It

nevertheless induces an element δ[0,1] ∈ E1
[0,1](C, C0((0, 1])).

The condition ϕ(A(U)) ∈ Cb([0,∞), B(U)) + C0([0,∞), B) can be arranged for one (fixed) open set U at a time.
Given an asymptotic morphism ϕ : A→ B, we denote by ϕ̇ : A→ B∞ the induced homomorphism.

Lemma 2.19. Given an X-asymptotic morphism ϕ = (ϕt)t∈[0,∞) : A → B and an open subset U ⊆ X, there exists an

X-asymptotic morphism ϕU : A→ B such that ϕ̇U = ϕ̇ and ϕU (A(U)) ∈ Cb([0,∞), B(U)).

Proof. The asymptotic morphism ϕU is constructed by setting ϕU = S̃U ◦ ϕ̇ in the following diagram

Cb([0,∞), B(U)) //

��

Cb([0,∞), B)

��

B∞(U)

SU

OO

ι // B∞(X)

S̃U

OO

A.

ϕ̇

OO

�

Corollary 2.20. For every U ⊆ X open, the inclusion B(U) ↪→ B induces an isomorphism

E∗X(A(U), B(U))
∼= // E∗X(A(U), B) .

Corollary 2.21. Suppose that X is a finite space. Given x ∈ X, denote by Ux ⊆ X the minimal open subset of X
containing x. For x ∈ X and a C∗-algebra D, let ιx(D) be the X-algebra with fiber D over x and C elsewhere. If B is
any other field, then

E∗X(ιx(D), B) ∼= E(D,B(Ux)).

We need a result that approximates E∗X(A,B) by E-groups over finite spaces. Let (Un)n∈N be a basis for the topology
of X, and denote by τn the topology on X generated by {U1, . . . , Un}. Let Xn denote the (finite) T0-quotient of X with
the topology τn. We may regard A and B as algebras over Xn.

Theorem 2.22. (Dadarlat-Meyer) There is a short exact sequence

0→
1

lim←−E
∗+1
Xn

(A,B)→ E∗X(A,B)→ lim←−E
∗
Xn

(A,B)→ 0.

In EXn
we have asymptotic morphisms that are Xn-equivariant, this is, equivariant with respect to {U1, . . . , Un}. The

key point is that lim←−
1E∗+1

Xn
(A,B) is nilpotent: the product of any two elements is zero.
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Theorem 2.23. Let A and B be separable C∗-algebras over a second countable topological space X. Then σ ∈ E∗X(A,B)
is invertible if and only if σU ∈ E∗(A(U), B(U)) is invertible for all U ⊆ X open.

Proof. Assume we have proved the theorem for the finite spaces Xn. From the diagram

0 // lim←−
1E∗+1

Xn
(A,B) //

��

E∗X(A,B) // lim←−E
∗
Xn

(A,B) //

��

0

0 // lim←−
1E∗+1

Xn
(A,C) // E∗X(A,C) // lim←−E

∗
Xn

(A,C) // 0

and the 5-Lemma, it follows that the result also holds for X itself. Thus, we may prove the result assuming that X is
finite. Suppose moreover that A ∼= ιx(D) for some x ∈ X and some C∗-algebra D. Suppose σU ∈ E∗X(B(U), C(U)) is
invertible for all U ⊆ X open. Then we have

EX(ιx(D), B)
·σU //

∼=
��

EX(ιx(D), C)

∼=
��

EX(D,B(Ux))
·σUx // EX(D,C(Ux)),

and since σUx is bijective, the result follows. The general case where A � ιx(D) follows from the 5-Lemma and using
induction. �

3. Classification of one-parameter continuous fields

We will use EX to study continuous fields over [0, 1]. We say that a C∗-algebra D has rational K-theory if K0(D) ∼=
K0(D)⊗Q.

Theorem 3.1. (Bentmann-Dadarlat) Let A and B be separable continuous fields over [0, 1] whose fibers are stable UCT
Kirchberg algebras with rational K-theory. Then

A ∼= B if and only if FK(A) ∼= FK(B).

We describe FK(A) in this case. It is the set of all 6-term exact sequences

K0(A(U)) // K0(A(Y )) // K0(A(Y \ U))

��

K1(A(Y \ U))

OO

K1(A(Y ))oo K1(A(U))oo

associated to extensions of the form 0 → A(U) → A(Y ) → A(Y \ U) → 0, where U ⊆ X is open, Y ⊆ X is closed, and
Y \ U is connected.

Proof. The idea is to approximate [0, 1] by finite spaces of accordion type. Let (dn)n∈N be a dense sequence in (0, 1).
For n ∈ N, let U2n−1 = [0, dn) and U2n = (dn, 1]. Denote by τn the topology generated by {U1, . . . , U2n} and by Xn its
T0-quotient. Then Xn is an accordion space of the form

•

�� ��

•

�� ��

•

�� ��

•

�� ��

•

��   
• • • • • •.

We want to find a surjection lim−→EXn
(A,B) → Hom(FK(A), FK(B)), because this will imply that an isomorphism of

the filtrated K-theory lifts to an invertible element in EX :

EX(A,B) // // lim−→EXn
(A,B) // // Hom(FK(A), FK(B))

and the result will follow from the previous Theorems. We need some results. �

Theorem 3.2. (Bentmann-Köler) Suppose that X is a finite accordion space, and let A and B be C∗-algebras over X
in the Bootstrap category for EX . Then there is a short exact sequence

0→ Ext1
NTX (FKX(A), FKX(B))→ E∗X(A,B)→ HomNTX (FKX(A), FKX(B))→ 0.

We will apply this short exact sequence to the spaces X = Xn.

Proof. (Continuation, Theorem 3.1) Notice that A(x) ∼= A(x) ∼= Q ⊗ K, and since [0, 1] is finite dimensional, it follows
by Hirshberg-Rørdam-Winter that A ∼= A ⊗ Q ⊗ K. In particular, Ext1

NTXn (FKXn(A), FKXn(B)) = 0 because the
K-theory of A is rational. Thus,

E∗Xn
(A,B)

∼= // HomNTXn (FKXn(A), FKXn(B)).
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By continuity of K-theory, the right-hand side is isomorphic to Hom(FK(A), FK(B)). The resulting isomorphism
lim−→EXn(A,B)→ Hom(FK(A), FK(B)) is the desired map. �

The following remains as an open problem.

Problem 3.3. Classify all continuous fields of stable UCT Kirchberg algebras over [0, 1].

3.1. Comments on the UCT for C0(X)-algebras. For C∗-algebras, the UCT involves a surjection

KK(A,B) � Hom(K∗(A),K∗(B)).

For X-algebras with X totally disconnected, one may guess that the surjection would be

KKX(A,B) � HomC(X,Z)(K∗(A),K∗(B)) ∼= HomNTX (FKX(A), FKX(B)).

However, this map is in general not surjective. One must instead use K-theory with coefficients:

KKX(A,B) � HomC(X,Λ)(K(A),K(B)).

The case of 1-dimensional spaces is even more complicated.


