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1. Introduction

C∗-algebras of higher-rank graphs (or k-graphs) first appeared in work of Kumjian and Pask as gen-
eralizations of graph C∗-algebras. Their introduction was inspired by work of Robertson and Steger on
C∗-algebras arising from certain group actions on buildings. C∗-algebras of k-graphs form a wide class
nuclear C∗-algebras that satisfy the UCT. They provide key examples in noncommutative geometry and
have been used to calculate nuclear dimension for Kirchberg algebras. Under mild hypotheses there is a
path groupoid GΛ such that C∗(Λ) ∼= C∗(GΛ). Using this isomorphism, it was shown that C∗(Λ) is simple
iff Λ is aperiodic and cofinal. Recently, cohomological properties of k-graphs have been explored. Given
a k-graph Λ and a T-valued 2-cocycle c, one may form the twisted k-graph C∗-algebraC∗(Λ, c). Examples
include all noncommutative tori and crossed products of Cuntz algebras by quasifree automorphisms. When
the cocycle is of exponential form, it was shown that K∗(C

∗(Λ, c)) ∼= K∗(C
∗(Λ)). Simplicity of C∗(Λ, c) has

been characterized, but the ideal structure remains an enigma.

2. Graph algebras

We recall the definition of graph algebras. Let E = (E0, E1, r, s) be a directed graph. Suppose that r
is onto (E is source free), and finite-to-one (E is row finite). Let C∗(E) denote the universal C∗-algebra
generated by a family {pv : v ∈ E0} of orthogonal, and a family {te : e ∈ E1} of partial isometries, satisfying

(1) t∗ete = ps(e) for all e ∈ E1, and

(2) pv =
∑

r(e)=v

tet
∗
e for all v ∈ E0.

With the convention adopted, the concatenation

• e // •
f
// •

is written fe (thought of as composition of arrows). Some authors use the opposite convention.
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Example 2.1. For n ≥ 1, denote by On the graph with one vertex and n loops around it. For n = 1, we
have C∗(O1) ∼= C(T). On the other hand, for n ≥ 2 it is easy to check that C∗(On) ∼= On, the Cuntz algebra
on n generators.

Example 2.2. Given n ≥ 1, let Cn denote the graph with n vertices {v1, . . . , vn} and n edges {e1, . . . , en},
and with range and source maps given by r(ej) = vj and s(ej) = ej+1 for all j = 1, . . . , n, with indices taken
modulo n. Then C∗(Cn) ∼= Mn(C(T)), with the center being generated by

n∑
j=1

tej · · · tente1 · · · tej−1 .

Example 2.3. Let Ω denote the graph with Ω0 = Ω1 = N, with s(n) = n+ 1 and r(n) = n for all n ∈ N.

• •oo •oo · · ·oo

Then C∗(Ω) ∼= K(`2(N)).

A small category is a category C for which the class Ob(C) of its objects is a set. In this case, the class
Mor(C) of its morphisms is also a set. Identify Ob(C) with the subset of Mor(C) consisting of the identity
morphisms. For ξ ∈ Mor(u, v), write s(ξ) = u and r(ξ) = v. There is a composition map

m : C ∗ C = {(ξ, η) ∈ C × C : s(ξ) = r(η)} → C
given by m(ξ, η) = ξη for (ξ, η) ∈ C ∗ C. The map m is associative and satisfies ξ = idr(ξ)ξ = ξids(ξ) for all
ξ ∈ Mor(C).

Example 2.4. Consider C = N with Ob(N) = {0}. Composition is m(j, k) = j + k.

Example 2.5. Let (P,≤) be a partially ordered set. Set P̃ = {(p, q) : p ≤ q}. Then Ob(P ) = P , idp = (p, p),
and (p, q)(q, r) = (p, r) for all p, q, r ∈ P .

Given a directed graph E and n ≥ 2, let En denote the set of n-paths on the graph, and extend r and
s to En in the obvious way. Set E∗ =

⋃
n∈N

En. Then E∗ is a small category, and there is a degree functor

d : E∗ → N with the following property. Whenever m,n ∈ N and λ ∈ E∗ satisfy d(λ) = n + m, there exist
unique ν, µ ∈ E∗ with λ = νµ, d(ν) = n and d(µ) = m.

We can reformulate the definition of C∗(E) using E∗ as follows.

Definition 2.6. The C∗-algebra C∗(E∗) is the universal C∗-algebra generated by a family {tλ : λ ∈ E∗} of
partial isometries satisfying

(1) {tv : v ∈ E0} is a family of orthogonal projections;
(2) for all λ ∈ E∗, we have t∗λtλ = ts(λ);
(3) if s(λ) = r(µ), then tλµ = tλtµ;
(4) For all v ∈ E0 and for all n ∈ N, we have

tv =
∑

r(λ)=v,d(λ)=n

tλt
∗
λ.

3. Higher rank graphs

Throughout this section, we fix k ∈ N.

Definition 3.1. Let Λ be a small category, and let d : Λ→ Nk be a functor. We say that (Λ, d) is a k-graph
if it satisfies the unique factorization property: for all λ ∈ Λ and for all m,n ∈ Nk satisfying d(λ) = m+ n,
there exist unique µ, ν ∈ Λ with λ = µν, such that d(µ) = m and d(ν) = n.

For n ∈ Nk, set Λn = d−1({n}), and identify Λ0 = Ob(Λ) with the set of vertices. For j = 1, . . . , k, an
element λ ∈ Λej is called an edge. For v, w ∈ Λ0 and X ⊆ Λ, we set vX = r−1(v)∩X and Xv = s−1(v)∩X.
We assume that Λ is row finite (vΛn is finite and nonempty for all v ∈ Λ0).

A morphism between k-graphs is a functor between the respective categories that intertwines the degree
functors.

2



Remark 3.2. If k = 0, then d is trivial and Λ is just a set. If k = 1, then Λ = E∗ for some directed graph
E. If k ≥ 2, we think of Λ as generated by k directed graphs of different colors that share the same set of
vertices.

In sketching k-graphs, we include only vertices and edges. One has to specify “commuting squares”, unless
there is no choice.

Example 3.3. Consider the following k-graph:

•a
$$

e
** • b
zz

f

jj

Here, we must have be = ea and ae = eb, because there are no other possible decompositions.

Example 3.4. The simplest k-graph Tk has one vertex and one edge for each color. That is, Tk = Nk and
d is the identity map. For example, the following is T3:

•

a

��

b

ZZ
c

$$

(Observe that one does not need to specify commuting squares.)
This is the k-graph analog of a torus; see Example 3.14.

Example 3.5. Denote by Ωk the k-graph given by Ω0
k = Nk and Ω1

k = {(m,n) ∈ Nk × Nk : m ≤ n}, with
structure maps

s(m,n) = n r(m,n) = m (m,n)(n, `) = (m, `) d(m,n) = n−m.
For k = 2, the k-graph is

...

��

...

��

...

��
•

��

•

��

oo •

��

oo · · ·oo

•

��

•

��

oo •

��

oo · · ·oo

• •oo •oo · · ·oo

Definition 3.6. If Λ is a k-graph and Σ is an `-graph, then Λ × Σ, with coordinate wise operations, is a
(k + `)-graph.

In a cartesian product, we always have ea = ae for edges a and e, so the commuting squares do not need
to be specified. In some cases, commuting squares must be made explicit:

Example 3.7. Consider the following graph:

•

a

��

c

ZZ

e
** • b
zz

f

jj

One has to determine whether ae = ea and be = eb, or ae = eb and be = ea. In the first case, one gets
O2 ⊗ C(T), and in the second one, one gets O2 o Z, where the automorphism is determined by exchanging
the canonical generators.

We now proceed to define the C∗-algebra associated to a k-graph.
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Definition 3.8. Let Λ be a k-graph. We define C∗(Λ) to be the universal C∗-algebra generated by a family
{tλ : λ ∈ Λ} of partial isometries satisfying:

(1) {tv : v ∈ Λ0} is a family of orthogonal projections;
(2) for all λ ∈ Λ, we have t∗λtλ = ts(λ);
(3) if s(λ) = r(µ), then tλµ = tλtµ;
(4) For all v ∈ Λ0 and for all n ∈ Nk, we have

tv =
∑
vΛn

tλt
∗
λ.

For v ∈ Λ0, we usually denote tv by pv.

Remark 3.9. One can check that C∗(Λ) is unital if and only if Λ0 is finite.

Remark 3.10. The set span{tλtµ : s(µ) = s(λ)} is dense in C∗(Λ).

By universality, there is a strongly continuous action γ : Tk → Aut(C∗(Λ)) which, for z = (z1, . . . , zk) ∈
Tk, is given by

γz(tλ) = z
d(λ)1
1 · · · zd(λ)k

k tλ

for all λ ∈ Λ. This is called the gauge action.
The following result is useful when determining whether a given representation is faithful.

Theorem 3.11. Let π : C∗(Λ) → B be a homomorphism, and suppose there exists an action β : Tk →
Aut(B) such that π ◦ γz = βz ◦ π for all z ∈ Tk. Then π is injective if and only if π(pv) 6= 0 for all v ∈ Λ0.

Proof. We give a sketch of the argument. It is known that C∗(Λ)γ is an AF-algebra, and that every
projection in it is Murray-von Neumann equivalent to a vertex projection. Since π does not vanish on
the vertex projections, it follows that the restriction of π to C∗(Λ)γ is injective. Now, there is a faithful
conditional expectation E : C∗(Λ)→ C∗(Λ)γ , given by integration, and using the commutative diagram

C∗(Λ)
π //

E

��

B

E

��

C∗(Λ)γ
π|∗C(Λ)γ

// Bβ ,

we deduce that π is also faithful. �

Remark 3.12. The existence of a conditional expectation from C∗(Λ) to a nuclear C∗-algebra (in this case,
the AF-algebra C∗(Λ)γ) implies that C∗(Λ) is nuclear.

A simple application of the above result gives the following:

Corollary 3.13. If Λ is a k-graph and Σ is an `-graph, then there is a canonical isomorphism

C∗(Λ× Σ) ∼= C∗(Λ)⊗ C∗(Σ).

Example 3.14. Recall the k-graph Tk from Example 3.4. Since Tk = T1 × · · ·T1, we immediately see that
there are natural isomorphisms

C∗(Tk) ∼=
k⊗
j=1

C∗(T1) ∼=
k⊗
j=1

C(T) ∼= C(Tk).

Example 3.15. Recall the k-graph Ωk from Example 3.5. Since Ωk = Ω1 × · · ·Ω1, we immediately see,
using Example 2.3 at the second step, that there are natural isomorphisms

C∗(Ωk) ∼=
k⊗
j=1

C∗(Ω1) ∼=
k⊗
j=1

K(`2(N)) ∼= K(`2(Nk)).

Example 3.16. Let m,n ∈ N, and let Cm and Cn be as in Example 2.2. Then there is a natural isomorphism
C∗(Cm × Cn) ∼= Mmn(C(T2)).
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Example 3.17. Let m,n ∈ N with m,n ≥ 2, and let Om and On be as in Example 2.1. Then there is a
natural isomorphism C∗(Om ×On) ∼= Om ⊗On.

4. Crossed products of higher rank graphs

4.1. Higher rank graph automorphisms. Suppose that α is an automorphism of Λ. Then there is a
(unique) automorphism α̃ of C∗(Λ) given by α̃(tλ) = tα(λ) for all λ ∈ Λ. We can construct a (k + 1)-graph
Λ oα Z from α as follows. As a set, we have Λ oα Z = Λ× N, and the structure maps are given by

s(λ, n) = (s(α−n(λ)), 0) r(λ, n) = (r(λ), 0) (λ, `)(µ,m) = (λα`(µ), `+m) d(λ, n) = (d(λ), n).

Theorem 4.1. Let π : C∗(Λ)→M(C∗(Λ) oα̃ Z) be the canonical embedding. Let u ∈M(C∗(Λ) oα̃ Z) be
the canonical unitary implementing α̃ in the crossed product. Then there is a canonical isomorphism

ϕ : C∗(Λ oα Z)→ C∗(Λ) oα̃ Z
given by ϕ(t(λ,n)) = π(tλ)un for all (λ, n) ∈ Λ oα Z = Λ× N.

4.2. 1-cocycles and group actions. Let G be a locally compact abelian group. A map c : Λ→ G is called
a G-valued 1-cocycle on Λ if c(λµ) = c(λ) + c(µ) for all λ, µ ∈ Λ. The collection of all G-valued 1-cocycles
on Λ is denoted by Z1(G,Λ).

Given c ∈ Z1(G,Λ), there is an action αc : Ĝ→ Aut(C∗(Λ)) given by

αcχ(tλ) = χ(c(λ))tλ

for all χ ∈ Ĝ and for all λ ∈ Λ.

Example 4.2. The degree map d : Λ → Nk ⊆ Zk can be regarded as a Zk-valued 1-cocycle on Λ. The
induced action αd : Tk → Aut(C∗(Λ)) is precisely the gauge action.

Suppose that G is discrete. Then the skew product Λ×c G is a k-graph (same rank as Λ) with structure
maps given by

s(λ, g) = (s(λ), g + c(λ)) r(λ, g) = (r(λ), g) d(λ, g) = d(λ)

and with composition given by (λ, g)(µ, g + c(λ)) = (λµ, g) if s(λ) = r(µ).

Proposition 4.3. There is a canonical isomorphism C∗(Λ ×c G) ∼= C∗(Λ) oαc Ĝ. In particular, and with
γ : Tk → Aut(C∗(Λ)) denoting the gauge action, we have

C∗(Λ) oγ Tk ∼= C∗(Λ od Zk).

Suppose that a discrete group G acts on Λ by k-graph automorphisms. Then the quotient Λ/G inherits a
natural k-graph structure from Λ. The following result allows us to identify, up to Morita equivalence, the
crossed product by a free action with the C∗-algebra of the orbit space k-graph.

Theorem 4.4. Suppose that a discrete group G acts freely on Λ. (This condition can be checked on the
vertices.) Denote by β : G→ Aut(C∗(Λ)) the induced action. Then there is a natural isomorphism

C∗(Λ) oβ G ∼= C∗(Λ/G)⊗K(`2(G)).

Let G be an abelian discrete group and let c ∈ Z1(G,Λ). Define a k-graph action βc : G→ Aut(Λ×c G)
by

βcg(λ, h) = (λ, g + h)

for all g, h ∈ G and for all λ ∈ Λ. Then βc is free. Moreover, every free action is of this form.

Corollary 4.5. LetG be an abelian discrete group and let c ∈ Z1(G,Λ). Then there is a natural isomorphism

C∗(Λ×c G) oβc G ∼= C∗(Λ)⊗K(`2(G)).

In the corollary above, and under the identification C∗(Λ ×c G)oβc ∼= C∗(Λ) oαc Ĝ, the action βc is

identified with α̂c. In this sense, the above result can be deduced from Takai duality.

Proposition 4.6. Let Σ be a k-graph. Suppose that its degree map is a coboundary, that is, that there
exists a function b : Σ0 → Zk such that d(λ) = b(s(λ))− b(r(λ)) for all λ ∈ Σ. Then C∗(Σ) is AF.
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We will use the above proposition to prove the following result.

Theorem 4.7. Let γ : Tk → Aut(C∗(Λ)) denote the gauge action. Then C∗(Λ) oγ Tk is AF.

Proof. By Example 4.2, γ is the action associated to the 1-cocycle d. By Proposition 4.3, there is a canonical
isomorphism C∗(Λ) oγ Tk ∼= C∗(Λ od Zk).

We claim that the degree map for Λ×d Zk is a coboundary with b : (Λ×d Zk)0 → Zk given by b(ξ, n) = n
for all (ξ, n) ∈ (Λ×d Zk)0. Indeed, for (λ, n) ∈ Λ×d Zk, we have

b(s(λ, n))− b(r(λ, n)) = b(s(λ), n+ d(λ))− b(r(λ), n) = d(λ) = d(λ, n),

and the claim is proved. The result now follows from Proposition 4.6. �

As a consequence, we get

Theorem 4.8. There is a canonical isomorphism

C∗(Λ×d Zk) oβ̃d Z
k ∼= C∗(Λ)⊗K(`2(Zk)).

In particular, C∗(Λ) is strongly Morita equivalent to the crossed product of an AF-algebra by Zk. We
deduce that C∗(Λ) is nuclear and satisfies the UCT.

We now turn to gauge invariant ideals.

Definition 4.9. Let H be a subset of Λ0.

(1) We say that H is hereditary if for every λ ∈ Λ, whenever r(λ) belongs to H, then s(λ) belongs to H
as well. (We think of Λ0 with the partial order given by v ≤ w if there exists λ ∈ Λ with s(λ) = v
and r(λ) = w. Then H is hereditary in the usual sense.)

(2) We say that H is saturated if for all v ∈ Λ0, if there exists j ∈ {1, . . . , k} such that s(vΛej ) ⊆ H,
then v ∈ H. (If a vertex is such that all edges of one color ending at it have sources in H, then the
vertex is in H.)

Remark 4.10. The collection of all hereditary saturated subsets of Λ0 is a lattice with the obvious opera-
tions.

We can describe all the gauge invariant ideals. For H ⊆ Λ0, denote by IH the ideal in C∗(Λ) generated
by {pv : v ∈ H}. When H is hereditary and saturated, then

IH = span{tλt∗µ : s(λ) = s(µ) ∈ H}.

Theorem 4.11. The assignment H 7→ IH defines a one-to-one correspondence between the gauge invariant
ideals in C∗(Λ) and the collection of all hereditary saturated subsets of Λ0.

Example 4.12. Consider the following 1-graph:

•

•

??

•

__

•

??

•

??__

•

__

•

??

•

??__

•

??__

•

__

The C∗-algebra associated to this graph is the GICAR algebra: the gauge invariant CAR algebra. It is also
the fixed point algebra of O2 under the T2 action given by α(z1,z2)(sj) = zjsj for (z1, z2) ∈ T2 and j = 1, 2.

Observe that hereditary saturated subsets of Λ0 are in one-to-one correspondence with vertices, where a
vertex has associated to it the set of its predecessors.
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5. The path groupoid of a higher rank graph

Recall the definition of the k-graph Ωk from Example 3.5.

Definition 5.1. A k-graph morphism x : Ωk → Λ is said to be an infinite path in Λ. We denote by Λ∞ the
set of all infinite paths in Λ. For x ∈ Λ∞, we set r(x) = x(0, 0).

The cylinder set determined by λ ∈ Λ is

Z(λ) = {x ∈ Λ∞ : λ = x(0, d(λ))}.

This set is never empty since vΛn 6= ∅ for all v ∈ Λ0 and all n ∈ Nk. Note that x ∈ Z(r(x)) for all x ∈ Λ∞.
The collection {Z(λ) : λ ∈ Λ} forms a basis for a topology on Λ∞.

Definition 5.2. For p ∈ Nk, define the shift σp : Λ∞ → Λ∞ by

σp(x)(m,n) = x(m+ p, n+ p)

for all x ∈ Λ∞ and for all (m,n) ∈ Nk × Nk.

If p = d(λ), then σp induces a homeomorphism Z(λ) ∼= Z(s(λ)). Thus, for all x ∈ Z(s(λ)), there
exists a unique y ∈ Z(λ) such that x = σp(y). In this case, we write y = λx. Observe that σp is a local
homeomorphism for all p ∈ Nk.

A key technical tool to analyze C∗(Λ) is the path groupoid GΛ introduced by Renault.

Definition 5.3. Denote by GΛ the groupoid

GΛ = {(x,m− n, y) ∈ ΛI × Zk × ΛI : m,n ∈ Nk, σm(x) = σn(y)}.

The unit space of GΛ may be identified with Λ0 via x 7→ (x, 0, x). Under this identification, we have
r(x, `, y) = x and s(x, `, y) = y. Composition is given by

(x, `, y)(y, j, z) = (x, `+ j, z),

and the inverse of (x, `, y) is (y,−`, x).

If σm(x) = σn(y), then there exist µ, ν ∈ Λ and z ∈ Λ∞ such that

d(µ) = m, d(ν) = n, s(µ) = s(ν) = r(z), x = µz and y = νz.

For µ, ν ∈ Λ with s(µ) = s(ν), set

Z(µ, ν) = {(µz, d(µ)− d(ν), νz) : z ∈ Z(s(µ))}.

The family of all Z(µ, ν) forms a basis for a topology on GΛ, and Z(µ, ν) is compact in this topology. In
particular, GΛ is zero-dimensional. With this topology, GΛ is an étale, ample, Hausdorff groupoid, and it is
amenable since it is a Renault-Deaconu groupoid.

For each λ ∈ Λ, we let Tλ denote the characteristic function of Z(λ, s(λ)). (We think of Z(λ, s(λ)) as the
set of all infinite paths in Λ terminating at s(λ).)

Theorem 5.4. The map tλ 7→ Tλ, for λ ∈ Λ, induces a canonical isomorphism

C∗(Λ) ∼= C∗(GΛ).

Proof. We sketch the proof. The operators Tλ satisfy the relations in the definition of C∗(Λ), so there exists
a canonical homomorphism ψ : C∗(Λ)→ C∗(GΛ) given by ψ(tλ) = Tλ for all λ ∈ Λ.

Since ψ(tλt
∗
µ) = TλT

∗
µ is the characteristic function of Z(µ, λ), the span of such functions is dense in

C∗(GΛ). It follows that ψ is surjective. To show that it is injective, we will use Theorem 3.11.
There is an action β : Tk → Aut(C∗(GΛ)) given by

βz(f)(x, `, y) = z`11 · · · z
`k
k f(x, `, y)

for all f ∈ Cc(GΛ) and for all (x, `, y) ∈ GΛ. It is easy to check that ψ is equivariant with respect to β. Since
ψ(tv) = Tv 6= 0 for all v ∈ Λ0, it follows from Theorem 3.11 that ψ is injective, and thus an isomorphism. �
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6. Simplicity and pure infiniteness of C(Λ)

We begin by studying simplicity of C∗(Λ).

Definition 6.1. We say that Λ is cofinal if for all v ∈ Λ0 and for all x ∈ Λ∞ there exist λ ∈ Λ and n ∈ Nk
such that s(λ) = x(n, n) and r(λ) = v.

Remark 6.2. Λ is cofinal if and only if GΛ is minimal, and if and only if there exist no nontrivial gauge
invariant ideals.

For v ∈ Λ0, the local periodicity group at v, denoted PΛ(v), is

PΛ(v) = {m− n ∈ Zk : m,n ∈ Nk, σm(x) = σn(x) for all x ∈ Z(v)}.

Definition 6.3. We say that Λ is aperiodic if for all v ∈ Λ0 there exists x ∈ vΛ∞ such that the map
Nk → Λ∞, given by n 7→ σn(x), is injective.

Remark 6.4. Λ is aperiodic if and only if PΛ(v) = 0 for all v ∈ Λ0, and if and only if GΛ has trivial isotropy
groups.

It is not in general true that Λ is aperiodic if and only if every ideal in C∗(Λ) is gauge invariant. Hence, the
proof of the following result requires the combination of both properties rather than both of them separately.

Theorem 6.5. The k-graph Λ is cofinal and aperiodic if and only if C∗(Λ) is simple.

We now turn to pure infiniteness in the simple case.

Definition 6.6. An element λ ∈ Λ is said to be a loop if d(λ) 6= 0 and s(λ) = r(λ).
We say that µ ∈ s(λ)Λ is an entrance for λ if d(µ) ≤ d(λ) and λ cannot be written as µν for any ν.
We say that a vertex v ∈ Λ0 can be reached from a loop with an entrance if there exist a loop λ with an

entrance and α ∈ Λ with r(α) = v and s(α) = s(λ).

Observe that the following result only provides a sufficient condition for pure infiniteness of C∗(Λ).

Theorem 6.7. Suppose that Λ is cofinal and aperiodic. If every vertex in Λ can be reached from a loop
with an entrance, then C∗(Λ) is simple and purely infinite. In particular, C∗(Λ) is a Kirchberg algebra that
satisfies the UCT by Theorem 4.8, and it is therefore classified by its K-theory.

The condition in the theorem above is satisfied in a number of cases, for example for the graphs On from
Example 2.1.

7. Twisted higher rank graph

Let G be a locally compact abelian group. For n ≥ 1, let Λ∗n denote the set of composable n-tuples:

Λ∗n = {(λ1, . . . , λn) ∈ Λn : s(λj) = r(λj+1) for j = 1, . . . , n},
and set Λ∗0 = Λ0.

Definition 7.1. We say that a function f : Λ∗n → G is an n-cochain if either n = 0 or f(λ1, . . . , λn) = 0
whenever λj ∈ Λ0 for some j = 1, . . . , n.

Let Cn(Λ, G) denote the group of n-chochains. For f ∈ Cn(Λ, G) with n ≥ 1, define δnf : Λ∗(n+1) → G
by

(δrf)(λ0, . . . , λn) =

n∑
j=0

(−1)jf(λ0, . . . , λ̂j , . . . , λn)

for (λ0, . . . , λn) ∈ Λ∗(n+1). For f ∈ C0(Λ, G), define δ0f : Λ∗1 → G by

δ0f(λ) = f(s(λ))− f(r(λ))

for λ ∈ Λ0.

One checks that these boundary maps satisfy δn+1 ◦ δn = 0 for all n ≥ 0. We denote by H∗(Λ, G) the
cohomology of this complex. That is, with Zn(Λ, G) = ker(δn) and Bn(Λ, G) = =(δn−1), we have

Hn(Λ, G) = Zn(Λ, G)/Bn(Λ, G).
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Remark 7.2. Our main focus will be H2(Λ,T), with T written multiplicatively.

Consider a 2-cocycle c ∈ Z2(Λ,T), that is, a map c : Λ∗2 → G satisfying that for every (λ1, λ2, λ3) ∈ Λ∗3

we have
c(λ1, λ2)c(λ1λ2, λ3) = c(λ1, λ2λ3)c(λ2, λ3).

Then c is a coboundary (that is, c ∈ B2(Λ,T)) if there exists a function b : Λ→ G satisfying

c(λ1, λ2) = b(λ1)b(λ1λ2)b(λ2).

Remark 7.3. There exists a homomorphism H2(Λ,T) → H2(GΛ,T), where the right-hand side is the
groupoid cohomology defined by Renault.

Definition 7.4. For c ∈ Z2(Λ,T), let C∗(Λ, c) denote the universal C∗-algebra generated by a family
{tλ : λ ∈ Λ} of partial isometries satisfying:

(1) {pv : v ∈ Λ0} is a family of orthogonal projections;
(2) for all λ ∈ Λ, we have t∗λtλ = ts(λ);
(3) if s(λ) = r(µ), then tλµ = c(λ, µ)tλtµ;
(4) For all v ∈ Λ0 and for all n ∈ Nk, we have

pv =
∑
vΛn

tλt
∗
λ.

One can show that if c and c′ are cohomologous, then there is a canonical isomorphism C∗(Λ, c) ∼=
C∗(Λ, c′).

Theorem 7.5. For c ∈ Z2(Λ,T), there exist a 2-cocycle σc on GΛ and a canonical isomorphism C∗(Λ, c) ∼=
C∗(GΛ, σc).

8. Simplicity of twisted higher rank graph algebras

If C∗(Λ, c) is simple, then Λ is cofinal, but not necessarily aperiodic. So suppose that Λ is cofinal. Then
PΛ(v)is a subgroup of Zk which does not depend on v ∈ Λ0, so we denote it simply by PΛ. There is a short
exact sequence of groupoids

0→ Λ∞ × PΛ → GΛ → HΛ → 0,

where HΛ is minimal and topologically principal. Denote by ι the injective map ι : Λ∞ × PΛ → GΛ. Then
the cohomology class of ι∗x(σc) in H2(PΛ,T) is independent of x. Moreover, there exist σ ∈ Z2(GΛ,T) and
ω ∈ Z2(PΛ,T) such that [σ] = [σc] and ι∗x(σ) = ω for all x ∈ Λ∞. It follows that there is a canonical
isomorphism

C∗(Λ∞ × PΛ, ι
∗(σ)) ∼= C0(Λ∞)⊗ C∗(PΛ, ω).

(Observe that C∗(PΛ, ω) is a twisted group C∗-algebra, and PΛ is some Z`.)

Theorem 8.1. There exist a Fell bundle BcΛ over HΛ and canonical isomorphisms

BcΛ|Λ∞ ∼= Λ∞ × C∗(PΛ, ω) and C∗(Λ, c) ∼= C∗(HΛ,BcΛ).

Set Zω = {q ∈ PΛ : ω(p, q)ω(q, p) = 1. By results of Olesen, Pedersen and Takesaki, we have

Prim(C∗(PΛ, ω)) ∼= Ẑω.
By work of Ionescu and Williams, there exists an action of HΛ on

Prim(C0(Λ∞)⊗ C∗(PΛ, ω)) ∼= Λ∞ × Ẑω.

Moreover, the action is determined by a 1-cocycle c̃ ∈ Z1(HΛ, Ẑω).

Theorem 8.2. Suppose Λ is cofinal. Then the following are equivalent:

(1) C∗(Λ, c) is simple.

(2) The action of HΛ on Λ∞ × Ẑω is minimal.

(3) For each x ∈ Λ∞, the set {c̃(h) : s(h) = x} is dense in Ẑω.
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