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1. Introduction

Logic for metric structures is a generalization of classical (or discrete) logic, suitable for applications
to metric objects such as C∗-algebras. The most apparent contribution of first order logic is to provide
a syntactic counterpart to the semantic construction of ultraproducts: the notion of formulas. Indeed,
formulas allow one to express the fundamental properties of ultrapowers of C∗-algebras (saturation) and
diagonal embeddings into them (elementarity). These features have appeared in the literature under various
names (Kirchberg’s ε-test, reindexation tricks, etc). Isolating such principles allows one to distinguish
properties that are consequences of “general nonsense” from those that are special to C∗-algebras. The
abstract model-theoretic framework also makes it easier to transfer ideas and argument to other contexts,
such as the equivariant one.

2. First order logic for discrete structures

This was an introductory lecture delivered by Greg Oman. Warning: the notation in this section differs
from that in the other sections.

2.1. First order languages. A first order language (with equality) consists of a set L whose members are
arranged as follows:

(1) Logical symbols: parentheses; logical operators (¬, ∨, ∧, → and ↔); a variable xn for every n ∈ N;
and the equality symbol.

(2) Parameters: quantifier symbols (∀, ∃); predicate symbols, each of which has an arity (a natural
number indicating how many inputs it takes); constant symbols; function symbols, each of which
has an arity.

Example 2.1. The language of set theory consists of a single binary predicate symbol ∈, no constant
symbols, and no function symbols.
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Example 2.2. The language of unital ring theory consists of no predicate symbols, constant symbols 0 and
1, a binary function symbol +, a binary symbol ·, and a unary function ι (to be interpreted as ι(x) = −x).

2.2. Terms, formulas and sentences. Let n ∈ N, let S be a set, and let f : Sn → S be a function. A
subset X ⊆ S is said to be closed under f if f(Xn) ⊆ X. If F is a family of functions on S (with potentially
different arity), we say that X is closed under F if it is closed under every member of F . If B ⊆ S is a subset
and F is a family of functions on S, we denote by B the intersection of all F-closed subsets of S containing
B.

Definition 2.3. Given a language L, the set of L-expressions seq(L) is the set of all finite sequences of
elements in L. There is a semigroup operation, given by concatenation.

Example 2.4. In the language of ring theory, (·, ·,+, ι,∃,∀, 1,→) is an expression.

Definition 2.5. Let f be an n-ary function symbol, and define an operation ϕf : seq(L)n → seq(L) by
ϕf (ε1, . . . , εn) = fε1 · · · εn. Set F = {ϕf : f is a function symbol}. Then the set of terms of L is the
F-closure of the set of constant symbols and variables in L.

Example 2.6. In the language of ring theory, 0 is a term because it is a constant. Also +00 (thought of as
0+0) is a term, and similarly with ++000 (thought of as 0 + (0+0)).

Definition 2.7. An atomic formula is an expression of the form Pt1 · · · tn, where P is an n-ary predicate
and t1, . . . , tn are terms.

Given a language L, define the following operations on seq(L):

(a) ϕ¬(ε) =6= ε;
(b) ϕ∗(α, β) = α ∗ β for all ∗ ∈ {∨,∧,→,↔};
(c) ϕ∀n(ε) = ∀xnε, for n ∈ N; and
(d) ϕ∃n(ε) = ∃xnε, for n ∈ N.

Definition 2.8. Denote by F the collection of all the functions in (a)–(d) above. The collection of all
L-formulas is the F-closure of the atomic formulas. A formula is called a sentence if it has no free variables.

Example 2.9. Consider the language consisting of a single predicate symbol <, and let x and y be variables.
Then ∀x∃y < xy is a formula (which we regard as saying for all x there exists y such that x < y.

2.3. Satisfiability and models. It does not make sense to ask whether a specific formula is true or not in
a language. This will depend on the intended interpretation of a formula in a given structure.

Definition 2.10. An L-structure is a function U defined on a subset of L as follows:

(1) U assigns to ∀ some nonempty set |U|, called the universe of U .
(2) U assigns to equality in L the equality relation on |U|.
(3) U assigns to each n-ary predicate symbol p an n-ary relation pU on U .
(4) U assigns to each constant symbol c an element cU ∈ |U|.
(5) U assigns to each n-ary function symbol f an n-ary function fU : |U|n → |U|.

A variable assignment (relative to U) is a function s : {xn : n ∈ N} → |U| If s is a variable assignment and
c ∈ |U|, we denote by s(x|c) the variable assignment which agrees with s everywhere, except that it maps x
to c.

We are now ready to define what it means for a formula to be satisfied in a certain structure and relative
to a given interpretation of the variables.

Definition 2.11. If ϕ is a formula, we say that ϕ is true in U relative to the variable assignment s, denoted
|=U ϕ[s] and read U satisfies ϕ with s, as follows.

We first extend s to an assignment s on all terms by recursion: for a variable x, we set s(x) = s(x),
while s(c) = cU for every constant c. Now, if t1, . . . , tn are terms, and f is an n-ary function symbol, we set
s(ft1 · · · tn) = fU (s(t1), . . . , s(t1)).

Now, |=U ϕ[s] is also defined by recursion on the complexity of ϕ:

• |=U pt1 · · · tn[s] if and only if (s(t1), . . . , s(tn)) ∈ pU for an n-ary predicate p.
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• |=U (α ∧ β)[s] if and only if |=U α[s] and |=U β[s].
• |=U (α ∨ β)[s] if and only if |=U α[s] or |=U β[s].
• |=U (α→ β)[s] if and only if either 2U α[s] or |=U β[s].
• |=U (α↔ β)[s] if and only if |=U α[s] and |=U β[s] are both simultaneously true or false.
• |= ∃xα[s] if and only if there is c ∈ |U| such that |=U α[s(x|c)].
• |= ∀xα[s] if and only if |=U α[s(x|c)] for all c ∈ |U|.

Remark 2.12. Satisfiability of a sentence is independent of the variable assignment, since it has no free
variables.

If ϕ is a sentence which is satisfied in U (with respect to some, and hence all, variable assignments), then
we say that U is a model of ϕ, and write |=U ϕ. If Σ is a collection of sentences, we say that U is a model of
Σ if it is a model of every sentence in Σ.

Example 2.13. Consider the language consisting of a constant symbol e, a binary symbol ·, and a unary
function symbol ι. Then an L-structure is a group if and only if the following sentences are satisfied in it:

∀x∃y((x · y = e) ∧ (y · x = e)) and ∀x∀y∀z((x · y) · z = x · (y · z)).

2.4. Fundamental theorems in first-order logic. .

Theorem 2.14 (Compactness theorem). . Let Σ be a collection of sentences in a language L. If every finite
subset of Σ has a model, then Σ has a model.

As an application: if G is a graph with the property that every finite subgraph of G can be k-colored,
then G can be k-colored.

Theorem 2.15 (Lowenheim-Skolem theorem). . Let L be a language of cardinality κ, and let Σ be a
collection of sentences. If Σ has an infinite model, then it has a model of every cardinality α ≥ κ.

As an application: for every infinite cardinal κ, there exists a field of cardinality κ. (This is not difficult
directly: take Q[xj : j ∈ κ].)

Definition 2.16. Let U and V be L-structures. We say that U and V are elementarily equivalent, written
U ≡ V, if they satisfy the same sentences.

Theorem 2.17. Let U be an L-structure. If A ⊆ |U| is an infinite subset, then there exists a substructure
V of U such that:

(1) |V| contains A;
(2) the cardinality of |V| is the same as the cardinality of A; and
(3) V ≡ U .

The principle above has also been repeatedly discovered in the context of C∗-algebras.

3. First order logic for metric structures

In first order logic, the focus shifts from a single structure to a class of them. The notion of language has
the purpose of formalizing the assertion that a certain class of objects “are of the same kind”.

Definition 3.1. A language (for metric structures) is a set L of symbols, which come in two kinds:

(1) function symbols;
(2) relation/predicate symbols.

Each function symbol f has an ariety nf ∈ N ∪ {0} attached. When nf = 0, we regard f as a constant
symbol. Similarly, a relation symbol R also has an ariety nR ∈ N. If ` is either a function or a relation
symbol in L, then ` has an associated uniform continuity modulus ω` : [0,∞)n` → [0,∞) which is continuous
at 0 and satisfies ω`(0) = 0. For each relation symbol R, there is an associated bound JR, which is a compact
interval in R.

Finally, there is a distinguished binary relation symbol d with ωd(s, t) = s + t for all s, t ∈ [0,∞) and
Jd = [0, 1].
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Example 3.2. The smallest language is L0 = {d}, consisting only of the metric d. One can also consider
L1 = {d, ·}, where · is a binary relation symbol with ω·(s, t) = s+ t for all s, t ∈ [0,∞).

Definition 3.3. Let L be a language. An L-structure is a complete metric space (M,dM ) endowed with
interpretations of the symbols in L:

(1) for a function symbol f , its interpretation fM : Mnf → M is a uniformly continuous function with
modulus ωf , that is, satisfying

dM (fM (a), fM (b)) ≤ ωf (dM (a, b)

for all a, b ∈Mnf .
(2) for a relation symbol R, its interpretation RM : MnR → [0,∞) is a uniformly continuous function

with modulus ωR on MnR , and moreover RM (MnR) ⊆ JM .
(3) Additionally, the interpretation of d is assumed to be dM .

Example 3.4. Adopting the notation from Example 3.2, an L0 structure is precisely a complete metric
space with diameter at most 1, while an example of an L1 structure is a complete bi-invariant metric group
with diameter at most 1.

It is somewhat inconvenient to regard C∗-algebras as structures in the sense of Definition 3.3. One option
is to restrict one’s attention to the unit ball of a C∗-algebra, which is however not invariant under sum or
scalar multiplication. There are ways around this issue, and the most satisfactory one consists in introducing
a more general framework where languages have domains of quantification: these are to be interpreted as
closed subsets of the structure, and boundedness conditions are only required to hold relative to a given
tuple of domains.

Definition 3.5. A language with quantification domains is a set L of symbols, which come in three kinds:

(1) function symbols;
(2) relation/predicate symbols.
(3) an upward directed set D of quantification domains.

Each function symbol f has an ariety nf ∈ N ∪ {0} attached. When nf = 0, we regard f as a constant
symbol. Similarly, a relation symbol R also has an ariety nR ∈ N.

Let ` be either a function or a relation symbol in L, and let D1, . . . , Dn`
∈ D be any choice of input

domains. Then there exist

(a.1) when ` = f is a function symbol, a (relative) output domain D
D1,...,Dnf

f ;

(a.2) when ` = R is a relation symbol, a (relative) bound J
D1,...,DnR

R , which is a compact interval in R;
and

(b) a (relative) continuity modulus ω
D1,...,Dn`

` : [0,∞)n` → [0,∞).

Finally, there is a distinguished binary relation symbol d with ωd(s, t) = s + t for all s, t ∈ [0,∞) and
Jd = [0, 1].

Any language in the usual sense can be regarded as a language with domains of quantification by setting
D = {D}.

Definition 3.6. Let L be a language with domains of quantification. An L-structure is a complete metric
space (M,dM ) endowed with interpretations of the symbols in L:

(1) for D ∈ D, its interpretation DM is a closed subset of M , with D 7→ DM order-preserving, and⋃
D∈DD

M is dense in M ;

(2) for a function symbol f , its interpretation fM : Mnf →M is a function, and for every D1, . . . , Dnf
∈

D, the restriction of fM to D1 × · · · × Dnf
is uniformly continuous with modulus ω

D1,...,Dnf

f , and

fM (D1 × · · · ×Dnf
) ⊆ Df

D1,...,Dnf
;

(3) for a relation symbol R, its interpretation RM : MnR → [0,∞) is a function, and for every collection
D1, . . . , DnR

∈ D, the restriction of RM to D1 × · · · × DnR
is uniformly continuous with modulus

ω
D1,...,DnR

R , and RM (D1 × · · · ×DnR
) ⊆ JRD1,...,DnR

;
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(4) Additionally, the interpretation of d is assumed to be dM .

We are now ready to regard C∗-algebras as structure in a language which we proceed to define.

Definition 3.7. We will denote by LC∗ the language of (unital) C∗-algebras, defined as follows:

(1) functions symbols +, ·, λ (for λ ∈ C), ∗, 0, 1;
(2) the metric binary relation symbol d, and n2-ary relation symbols ‖·‖Mn , for n ∈ N (to be interpreted

as matrix norms);
(3) quantification domains Dn, for n ∈ N, satisfying Dn < Dn+1 for all n ∈ N (to be interpreted as the

balls of radius n).

In order to regard a C∗-algebra as an LC∗ -structure, one needs to specify continuity moduli, output
domains, and bounds. This is mostly straightforward. For example, for the multiplication symbol · and input

domains Dn and Dm, the output domain is Dnm and the continuity modulus is the function ωDn,Dm
· (s, t) =

ns+mt for all s, t ∈ [0,∞).

3.1. Terms, formulas, and sentences. Regarding a class of objects as structures in continuous logic allows
one to speak about first-order properties, which are the properties that can be expressed through formulas.
Intuitively, an L-formula is an expression that described a property of an L-structure, or of a tuple of
elements in an L-structure, by only referring to the given L-structure, its elements, and its operations given
by the interpretation of the function and relation symbols of L.

We first consider the notion of terms. Assume that we have a collection of variables x1, x2, . . ., and that
each variable x has a uniquely attached domain of quantification Dx.

Definition 3.8. An L-term is an expression that can be formed by starting from variables and constant
symbols, and applying function symbols from L. More precisely, one declares that:

• variables are L-terms;
• constant symbols are L-terms;
• if t1, . . . , tn are L-terms, and f is an n-ary function symbol in L, then f(t1, . . . , tn) is an L-term.

When the language L is clear from the context, we just speak about terms.

Given a term t, one can define what it means for a variable to appear in t. One then writes t(x1, . . . , xn)
to denote the fact that the variables that appear in t are within x1, . . . , xn.

Definition 3.9. An atomic formula is an expression ϕ of the form R(t1, . . . , tn) for some n-ary relation R
and terms t1, . . . , tn. If t1, . . . , tn have variables within x1, . . . , xm, one says that ϕ has free variables within
x1, . . . , xm.

We define arbitrary formulas starting from atomic ones as follows:

• atomic formulas are formulas;
• if ϕ1, . . . , ϕn are formulas and q : Rn → R is continuous, then q(ϕ1, . . . , ϕn) is a formula;
• if ϕ is a formula and x is a variable with domain D, then inf

x∈D
ϕ and sup

x∈D
ϕ are formulas.

A variable appearing in a formula can be either bound or free, depending on whether it is in the scope of a
quantifier or not. If ϕ has free variables within x1, . . . , xm, one writes ϕ(x1, . . . , xm).

Definition 3.10. A sentence is a formula without free variables.

Sentences should be thought of as expressions describing how close a given structure is to satisfying a
certain property.

Interpretation of terms and formulas is defined in the obvious way, by induction on their complexity. The
interpretation of a sentence is a real number.

Example 3.11. In the language L = {d, ·}, a term in the free variables x1, x2, . . . is simply a parenthesized
word in those variables. For example, (x1 · (x2 · x3)) or ((x1 · x2) · x3). These two terms have the same
interpretation in any metric group (or whenever the operation · is associative), although they are formally
different terms.

Example 3.12. We specialize to the language LC∗ of C∗-algebras.
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• A term is a complex ∗-polynomial on a finite number of free variables. (Formally this is a bit inaccu-
rate, since the terms ((x1 + x2)∗) and (x∗1 + x∗2) are formally different, although their interpretation
is the same in every C∗-algebra. We will ignore this distinction.)

• An atomic formula is an expression of the form ‖p(x1, . . . , xn)‖ for some ∗-polynomial p.
• A generic formula is an expression of the form sup

x1∈D1

· · · sup
xk∈Dn

‖p(x1, . . . , xn)‖ for some ∗-polynomial

p and some 0 ≤ k ≤ n.
• A sentence is an expression of the form sup

x1∈D1

· · · sup
xn∈Dn

‖p(x1, . . . , xn)‖ for some ∗-polynomial p.

We close this section with a discussion of multi-sorted languages, which will be needed later. In this
setting, a language prescribed a collection S of sorts. Each sort S comes with a corresponding collection
DS of domains of quantification for S, and each n-ary function or relation symbol in L has a prescribed
n-tuple of input sorts and, for function symbols, also an output sort. A structure M then consists of a family
(MS)S∈S of complete metric spaces, subject to the usual requirements.

4. Axiomatizability and definability

Throughout, we fix a language L. We will be primarily interested in L = LC∗ , but most of what we do
here holds in general.

4.1. Axiomatizable classes. The notion of language allows one to define precisely what it means for a
class of objects to be of the same kind. In this subsection, we will focus of making sense of what it means
for a class of objects to satisfy the same property (axiomatizable property).

Recall that an L-condition is an expression of the form ϕ ≤ r, where ϕ is an L-sentence and r ∈ R. We
say that an L-structure M satisfies the condition ϕ ≤ r if ϕM ≤ r.

Definition 4.1. Let C be a class of L-structures. We say that C is axiomatizable if there exists a family of
L-conditions {ϕj ≤ rj : j ∈ J}, such that an L-structure M belongs to C if and only if ϕMj ≤ rj for all j ∈ J .
Moreover, we say that a property P for L-structures is axiomatizable if the class of structures that satisfy it
is an axiomatizable class.

Remark 4.2. In the definition of axiomatizable class, and upon replacing a sentence ϕ with max{ϕ− r, 0},
one can assume that all sentences ϕj appearing in the definition attain only non-negative values, and that
all the rj are zero.

Proposition 4.3. The class C∗ of unital C∗-algebras is axiomatizable in LC∗ .

Proof. It is straightforward to write down sentences that describe that an LC∗ -structure satisfies the axiom
of a unital C∗-algebra. For example, the C∗-identity is captured by the conditions

sup
x∈Dn

∣∣‖x∗x‖ − ‖x‖2∣∣ ≤ 0

for all n ∈ N. The only subtle point is to insist that the domain Dn is interpreted as the ball of radius n
centered at zero. This is enforced by the following conditions

sup
x∈Dm

inf
y∈Dn

(‖x− y‖ −max{‖x‖ − n, 0}) ≤ 0,

for n ≤ m. The verification that an LC∗ -structure is a unital C∗-algebra if and only if it satisfies all these
axioms is easy but tedious. �

It is possible to show that a number of relevant classes of C∗-algebras are axiomatizable:

• Abelian C∗-algebras are captured by the formula supx,y∈D1
‖xy − yx‖ ≤ 0.

• A C∗-algebra is not abelian if and only if it contains a nilpotent contraction. Hence, nonabelian
C∗-algebras are captured by the formula infx∈D1

‖x2‖ − ‖x‖+ 1 ≤ 0.

In order to see that other classes of C∗-algebras are axiomatizable, we want to be able to use more general
formulas, for example involving continuous functional calculus. We call these general formulas definable
predicates.
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The rigourous definition is as follows. Let C be a class of L-structures. Fix a tuple x = (x1, . . . , xn) of
variables with corresponding domains D = (D1, . . . , Dn), and let F(x) be the collection of L-formulas with
free variables from x. Then F(x) admits a natural real Banach algebra structure (with pointwise operations),
induced from the algebra structure on R, and one can define a seminorm on F(x) by setting

‖ϕ‖ = sup
M∈C

sup
a∈DM

1 ×···×DM
n

∣∣ϕM (a)
∣∣ .

The Hausdorff completion M(x) of F(x) with respect to this seminorm is thus a real Banach algebra,
whose elements are called the definable predicates on the tuple x.

Definable predicates are uniform limits of formulas, where the uniformity condition is over all elements in
the class C. Given a definable predicate ϕ and an L-structure M , its interpretation ϕM : DM

1 ×· · ·×DM
n → R

can be defined as the limit of the interpretations of approximating formulas. In practice, it is easier to work
with definable predicates. In fact, the definition of axiomatizable class does not change if one uses definable
predicates instead of sentences.

4.2. Definability. In discrete first-order logic, a subset of a structure is called definable whenever it can be
written as the set of elements that satisfy a certain formula. The direct analog of this notion in the metric
setting turns out to be too generous, and the right generalization involves the notion of stability for formulas
(or predicates) and relations.

Definition 4.4. Let ϕ(x1, . . . , xn) be a definable predicate, and let M be an L-structure. Then the zero set
of ϕM is

ZM (ϕ) = {a = (a1, . . . , an) ∈ DM
x1
× · · · ×DM

xn
: ϕ(a) = 0}.

Let C be a class of L-structures. We say that ϕ(x1, . . . , xn) is stable (with respect to C) if for every ε > 0
there exists δ > 0 such that whenever M ∈ C and a ∈ DM

x1
× · · · ×DM

xn
satisfies |ϕ(a)| < δ, then there exists

b ∈∈ DM
x1
× · · · ×DM

xn
with ϕ(b) = 0 and d(a, b) = 0.

From now on, we fix a class C of L-structures.

Definition 4.5. A definable set (or property) S if an assignment M 7→ S(M) ⊆ Mn from elements of C to
closed subsets of Mn, such that there is a stable definable predicate whose M -zero set is precisely S(M).

For example, the set of all projections in a C∗-algebras is a definable set; see the examples below.
The upshot of definable sets, is that one is allowed to quantify over them, even though they are not

quantification domains:

Proposition 4.6. Let ψ(x, y) be a definable predicate and let S be a definable set. Then there exists a
definable predicate ϕ(x) such that

ϕM (a) = inf
b∈S(M)

ψ(a, b)

for all M ∈ C and for all a ∈Mn.

In the context of the proposition above, we write ϕ(x) = infy∈S ψ(x, y). The definable predicate ϕ is not
unique, but its interpretation in elements of C does not depend on the choice.

Examples 4.7. Some examples of definable sets:

(1) The formula ϕ(x) = max{‖x∗x − 1‖, ‖xx∗ − 1‖} is stable, and its zero set is the definable set of
unitaries.

(2) The formula ϕ(x) = |x∗x− x‖ is stable, and its zero set is the definable set of projections.
(3) The formula ϕ(x) = infy∈D1

‖x − y∗y‖ is stable, and its zero set is the definable set of positive
contractions.

(4) The formula ϕ(x) = max{‖(x∗x)2−x∗x‖, ‖(xx∗)2−(xx∗)‖} is stable, and its zero set is the definable
set of partial isometries.

(5) The definable predicate ϕ(x, y) = infs partialisometry max{‖x− s∗s‖, ‖y − ss∗‖} is stable, and its zero
set is the definable set of pairs Murray-von Neumann equivalent projections. (Observe that here we
are quantifying over the definable set of partial isometries, using Proposition 4.6.)
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(6) Let ϕ(x, y) be the definable predicate from the item above, and consider the definable predicate

ψ(x) = inf
y∈D1

max{ϕ(x, y), ‖yx− y|, ‖xy − x‖, |1− ‖x− y‖|}

is stable, and its zero set is the definable set of infinite projections.

Using definable sets, one can show that further classes of C∗-algebras are axiomatizable.

Example 4.8. A unital C∗-algebra has real rank zero if for every positive contractions a, b ∈ A and for
every ε > 0, there exists a projection p ∈ A such that

‖pa‖2 < ‖ab‖+ ε and ‖(1− p)b‖2 ≤ ‖ab‖+ ε.

Since projections and positive contractions are definable sets, we can axiomatize the class of real rank zero
C∗-algebras. More explicitly, a C∗-algebra has real rank zero if and only if it satisfies the condition

sup
x,y∈D1 positive

inf
z∈D1 projection

max{‖zx‖, ‖(1− z)y‖} − ‖xy‖1/2 ≤ 0.

Similarly, the class of purely infinite simple C∗-algebras is axiomatizable.

5. Ultraproducts and ultrapowers

Throughout this section, we fix a set I of indices. An ultrafilter over I is a nonempty collection U of
subsets of I not containing the empty set, such that A∩B ∈ U whenever A,B ∈ U , and such that for every
A ⊆ I, either A ∈ U or I \A ∈ U .

From now on, we fix an ultrafilter U over I. We think of U as giving us a notion of “largeness”: a subset
of I belongs to U whenever it is large.

Proposition 5.1. If (ai)i∈I is a bounded sequence in R, then there exists a unique element a ∈ R such that
for every ε > 0, the set {i ∈ I : |a− ai| < ε} belongs to U .

Proof. Consider the collection F of nonempty compact subsets of R of the form {ai : i ∈ A} for every A ∈ U .
Then F satisfies the finite intersection property, and by compactness there must be an element x in its
intersection. Let U be an open neighborhood of x in R. We claim that {i ∈ I : ai ∈ U} belongs to U . If this

is not the case, then the set {i ∈ I : ai /∈ U} belongs to U , so there exists A ∈ U such that {ai : i ∈ A} is

contained in R \ U . Since {ai : i ∈ A} belongs to F , this is a contradiction.
Finally, since R is Hausdorff, it can be at most one element in this intersection, finishing the proof. �

In the context of the proposition above, we say that a is the limit along U of (ai)i∈I .
We now fix a language L and a family (Mi)i∈I of L-structures.

Definition 5.2. The ultraproduct of Mi, for i ∈ I, is the L-structure M =
∏
UMi defined as follows.

(1) For every domain D in L, we let DM be the Hausdorff completion of the ultraproduct DM
0 =

∏
U D

Mi

with respect to the pseudometric

dM (a, b) = lim
i→U

dMi(ai, bi)

for all a, b ∈ DM
0 . It is easy to check that the family {DM : D ∈ D} is directed. Its union is a metric

space, and we let M be its completion M =
⋃
D∈D

DM .

(2) If f is an n-ary symbol in L and D1, . . . , Dn ∈ D, let DD1,...,Dn

f be the output domain, which we

abbreviate to just D. We define fM : DM
1 × · · · ×DM

n → DM by setting

fM (a1, . . . , an) =
[
(fMi(a1,i, . . . , an,i))i∈I

]
for all a1, . . . , an ∈ Mn. It is easy to check that fM is uniformly continuous and that its modulus

of continuity is precisely the prescribed modulus ωD1,...,Dn

f . Finally, by letting the input domains

vary and take their union and completion, we can extend fM to a function Mn →M with the same
modulus of continuity.
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(3) If R is an n-ary symbol, we argue similarly as before, with the only difference that for D1, . . . , Dn ∈ D
and with J = JD1,...,Dn

R , the assignment RM : DM
1 × · · · ×DM

n → JM is defined by

RM (a1, . . . , an) = lim
i→U

RMi(a1,i, . . . , an,i)

for all a1, . . . , an ∈Mn. The rest is analogous.

Applied to C∗-algebras, this notion recovers the usual (categorical) notion of ultraproduct of C∗-algebras.
Explicitly, for C∗-algebras Ai, for i ∈ I, their ultraproduct can be identified as the quotient

∏
U Ai =∏

i∈I Ai/
⊕
i∈I

Ai. One gets bounded sequences in the model-theoretic construction because one constructs

the ultrapower
∏
U Ai essentially from its bounded subsets.

5.1. Saturation. Let L be a language and let A be any set. One can then consider the (extended ) language
L(A) to be the union of L with the set of constant symbols {ca : a ∈ A}. If M is an L-structure containing
A, then we can canonically regard M as an L(A)-structure in which the interpretation of ca is a. We refer
to the formulas in L(A) as L-formulas with parameters from A.

Definition 5.3. Let C be a class of L-structures. We say that L is separable for C if all the Banach algebras
of definable predicates (for any finite set of variables and for any family of input domains) is separable.

Let ϕ(x) be a definable predicate and let r ∈ R. If M is an L-structure and a ∈ DM
1 × · · · ×DM

n satisfies
ϕM (a) ≤ r, we say that a realizes the condition ϕ(x) ≤ r. Recall that a type is a (possibly infinite) collection
of conditions of the form ϕ(x) ≤ r. Given a type t, we denote by t+ the type consisting of all conditions of
the form ϕ(x) ≤ r + ε, for ε > 0, where ϕ(x) ≤ r is a condition in t.

Definition 5.4. Let t(x) be a type, and let M be an L-structure.

• We say that t(x) is realized in M if there exist an ∈ DM
n , for n ∈ N, such that (an)n∈N realizes every

condition in t(x).
• We say that t(x) is approximately realized in M if every finite set of conditions in t+(x) is realized

in M .

Definition 5.5. Let M be an L-structure. We say that M is countable saturated if for every separable
subset A ⊆M and every L(A)-type t(x), if t(x) is approximately realized in M , then it is realized in M .

A fundamental feature of ultraproducts over countably incomplete ultrafilters is their being countably
saturated. The proof is a diagonalization argument, which we omit.

Theorem 5.6. Let C be a class of L-structures for which L is separable. If U is a countably incomplete
ultrafilter over a directed set I, and (Mi)i∈I is a family in C, then the ultraproduct

∏
UMi is countably

saturated.

5.2.  Los’ theorem. The following result, known as  Los’ theorem, is a fundamental result in model theory
that relates the construction of ultraproducts with the notion of formula.

Theorem 5.7. Let L be a language, let I be an index set, let (Mi)i∈I be a family of L-structures, and let
U be an ultrafilter over I. Abbreviate their ultraproduct as MU . Let ϕ(x1, . . . , xn) be a definable predicate
with free variables within domains D1, . . . , Dn. Then

ϕMU (a1, . . . , an) = lim
i→U

ϕMi(a1,i, . . . , an,i)

for all (a1, . . . , an) ∈Mn
U . In particular, if ϕ is an L-sentence, then

ϕMU = lim
i→U

ϕMi .

Proof. Let t(x1, . . . , xn) be a term. One can easily see, by induction on the complexity of t, that one can define
an output domain D = Dt

D1,...,Dn
and a continuity modulus ω = ωtD1,...,Dn

in terms of the output domains

and continuity moduli of the function symbols in L, such that for any L-structure N , the interpretation tN is
a function DN

1 ×· · ·×DN
n → DN with continuity modulus ω. In particular, this guarantees that the function

tM : DMU
1 × · · · ×DMU

n → DMU given by t(a1, . . . , an) =
[
(tMi(a1,i, . . . , an,i))i∈I

]
, for all a1, . . . , an ∈Mn

U , is
well defined and has continuity modulus ω. Furthermore, it is also shown by induction on the complexity of
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t, and using the definition of the interpretation of function symbols in MU , that this function coincides with
the interpretation of t in MU (thus justifying the notation tM ).

Let now ϕ be the formula in the statement. Again, using induction on its complexity one can define
a bound J = JD1,...,Dn

ϕ and a continuity modulus ω = ωD1,...,Dn
ϕ such that for any L-structure N , the

interpretation ϕN is a function DN
1 × · · · × DN

n → JN with continuity modulus ω. In particular, this

guarantees that the function ϕM : DMU
1 ×· · ·×DMU

n → JMU given by ϕ(a1, . . . , an) = lim
i→U

ϕMi(a1,i, . . . , an,i),

for all a1, . . . , an ∈ Mn
U , is well defined and has continuity modulus ω. Furthermore, it is also shown by

induction on the complexity of ϕ, and using the definition of the interpretation of function symbols in MU ,
that this function coincides with the interpretation of ϕ in MU , as desired.

The proof for definable predicates is analogous, and we omit it. �

Corollary 5.8. The axiomatizable class of C∗-algebras is closed under (model-theoretic) ultraproducts.

We can now give a semantic characterization of stable predicates. Recall that an ultrafilter U over N is
called nonprincipal if all of its elements are infinite subsets of N.

Proposition 5.9. Let C be an elementary class of L-structures, and let P (x) be definable predicate. Then
the following are equivalent:

(1) P (x) is stable.
(2) For any sequence (Mn)n∈N of structures in C, for any nonprincipal ultrafilter U over N, and for any

tuple a in
∏
UMn satisfying P (a) = 0, there exists a representative sequence (an)n∈N of tuples in

Mn such that
{n ∈ N : PMn(an) = 0} ∈ U .

 Los’ theorem naturally leads to the notion of elementary inclusion. A morphism M → N of L-structures
is a function Φ: M → N satisfying Φ(DM ) ⊆ DN for every D ∈ D, and ϕ(Φ(a)) ≤ ϕ(a) for every atomic
formula ϕ(x). We moreover say that Φ is an embedding if it is injective as a function M → N and moreover
ϕ(Φ(a)) = ϕ(a) for every atomic formula ϕ(x). In this case, we also say that M is a substructure of N (since
we can always assume that an embedding is simply an inclusion).

Definition 5.10. Let M ⊆ N be a substructure. We say that M is an elementary substructure of N if for

every formula ϕ(x) with tuple domain D, we have ϕM (a) = ϕN (a) for every a ∈ DM
.

Example 5.11. By  Los’ theorem, the diagonal embedding M →MU is an elementary embedding.

A useful criterion to verify that an inclusion M ⊆ N is elementary is the following:

Theorem 5.12 (Tarski-Vaught test). . Let M ⊆ N be a substructure of an L-structure N . Then M ⊆ N
is elementary if and only if for every L-formula ϕ(x, y), where x have domains D and y has domain D, one
has

inf{ϕ(a, b) : b ∈ DN} = inf{ϕ(a, b) : b ∈ DM}
for all a ∈ DM

.

5.3. Theory and elementary/existential equivalence. The notion of elementary embedding is closely
related to that of elementary equivalence.

Definition 5.13. Let M be an L-structure. We define its theory Th(M) to be the multiplicative functional
Th(M) : S → R given by Th(M)(ϕ) = ϕM for every L-sentence ϕ ∈ S.

Two L-structures M and N are said to be elementary equivalent, written M ≡ N , if Th(M) =Th(N).

It follows from  Los’ theorem that Th(M) =Th(MU ) for any countably incomplete ultrafilter U .

Proposition 5.14. Let C be a class of L-structures. Then C is axiomatizable if and only if for every un-
countably incomplete ultrafilter U over an index set I, and for every is a family (Mi)i∈I in C, the ultraproduct∏
UMi belongs to C.

We now define several classes of formulas.

Definition 5.15. Let L be a language and let ϕ be an L-formula.
10



• ϕ is said to be quantifier-free if no quantifiers appear in it. Equivalently, it has the form q(ϕ1, . . . , ϕn),
where ϕ1, . . . , ϕn are atomic formulas and q : Rn → R is a continuous function.

• ϕ is said to be positive quantifier-free if it is quantifier free and the function q as before satisfies
q(r1, . . . , rn) ≤ q(s1, . . . , sn) whenever rj ≤ sj for all j = 1, . . . , n.

• ϕ is said to be existential if it has the form infx∈D ψ, for a quantifier-free formula ψ. (Infima are to
be regarded as the continuous analog of the discrete quantifier ∃.)

• ϕ is said to be positive existential if it has the form infx∈D ψ, for a positive quantifier-free formula
ψ.

We define the (positive) existential theory The(M) (respectively Thpe(M)) of an L-structure M as the
restriction of the theory of M to the (positive) existential formulas.

Proposition 5.16. Let M and N be separable L-structures, and let U be a countably incomplete ultrafilter.

(1) Th(M) = Th(N) if and only if MU and NU are isomorphic.
(2) The(M) = The(N) if and only if there are embeddings N ↪→MU and M ↪→ NU .
(3) Thpe(M) = Thpe(N) if and only if there are morphisms N →MU and M → NU .

Proof. Parts (2) and (3) follow from  Los’ theorem. The first part is the continuous analog of a result of
Keisler and Shelah. �

Similarly, we have the following:

Proposition 5.17. Let U be a countable incomplete ultrafilter over an index set I, and let Φ: M ↪→ N be
an embedding of L-structures. Then the following are equivalent:

(1) Φ is existential (positive existential);
(2) there exists an embedding (morphism) Ψ: N → MU such that Ψ ◦ Φ is equal to the diagonal

embedding ∆M : M →MU .

For C∗-algebras, morphisms and embeddings have the usual meanings. In this context, an inclusion A ⊆ B
is positive existential if and only if for every tuple a ∈ An, for all polynomials p1(x, y), . . . , pk(x, y), and for
all reals r1, . . . , rk ∈ R, whenever there exists a tuple b ∈ Bn such that ‖pj(a, b)‖ ≤ rj for all j = 1, . . . , k,
then for every ε > 0 there exists a tuple cε ∈ An such that ‖pj(a, cε)‖ ≤ rj + ε for all j = 1, . . . , k.

In this context, we can give the following model-theoretic description of relative commutants. Recall that
an ultrafilter U is countably incomplete if there exists a sequence (In)n∈N in U such that

⋂
n∈N

In = ∅. (For

ultrafilters over N, this is equivalent to being nonprincipal, which means that all of its elements are infinite
sets.)

Proposition 5.18. Let A and C be separable unital C∗-algebras and let U be a countably incomplete
ultrafilter over N. Then the following are equivalent:

(1) the factor embedding A→ C ⊗max A is existential (respectively, positive existential);
(2) there is an embedding (respectively, morphism) C → AU ∩A′.

5.4. A model-theoretic approach to the Rokhlin property. In this subsection, we focus on compact
(quantum) group actions on C∗-algebras. We fix a compact (quantum) group G. We want to define a
language LC∗G in which G-actions on a unital C∗-algebra can be regarded as structures. When G is finite,

we may just add to LC∗ one symbol for every group element. In general, we need to take the topology of G
into account.

Given an irreducible representation π : G → U(Hπ), we fix an orthonormal basis {ξk : k = 1, . . . , dπ} of
Hπ, and define

C(G)π = span{πi,j ∈ C(G) : πi,j(g) = 〈π(g)ξi, ξj〉 for all g ∈ G, 1 ≤ i, j ≤ dπ},

which is a finite dimensional subspace of C(G).
We regard an action α : G → Aut(A) as a unital homomorphism A → C(G) ⊗ A satisfying certain

conditions. We set

Aπ = {a ∈ A : α(a) ∈ C(G)π ⊗A}.
11



One can check that α(Aπ) ⊆ C(G)π ⊗Aπ. (In fact, for a ∈ Aπ, there is a relatively easy formula for α(a) in
terms of the matrix coefficients of π.) We call Aπ the spectral subspace of α associated to π.

One can check that Aπ ∩ Aσ = {0} whenever π 6= σ, and that A = ⊕π∈ĜAπ. Finally, α is completely
determined by this decomposition of A. This motivates the following definition of the multi-sorted language
LC∗G :

Definition 5.19. Let G be a compact (quantum) group. We define the multi-sorted language LC∗G ???

Similarly to Proposition 4.3, we have the following:

Proposition 5.20. Let G be a compact (quantum) group. Then G-C∗-algebras form an axiomatizable class
in LC∗G .

Proof. One has to write down formulas that guarantee that the quantification domains Dπ, for π ∈ Ĝ, are
interpreted as Aπ and C(G)π ⊗Aπ. We omit the details. �

Recall that α : G → Aut(A) has the Rokhlin property if there exists a unital equivariant homomorphism
C(G)→ AU ∩A′ for some (any) ultrafilter U . We can give a model-theoretic reformulation as follows:

Theorem 5.21. Let α : G → Aut(A) be an action. Then α has the Rokhlin property if and only if the
G-equivariant homomorphism α : (A,α)→ (C(G)⊗A, Lt⊗ idA) is positive existential.

The following summarizes one of the most important features of the Rokhlin property.

Corollary 5.22. If α : G → Aut(A) has the Rokhlin property, then the natural embeddings Aα ↪→ A and
Aoα G ↪→ A⊗K(L2(G)) are positive existential. In particular, if A and A⊗K(L2(G)) belong to a positive
existential axiomatizable class, then so do Aα and Aoα G.

6. The effect of the Continuum Hypothesis

The continuum is, by definition, the cardinality of the reals. The Continuum Hypothesis (CH) asserts
that the continuum equals the least uncountable cardinal ℵ1. It is known that CH is independent from the
usual axioms in set theory ZFC, in the sense that it cannot be proved or disproved using ZFC.

The value of the continuum, or more generally additional set-theoretic axioms, can have a deep influence
on the structure and properties of “massive C∗-algebras”. One paradigmatic instance of this phenomenon is
the question of whether all automorphisms of the Calkin algebra Q are inner. Originally raised by Brown-
Douglas-Fillmore, it was shown by Phillips-Weaver that CH implies the existence of outer automorphisms
of Q, while Farah showed that the negation of CH (he actually used a stronger axiom) implies that all
automorphisms of Q are inner.

In this section, we focus on a different problem which is also sensitive to the value of the continuum, namely
the number of ultrapowers and relative commutants of a given infinite dimensional, separable C∗-algebra
with respect to nonprincipal ultrafilters over N.

Fix an infinite dimensional, separable C∗-algebra A. If U and V are two nonprincipal ultrafilters over N,
then it follows from  Los’ theorem that AU and AV are elementary equivalent. It was open for some time
whether these ultrapowers are necessarily isomorphic. It turns out that the answer to this question depends
(and is equivalent to) CH:

Theorem 6.1. [Farah-Hart-Sherman, Farah-Shelah]. LetA be an infinite dimensional, separable C∗-algebra.

(1) If CH holds, then AU ∼= AV and AU ∩A′ ∼= AV ∩A′ for any nonprincipal ultrafilters U and V over N.
(2) If CH fails, then there exist two nonprincipal ultrafilters U and V over N (in fact, 2|R| many) such

that AU � AV and AU ∩A′ � AV ∩A′.

Part (1) of the result above follows from the following general result, which does not need to assume CH.

Theorem 6.2. Let C be a class of L-structure for which L is separable. Let M,N ∈ C be elementary
equivalent, countably saturated structures, both with density cardinality ℵ1. Then M and N are isomorphic.
Moreover, if M0 ⊆M is a separable elementary substructure and Φ0 : M0 → N is an elementary embedding,
then Φ0 extends to an isomorphism Φ: M → N .
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The result above is used to prove Part (1) of Theorem 6.1 in the following way. It can be shown that if U
is a nonprincipal ultrafilter, and A is separable and infinite dimensional, then the density characters of AU
and AU ∩A′ are precisely the continuum. (These density characters are a priori at most the continuum, but
one can prove, with some work, that this upper bound is attained. One uses that the continuum is also the
cardinality of the collection of infinite subsets of N.) Now, under CH, the density characters of these objects
is then ℵ1, so Theorem 6.1 applies and gives the result.

7. Strongly self-absorbing C*-algebras

The class of strongly-self absorbing C∗-algebras, defined by Toms and Winter, has played in recent years a
pivotal role in the study of the structure and classification of simple nuclear C∗-algebras. In this section, we
present some model-theoretic results related to these algebras, their ultrapowers, and relative commutants.

Definition 7.1. Let D be a separable, unital C∗-algebra. We say that D is strongly self-absorbing if D � C
and there is an isomorphism D → D ⊗min D which is approximately unitarily equivalent to the factor
embedding D → D ⊗min D.

The choice of the tensor product is irrelevant, since strongly self-absorbing C∗-algebras are automatically
nuclear (in addition to simple and at most monotracial).

Theorem 7.2. Let D be a (separable) strongly self-absorbing C∗-algebra, let A be a separable C∗-algebra,
and let U be a countably incomplete ultrafilter. Then the following are equivalent:

(1) A is D-absorbing;
(2) the factor embedding A→ A⊗ D is positive existential;
(3) the factor embedding A→ A⊗ D is approximately unitarily equivalent to an isomorphism;
(4) there is a unital embedding D→ AU ∩A′;
(5) If t(x) is a positive quantifier-free type which is approximately realized in D, theb the type t(x) ∪
{‖xja− axj‖ ≤ 0: a ∈ A} is approximately realized in A.

Proof. To show that (1) ⇒ (2), one shows, using the definition of strongly self-absorbing, that the factor
embedding D⊗A→ D⊗D⊗A given by d⊗a 7→ 1D⊗d⊗a, is positive existential. That (2)⇒ (3) follows by
using an intertwining argument, while (3)⇒ (1) is immediate. The equivalence (2)⇔ (4) is a consequence of
Proposition 5.18 (since D is simple), and finally the equivalence (4) ⇔ (5) is a consequence of  Los’ theorem
and countable saturation of ultrapowers. �

Corollary 7.3. Being D-absorbing is axiomatizable, as witnessed by the conditions

sup
x1,...,xn

inf
y1,...,yn

max{ϕ(x1, . . . , xn), ‖xjyk − ykxj‖ : j, k = 1, . . . , n} ≤ 0,

where ϕ varies among all the positive quantifier-free formulas for which the condition ϕ(x) ≤ 0 is realized in
D.

In fact, the argument above shows that being D-absorbing is sup-inf axiomatizable.
We close this section with a result on relative commutants of strongly self-absorbing C∗-algebras.

Theorem 7.4. Let C be a D-absorbing unital C∗-algebra which is quantifier-free countably saturated, and
let θ : D→ C be any embedding.

(1) Any other embedding D→ C is unitarily equivalent to θ.
(2) For every separable subalgebra A ⊆ C ∩ θ(D)′ and every separable subalgebra B ⊆ C, there exists a

unitary u ∈ C ∩A′ such that uBu∗ ⊆ C ∩ θ(D)′.
(3) C ∩ θ(D) is an elementary substructure of C.
(4) If C has density character ℵ1, then the inclusion C∩θ(D)′ ↪→ C is approximately unitarily equivalent

to an isomorphism.
(5) If C is countably saturated, then C ∩ θ(D)′ is countably saturated.

Corollary 7.5. Let A be a separable, unital C∗-algebra, and let U be any countably incomplete ultrafilter.
Then the conclusions of the theorem above hold for C = AU and for C = AU ∩ A′. In particular, if CH
holds, then AU ∼= AU ∩ D′. For example, DU ∼= DU ∩ D′.
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8. Model theory and the classification program

Elliott’s conjecture, posed in the early 90’s, predicted that all simple, separable, nuclear C∗-algebras would
be classified by K-theory and traces (known as the Elliott invariant). Despite the great success seen in the
first decade, Rørdam and Toms constructed nonisomorphic simple, separable, nuclear C∗-algebras with the
same Elliott invariant. Their examples were distinguished using alternative invariants (real rank, radius of
comparison), which are interestingly captured by the first-order theory of a C∗-algebra. This motivated the
following question:

Question 8.1. Is the Elliott invariant together with the first-order theory a complete invariant for simple,
separable, nuclear C∗-algebras?

Unfortunately, being simple, or separable, or nuclear, or any combination of these, is not axiomatizable.
Even worse:

Theorem 8.2. If C is a class of exact C∗-algebras which contains a non subhomogeneous C∗-algebra, then
C is not axiomatizable.

Proof. We claim that if a C∗-algebra A is not subhomogeneous and U is any nonprincipal ultrafilter over N,
then AU is not exact. Once we prove the claim, the result will follow.

For the sake of this argument, suppose that there exists a sequence πn : A → Mkn of irreducible repre-
sentations with lim

n→∞
kn = ∞. (The other possibility is that A contains an infinite dimensional irreducible

representation.) Set Jn = ker(πn), and J =
∏
U Jn, which is an ideal in AU . Find a subalgebra Bn ⊆ A such

that Bn/Jn ∼= Mkn . Then
∏
U Bn/J

∼=
∏
UMkn . Now, if H is an infinite dimensional Hilbert space, then

B(H) admits a complete order embedding into
∏
UMkn . Since B(H) is not exact, and exactness passes to

completely ordered embedded structures, it follows that
∏
UMkn is not exact either. Since exactness passes

to subquotients, we conclude that AU is not exact. �

For the sake of comparison, recall that the class of subhomogeneous C∗-algebras is axiomatizable.

Corollary 8.3. The class of exact (or nuclear) C∗-algebras is not elementarily axiomatizable. The same
conclusion applies to many other interesting classes of C∗-algebras, such as UHF-algebras, AF-algebras,
Kirchberg algebras, etc.

Similarly, the class of simple C∗-algebras is not elementary. Indeed, and even though Mn is simple, the
ultraproduct

∏
UMn over any nonprincipal ultrafilter U is not simple, since the trace-kernel is a nontrivial

ideal.
In order to capture other interesting properties such as nuclearity and simplicity, we are led to consider

the more generous notion of an infinitary formula. In an infinitary form, one is allowed to take countably
infinite conjunctions or disjunctions, which are expressions of the form sup

n∈N
ϕn or inf

n∈N
ϕn, for a sequence

(ϕn)n∈N of formulas with certain restrictions. In the usual notion of formulas, one is only allowed to take
sup/inf over variables. In fact, we will only consider of a special kind, which we call sup ∨ inf-formulas.

Recall that if ϕ(x) is a formula, then its interpretation in every structure is uniformly continuous, with
continuity modulus ωϕ independent of the structure and which can be computed in terms of the uniform
continuity moduli of the function and relation symbols in the language and their bounds.

Definition 8.4. An infinitary sup ∨ inf-formula is an expression ϕ(x) of the form

ϕ(x) = sup
y∈D

inf
n∈N

ψn(x, y),

where y is a tuple of variables with corresponding domain D, and (ψn(x, y))n∈N is a sequence of existential
formulas such that the function ωϕ(r, s) = sup

n∈N
min{ωψn(r, s), 1} satisfies ωϕ(r, s)→ 0 as r → 0 and s→ 0.

Interpretations and continuity moduli of infinitary formulas are defined as usual.

Remark 8.5. It is important to note that the analog of  Los’ theorem for infinitary sup ∨ inf-formulas does
not hold.
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If C is a class of L-structures, we say that C is infinitary sup∨ inf-axiomatizable if there exists a countable
collection of conditions of the form ϕ ≤ r, where ϕ is a infinitary sup ∨ inf-formula and r ∈ R, such that an
L-structure belongs to C if and only if it satisfies all such conditions.

Proposition 8.6. The class of UHF-algebras admits an infinitary sup ∨ inf-axiomatization.

Proof. Here we use the equivalent formulation of being UHF as those algebras which are locally matricial.
Hence, a C∗-algebra A is UHF if and only if for every ` ∈ N, for every a1, . . . , a` positive contractions in A,

and for every ε > 0, there exist d ∈ N and matrix units e
(d)
i,j for Md, and scalars λ

(d)
i,j of modulus one such

that ∥∥∥∥∥∥ak −
d∑

i,j=1

λ
(d)
i,j e

(d)
i,j

∥∥∥∥∥∥
for all k = 1, . . . , `. In particular, A is UHF if and only if it satisfies the following condition:

sup
x1,...,xn

inf
d∈N

inf
e
(d)
i,j matrixunits

inf
λ
(d)
i,j ∈S1

max
k=1,...,`

∥∥∥∥∥∥xk −
d∑

i,j=1

λ
(d)
i,j e

(d)
i,j

∥∥∥∥∥∥ .
�

Proposition 8.7. The class of nuclear C∗-algebras admits an infinitary sup ∨ inf-axiomatization.

Proposition 8.8. The class of simple C∗-algebras admits an infinitary sup ∨ inf-axiomatization.
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