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1. Preliminaries: KK-theory

Let B be a C∗-algebra.

Proposition 1.1. Isomorphism classes of Hilbert B-modules E for which idE is B-compact are in bijection with the
Murray-von Neumann classes of projections in M∞(B).

Proof. Given a projection p ∈Mn(B), set E = pBn. Then idE can be written as the composition

E ↪→ Bn → Bn → E
and hence has finite B-rank.

Conversely, let E be a Hilbert B-module such that idE is B-compact. Choose ξ1, . . . , ξn and η1, . . . , ηn in E such that∥∥∥∥∥∥idE −
n∑
j=1

θξj ,ηj

∥∥∥∥∥∥ < 1.

It follows that
∑n
j=1 θξj ,ηj is invertible in B(E). Consider the finite B-rank maps

η : E → Bn, ζ 7→ (〈ηj , ζ〉)nj=1 and ξ : Bn → E , (bj)nj=1 7→
n∑
j=1

ξjbj .

Then ξ ◦ η =
∑
θξj ,ηj is invertible and η ◦ ξ : Bn → Bn corresponds to a matrix e ∈Mn(B). Using polar decomposition

for ξ ◦ η, one gets a projection in Mn(B). �

It follows that the Grothendieck group of isomorphism classes of Hilbert B-modules E for which idE is B-compact is
K0(B) when B is unital. Notice that the Grothendieck group of isomorphism classes of all Hilbert B-modules is trivial,
since one always has 0⊕HB ∼= E ⊕HB , where HB = `2 ⊗B is the universal separable Hilbert B-module.

Definition 1.2. Let

0 // I // A
f
// B // 0

be a unital ring extension. Then the relative K-group, written K0(A,B), is the Grothendieck group of the monoid of
triple (P0, P1, ϕ), where P0 and P1 are finitely generated projective A-modules, and ϕ : f∗(P0)→ f∗(P1) is a morphism.

We have the following natural result.

Theorem 1.3. (Excision) Let 0→ I → A→ B → 0 be a unital ring extension. Then K0(A,B) ∼= K0(I).

In particular,
K0(B) ∼= K0 (M(B ⊗K),M(B ⊗K)/(B ⊗K)) .

The group K0 (M(B ⊗K),M(B ⊗K)/(B ⊗K)) is the Grothendieck group of triples (E0, E1, ϕ), where E0 and E1 are
countably generated Hilbert B-modules, and ϕ : E0 → E1 is an adjointable map with 1 − ϕϕ∗ and 1 − ϕ∗ϕ being B-
compact. The isomorphism K0(B)→ K0 (M(B ⊗K),M(B ⊗K)/(B ⊗K)) is given by the index map. It turns out that
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KK0(C, B) is naturally isomorphic to K0 (M(B ⊗K)/(B ⊗K)).

We now turn to the definition of KK-theory.

Definition 1.4. Let A and B be C∗-algebras. Let Fred(A,B) be the class of all triples (E0, E1, F ), where E0 and E1
are correspondences from A to B (this is, Hilbert B-modules with a non-degenerate left A-action), and F ∈ B(E0, E1)
is an adjointable operator (usually called Fredholm operator) such that 1 − FF ∗, 1 − F ∗F and [F, a] are proper for all
a ∈ A. (Recall that an operator t : E0 → E1 between correspondences from A to B is said to be proper if t · a and a · t are
compact for all a ∈ A. This is the same as being compact if A is unital, but it is weaker in general.)

A triple (E0, E1, F ) as above is called a KK-cocycle.

Lemma 1.5. [F, a1a2] = a1[F, a2] + [F, a1]a2 for all a1, a2 ∈ A.

In particular, if [F, a] is proper for all a ∈ A, it follow that is is compact for all a ∈ A.
A correspondence E from A to B is said to be proper if A ⊆ K(E). One then gets a msp

K∗(A)→ K∗(K(E))→ K∗(B)

using Morita equivalence K(E) ∼M 〈E , E〉CB. In particular, proper correspondences should give KK-cycles directly.
In this sense, Fredholm operator means unitary up to proper perturbations.

Remark 1.6. Any operator between proper correspondences is automatically proper. Hence

{Hilbert B −modules with idE ∈ K(E)} ∼= {proper correspondences C→ B} .

We say that two KK-cocycles (E0, E1, F ) and (E ′0, E ′1, F ′) are equivalent if there exist unitaries u0 : E0 → E ′0 and
u1 : E1 → E ′1 such that

• auj = uja for all a ∈ A and j = 0, 1.
• u1F − F ′u0 is proper.

We can now give a picture of KK-theory. (This is not the original definition.)

Definition 1.7. (Cuntz-Skandalis) Let A and B be separable C∗-algebras. Then

KK0(A,B) = G(Fred(A,B)).

That this definition is the same as the original one provided by Kasparov follows from the following theorem.

Theorem 1.8. (Cuntz-Skandalis) Let F1, F2 ∈ Fred(A,B). Then F1 ∼h F2 if and only if there exists F ∈ Fred(A,B)
such that F1 ⊕ F is equivalent to F2 ⊕ F .

Notice in particular that the inverse of the class of F : E0 → E1 is the class of F ∗ : E1 → E0. For the Kasparov product,
one should define a way of composing

A
(E0,E1,F )

// B
(G0,G1,H)

// C .

Interpreting (E0, E1, F ) as E0 − E1 and multiplying by G0 − G1, one sees that the natural choice for the correspondence
from A to C is

(E0 ⊗B G0 ⊕ E1 ⊗B G1, E1 ⊗B G0 ⊕ E0 ⊗B G1, F ]H).

Defining the Fredholm operator F]H is difficult. Instead of exhibiting its construction, we present its universal property.
We need some preparation first.

Let (E0, E1, F ) be a KK(A,B)-cocycle. Denote by ϕj : A→ B(Ej) the left A-action, and set

D = K(E0 ⊕ E1) + ϕ0(A) + ϕ1(A) + Fϕ0(A) + F ∗ϕ1(A).

Using that ϕ0(a)F ∗ = F ∗ϕ1(a) and Fϕ0(a) = ϕ1(a)F for all a ∈ A, one shows that D is a C∗-algebra. Moreover, the
triple (E0, E1, F ) determines a partially split extension of C∗-algebras

0 // K(E0 ⊕ E1) // D
π // M2(A) // 0

A⊕A

OObb .

Conversely, such a partially split extension gives (E0, E1, F ) back: the composition A ⊕ A → D → M(K(E)) extends to

M(A ⊕ A), and by taking the images of the matrices

(
1 0
0 0

)
and

(
0 0
0 1

)
, one obtains the B-modules E0 and E1,

and one gets a decomposition E ∼= E0 ⊕ E1. The operator F is recovered up to proper perturbations.
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Theorem 1.9. (Universal property of the functor KK) Let A be an additive category and let H : C∗ → A be a split

exact K-stable functor. Then H factors uniquely through kk, meaning that there is a functor Ĥ : kk→ A such that

C∗

KK
��

H // A

kk
Ĥ

>> .

Proof. If E is a Hilbert B-module, then H(K(E)) ∼= H(〈E , E〉) → H(B), and moreover the embedding j : A → M2(A)

given by j(a) =

(
a 0
0 0

)
induces an isomorphism j∗ : H(A)→ H(M2(A)). Split exactness gives a commutative diagram

0 // H(K(E) // H(π−1(j(A))) //

∼=
��

H(A) //

∼=
��

0

0 // H(K(E) // H(D) // H(M2(A)) // 0

H(A)

H(j0)

OO

H(j1)

OO

,

where j0 and j0 are the canonical embeddings of A into M2(A) as corners. Hence H(j0)−H(j1) maps H(A) into H(K(E) ⊆
H(D) because both give the same map on H(M2(A)). The difference H(j0)−H(j1) composed with H(K((E)))→ H(B)
gives a map

KK(A,B)→ Hom(H(A), H(B)).

This is actually a functor and it is the unique extension of H to all homomorphisms. Also, kk is an additive category
and C∗ → kk is split exact and stable. The bijection becomes now clear. �

2. KK− and E−theory for C∗-algebras over topological spaces

Even in the case of a finite primitive ideal space, there are many non-homeomorphic T0 spaces with the same cardinality.
We are therefore led to the following problem. Fix a topological space X, and classify all pairs (A,ψ), where A is a
C∗-algebra, and ψ : Prim(A) → X is a homeomorphism. In this context, we have the following result that remains
unpublished.

Theorem 2.1. (Kirchberg, unpublished) Let A and B be nuclear, separable, O∞ ⊗ K-absorbing with Prim(A) ∼= X ∼=
Prim(B) with given homeomorphisms. Then A and B are isomorphic if and only if there is an invertible element in
KK0(X;A,B).

The proof is difficult C∗-analysis. A natural question is then

Question 2.2. How to detect when there is an invertible element in KK0(X;A,B) using simpler invariants?

Answering this question will involve homological algebra in KK-theory. Nuclearity and O∞-absorption are no longer
relevant in this topic, and UCT considerations become crucial. Hence, it is important to understand how to generalize
the UCT from KK to KK(X).

Recall that there is a canonical bijective correspondence

O(Prim(A)) ∼= Ideals(A)

as complete lattices (this is, least upper bounds and greatest lower bounds exist). Moreover, Prim(A) can be recovered
from O(Prim(A)): its points are the irreducible closed subsets. A space X is called sober is the only closed irreducible
sets are the closure of the points in X. Kirchberg showed that Prim(A) is sober for every C∗-algebra A. We may
therefore restrict ourselves to sober spaces X. Also, primitive ideal spaces are locally (quasi-)compact, and they are
second countable if A is separable. Any finite T0 space is the primitive ideal space of some nuclear, separable, O∞ ⊗K-
absorbing C∗-algebra. (Recall that X is T0 if {x} = {y} implies x = y, or also for every x, y ∈ X, there is an open set
U ⊆ X containing either x or y and not the other point. Any T0 space is automatically sober.)

Remark 2.3. If X is finite and T1, then it is discrete. Hence, if one is working with finite spaces, there is no interest in
considering T1 spaces.

If X is a finite T0 space, define a partial order on X by x ≤ y if {x} ⊆ {y}.

Lemma 2.4. Let X be a finite T0 space, and let A be a subset of X.

(1) A is closed if and only if whenever x ∈ A and y ≤ x, then y ∈ A.
(2) A is open if and only if whenever x ∈ A and x ≤ y, then y ∈ A.

Conversely, a partial order on a set X defines a topology in this way, called the Alexandrov topology.
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Example 2.5. If X = [0, 1], then the Alexandrov topology on it induced by the usual order of R is the topology whose
open sets are

{(a, 1] : a ∈ [0, 1]} ∪ {[a, 1] : a ∈ [0, 1]}.

If Prim(A) = X, then any open subset U of X has associated to it an ideal A(U) of A, and if C is a closed subset of
X, then

A(C) = A/A(X \ C).

In particular, if U ⊆ V ⊆ X are open subsets, then

A(U \ V ) = A(U)/A(V ),

and A(U \ V ) only depends on U \ V .

Definition 2.6. Let A be a C∗-algebra. The filtrated K-theory of A is

FK(A) = (K∗(A(U \ V ))V,U .

It is not clear yet in what category this object lives.
Suppose that ψ : Prim(A)→ X is a continuous function. Then there is a correspondence ψ−1 : O(X)→ O(Prim(A)) =

Ideals(A).

Lemma 2.7. A map f : O(X)→ Ideals(A) is ψ−1 for some continuous map ψ : Prim(A)→ X if and only if f commutes
with arbitrary suprema and finite infima (f(∅) = 0, f(X) = A and f is monotone).

A morphism f : (A,ψ) → (B,ϕ) between C∗-algebras over a space X is a ∗-homomorphism f : A → B such that
f(A(U)) ⊆ B(U) for all U ⊆ X open.

In the case in which Prim(A) is Hausdorff, the notion of C∗-algebras over X agrees with a previously known and
well-studied notion: that of C0(X)-C∗-algebras.

Theorem 2.8. Let X be a locally compact Hausdorff space. Then there is an isomoprhism of categories

C∗-algebras over X ∼= C0(X)− C∗-algebras.

We now turn to the definitions of KK(X)- and E(X)-theory.

Definition 2.9. Let E be a graded Hilbert B-module with a left action, and let F ∈ B(E)odd be a self-adjoint operator
such that

(1) (1− F 2)a ∈ K(B) for all a ∈ A,
(2) [F, a] ∈ K(B) for all a ∈ A,
(3) E is X-equivariant: A(U) · E = E ·B(U) for all U ⊆ X open.

In the locally compact Hausdorff case, instead of (4) one requires that

(f · a) · ξ = a · (ξ · f)

for all f ∈ C0(X), for all x ∈ A, and for all ξ ∈ E.

Kasparov’s theory goes through in the X-equivariant case: KK-product works as usual, no conditions on F means
that there is no need to modify the difficult bits in Kasparov’s theory. We therefore get a category kk(X) with separable
C∗-algebras over X as objects and

KK0(X;A,B) = homotopy classes of X − equivariant KK-cycles A→ B

as morphisms, with Kasparov’s product as composition. If A is a C∗-algebra over X and B is any C∗-algebra, then
A ⊗ B, for any choice of the tensor product, is a C∗-algebra over X. This descends to a functor kk(X) × kk → kk(X).
This implies for example that

A⊗ C0(R2) ∼kk(X) A

for any C∗-algebra A over X.
Just as in Kasparov’s theory, kk(X) is universal. The functor

kk(X)← C∗-algebras over X

is the universal split-exact, K-stable (homotopy invariance follows from these two) functor. For a C∗-algebra A over X,
the functor B 7→ H(A ⊗ B) is split exact and stable on the category of all C∗-algebras if H is exact and stable on all
C∗-algebras over X.

Long exact sequences in KK(X)-theory work similarly to long exact sequences in KK-theory. An extension of
C∗-algebras over X is a diagram

0→ I → E → Q→ 0

in the category of C∗-algebras over X, such that for every open set U of X, the induced diagram

0→ I(U)→ E(U)→ Q(U)→ 0

is an extension in the category of C∗-algebras. Not every extension induces a long exact sequence in KK-theory. An
extra condition must be added, and this is semi-splitness. An extension I → E → Q as above is called semi-split if there
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is a completely positive (contractive follows) X-equivariant section s : Q→ E. For a semi-split extension, there are long
exact sequences in KK(X)-theory in both variables (for one of them, the corresponding functor is contravariant).

Example 2.10. Consider the extension
C0((0, 1])→ C([0, 1])→ C,

where the second map is given by evaluation at 0. This extension is not semi-split.

For infinite, second countable spaces X, it is better to consider the X-equivariant analog of E-theory instead.

Definition 2.11. E(X) is the universal exact K-stable homotopy functor on separable C∗-algebras over X.

There is also a concrete description using X-equivariant asymptotic morphisms, where X-equivariancy for a path
(ϕt)t∈[0,∞) of functions ϕt : A→ B means that if U ⊆ X is open and a ∈ A(U), then

lim
t→∞

‖ϕt(a)‖B(X\U) = 0.

Theorem 2.12. The obvious map KK(X;A,B)→ E(X;A,B) is an isomorphism whenever X is finite and A is nuclear.

When X is infinite, E(X) can potentially be computed using finite spaces and projective limits as follows. Choose
a countable basis (Un)n∈N for the topology of X (which was assumed to be second countable). Denote by Xn the T0-
quotient of X with topology given by U1, . . . , Un. There are maps Xn → Xn−1, and X is homeomorphic to the projective
limit

· · · → Xn → Xn−1 → · · · → X1.

If A and B are C∗-algebras over X, we may view them as C∗-algebras over Xn, and hence E∗(X;A,B) can potentially
be computed from E∗(Xn;A,B) using the short exact sequence

0← lim←−E∗(Xn;A,B)← E∗(X;A,B)←
1

lim←−E∗+1(Xn;A,B)← 0.

3. Homological algebra in triangulated categories

We begin by recalling some facts about the UCT for KK-theory. For any C∗-algebras A and B, one has

KK∗(C, B) = K∗(B) KK1(A,B) = KK0(C0(R, A), B) KK0(C(R), B) = K1(B).

The product on KK-theory gives a pair of maps

KK0(A,B)→ Hom(K∗(A),K∗(B)) KK1(A,B)→ Hom(K∗(A),K∗+1(B)).

Moreover, JK = ker(γ) ≤ KK(A,B) is an ideal in the category kk, meaning that if α ∈ JK , then idC0(R) ⊗ α ∈ JK . In
other words, JK is a stable homological ideal in kk.

Theorem 3.1. (Brown) There is a natural map

κ : ker(γ(A,B))→ Ext(K∗(A),K∗+1(B)).

Any element in KK1(A,B) is given by a semi-split C∗-algebra extension

0→ B ⊗K → E → A→ 0.

With the picture above, given α ∈ KK1(A,B), consider the 6-term exact sequence on K-theory

K0(B) // K0(E) // K0(A)

±γ(α)

��

K1(A)

±γ(α)

OO

K1(E)oo K1(B)oo

If γ(α) = 0, this gives us two extensions of abelian groups, giving K(α) ∈ Ext(K∗(A),K∗+1(B)).

Definition 3.2. The UCT holds for A and B if the map

γ : KK∗(A,B)→ Hom∗(K∗(A),K∗(B))

is an isomorphism. A C∗-algebra A is sait to be in the bootstrap class, also called UCT class, if the UCT holds for A and
B for every C∗-algebra B.

The bootstrap class contains C and it is closed under:

(1) Countable direct sums
(2) Suspensions
(3) Two out of three in any extension
(4) Semi-split extensions
(5) KK-equivalece

It turns out that the bootstrap class is the smallest subclass of kk with these properties.

Example 3.3. If A is contractible, then A satisfies the UCT, because all the K-groups vanish.
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Theorem 3.4. (Skandalis) A C∗-algebra A is in the bootstrap class if and only if A is KK-equivalent to an abelian
(type I) C∗-algebra.

The category kk is a triangulated category. This framework formalizes some general techniques for working with long
exact sequences. We present the definition below.

Definition 3.5. A triangulated category is an additive category τ with a suspension automorphism Σ: τ → τ and a
class of exact triangles:

A→ B → C → ΣA.

A functor F from τ to an abelian category is said to be homological if F (A) → F (B) → F (C) is exact for all exact
triangles A→ B → C → ΣA. The asioms of a triangulated category imply that F has long exact sequences

· · · → F (Σ−1C)→ F (A)→ F (B)→ F (C)→ F (ΣA)→ F (ΣB)→ · · · .

A diagram A → B → C → ΣA in kk is exact if and only if there are KK-equivalences α, β and γ and an extension
triangle

A′ // B′ // C ′ // ΣA′

A //

α

OO

B //

β

OO

C //

γ

OO

ΣA.

Σα

OO

Extension triangle means that 0→ A′ → B′ → C ′ → 0 is semi-split extension, and that C ′ → ΣA′ is the boundary map.
These are the axioms of triangulated categories:

(1) A
idA // A // 0 // ΣA is exact for every A.

(2) For every morphism f : A → B, there exists an exact triangle A → B → C → ΣA containing the morphism f .
(This is false for kk for Z2-graded C∗-algebras.)

(3) A triangle A→ B → C → ΣA is exact if and only if the induced triangle B → C → ΣA→ ΣB is exact.

Proposition 3.6. For every object D of τ , the assignments A 7→ τ(D,A) and A 7→ τ(A,D) are (co)-homological.

The axiom ensures that ensures this is the following. If

A //

α

��

B //

β

��

C //

γ

��

ΣA′

Σα

��

A′ // B′ // C ′ // ΣA′,

then there exists γ : C → C ′ making the resulting diagram exact and commutative. Notice that γ is not assumed to
be unique; in fact it will not in general be unique.

Corollary 3.7. If α and β are isomorphisms in τ , then so is γ.

Proof. For any object D in τ , the map τ(D, γ) : τ(D,C) → τ(D,C ′) is an isomorphism by the 5 Lemma. This implies
that γ is an isomorphism itself. �

Corollary 3.8. Two exact triangles A→ B → C → ΣA with the same map f : A→ B are isomorphic.

This object C is called the cone of f . It is unique up to isomorphism by the Corollary, but the isomorphism is not
natural. The octahedral axiom gives, among other things, an exact triangle relating Cf , Cf◦g and Cg in a triangle

A

f◦g   

g
// B

f

��

D.

These axioms all hold for KK-theory. We want to explore the UCT in the context of triangulated categories. In the usual
context, we started with a stable (commutes with suspension) homological functor K∗ : kk→ AbZ2

c (countable Z2-graded
abelian groups). We could instead take nay triangulated category τ and a stable homological functor F : τ → A.

Example 3.9. Let τ = kk(X) for some finite T0 space X, and set

F (A) = (K∗(A(Ux)))x∈X

where Ux is the minimal open set in X containing x. This would not give a nice UCT, though. One can instead take

F (A) =
(
K∗(A({x}))

)
x∈X

or FK(A) = (K∗(A(C)))
C locally closed .

It is not clear however whether there is a nice UCT using these invariants.
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Given two objects A and B, the map γ : τ(A,B) → HomA(F (A), F (B)) should be composition with the functor F .
There is an obvious problem: in general, there is no reason why γ should be surjective, unless we restrict the category
A. Nevertheless, the kernel of this map is still interesting, and it does not depend on the choice of the target category
A. We therefore turn to a more systematic approach to proving the UCT involving projective resolutions.

In the case of KK-theory, we have F = K∗.

Theorem 3.10. For every C∗-algebra A, there exists an abelian C∗-algebra Â satisfying the UCT and with isomorphic

K-groups. Moreover, A satisfies the UCT if and only if it is KK-equivalent to Â.

Proof. Let A be an object in kk and find a projective resolution

0 // P1
d // P0

π // K∗(A) // 0

of K∗(A) in AbZ2
c . (Recall that in the category of abelian groups, projective is the same as free.) The trick to prove the

UCT is to lift the diagram to KK-theory. Write

Pj =
⊕
i∈I+j

Z[0]⊕
⊕
i∈I−j

Z[1]

for j = 0, 1, where the first summand is the degree zero component. To lift the diagram, set

P̂j =
⊕
i∈I+j

C⊕
⊕
i∈I−j

C0(R)

and note that K∗(P̂j) = Pj for j = 0, 1. Since KK-theory takes direct sums to direct products, we get isomorphisms

KK(P̂j , B) =
∏
i∈I+j

KK(C, B)×
∏
i∈I−j

KK(C0(R), B) ∼= Hom
Ab

Z2
c

(Pj ,K∗(B)).

Hence π lifts to π̂ : P̂0 → A and d lifts to d̂ : P̂1 → P̂0, so we get

0 // P̂1
d̂ // P̂0

π̂ // A // 0 ,

and π̂ ◦ d̂ = π̂ ◦ d = 0 since lifts are unique. Since KK is a triangulated category, we can find an exact triangle in KK

containing d̂:

P̂1
d̂ // P̂0

// Â // ΣP̂1 .

Then π̂ ∈ KK(P̂0, A) is in the kernel of KK(d̂, A). Since KK(−, A) is homological, we get an exact sequence

KK(Â, A) // KK(P̂0, A) // KK(P̂1, A)

where the last map sends π̂ to 0. Thus there exists an element ϕ ∈ KK(Â, A) that is mapped to π̂. We claim that ϕ
induces an isomorphism on K-theory. Ultimately, the goal is to show that A is in the Bootstrap class if and only if ϕ is
invertible. We have a commutative diagram

0 // K∗(P̂1)

id
��

// K∗(P̂0)

id
��

// K∗(A)

K∗(ϕ)

��

// 0

K∗+1(Â) // K∗(P̂1) // K∗(P̂0) // K∗(Â) // K∗−1(P̂1).

A diagram chase shows that K∗+1(Â)→ K∗(P̂1) and K∗(Â)→ K∗−1(P̂1) are zero, and hence K∗(ϕ) is an isomorphism.

Now take B in kk and write down a long exact sequence for KK(−, B) and P̂1 → P̂0 → Â→ ΣP̂1:

KK0(P̂1, B)

��

KK0(P̂0, B)oo KK0(Â, B)oo

KK1(Â, B) // KK1(P̂0, B) // KK1(P̂1, B)

OO

Recall that KK0(P̂j , B) = Hom∗(Pj ,K∗(B)). Now,

Hom(K∗(A),K∗(B)) = ker (Hom(P0,K∗(B))→ Hom(P1,K∗(B)))

Ext(K∗(A),K∗(B)) = coker (Hom(P0,K∗(B))→ Hom(P1,K∗(B))) ,

and thus we can extract the short exact sequence

0→ Ext(K∗(A),K∗(B))→ KK∗(Â, B)→ Hom(K∗(A),K∗(B))→ 0
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and since K∗(A) ∼= K∗(Â), we get the UCT for Â.

Starting with a C∗-algebra A, we constructed an abelian C∗-algebra Â with isomorphic K-theory and that satisfies
the UCT. We will now show that A satisfies the UCT if and only if ϕ is a KK-equivalence. MISSING BIT. �

We wish to generalize this construction to arbitrary triangulated categories. A major question is how to go back and
forth between a triangulated category τ and a stable abelian category A. For example, it could be τ = kk and A = AbZ2

c ,
or τ = kk(X) and A =? Suppose we start with a stable homological functor F : τ → A such that for a projective object

P ∈ A, there is a canonical P̂ ∈ τ with F (P̂ ) = P and

Homτ (P̂ , B) = HomA(P, F (B))

for all B ∈ τ . It follows that P̂ is unique and hence P 7→ P̂ is a partially defined left-adjoint functor of F . Indeed, if P1

and P2 are projective objects in A, then

Homτ (P̂1, P̂2) = HomA(P1, F (P̂2)) = HomA(P1, P2).

We can also lift projective resolutions. Given B ∈ τ , choose a projective resolution

· · · → P1 → P0 → F (B)→ 0

in A for F (B). Then the isomorphism HomA(P0, F (B)) ∼= Homτ (P̂0, B) lifts the map P0 → F (B) uniquely to a map

P̂0 → B. The maps Pn → Pn−1 for n ≥ 1 also lift uniquely to maps P̂n → P̂n−1, giving

· · · → P̂1 → P̂0 → B → 0.

Since lifts are unique, the compositions are again zero, and we therefore get a chain complex. This is a ker(F )-projective
resolution of G, and any such is of this form.

To finish the proof of the UCT, we will assume that the resolution has length one, so that we can choose Pn = 0 for

n ≥ 2. We can embed P̂1 → P̂0 into an exact triangle

P̂1
//

0
  

P̂0
//

��

B̃

∃ϕ
��

// ΣP̂1

B

.

Since τ(−, B) is cohomological, there is a morphism ϕ : B̃ → B. Applying F to this triangle, we get a commutative
diagram

F (P̂1) //

∼=
��

F (P̂0) //

∼=
��

F (B̃) //

F (ϕ)

��

F (ΣP̂1) //

∼=
��

F (ΣP̂0)

∼=
��

P1
// P0

// F (B) // ΣP1
// ΣP0.

Since P1 → P0 is a monomorphism, so is its suspension ΣP1 → ΣP0, and hence F (B) → ΣP1 is an epimorphism, and

so is P0 → F (B). Thus ϕ : B̃ → B induces an isomorphism F (ϕ) : F (B̃) → F (B). Recall that B̃ is constructed out if
ker(F )-projective objects.

The following lemma in the case τ = kk and A = AbZ2
c states that KK(B̃,D) = 0 whenever K∗(D) = 0. This

also follows using the UCT and recalling that B̃ is in the Bootstrap class.

Lemma 3.11. Let D be an object in τ such that F (C) = 0. Then τ(B̃,D) = 0.

Proof. Since τ(P̂ ,D) ∼= HomA(P, F (D)) = 0, the result follows from considering the long exact sequence for τ(−, D)

associated to the exact triangle P̂1 → P̂0 → B̃ → ΣP̂1. �

Theorem 3.12. Assume that for every B ∈ τ , the object F (B) has a projective resolutions of length 1 in A. Then for
every object D in τ , there is a short exact sequence

0→ Ext1
A(ΣF (B̃), F (D))→ τ(B̃,D)→ HomA(F (B̃), F (D))→ 0.

Proof. Apply the cohomological functor τ(−, D) to P̂1 → P̂0 → B̃ → ΣP̂1 and use the identification τ(P̂1, D) ∼=
HomA(P1, F (D)) to get

· · · → HomA(ΣP0, F (D))→ HomA(ΣP1, F (D))→ τ(B̃,D)→ HomA(P0, F (D))→ HomA(P1, F (D))→ · · ·
and the desired short exact sequence can be extracted from the above long exact sequence by noticing that the Ext and
Hom groups involved in the statement are the cokernel and kernel of the corresponding maps above. �

Lemma 3.13. With the notation of the above theorem and discussion, B satisfies the UCT if and only if ϕ is an
isomorphism.
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Proof. If ϕ : B̃ → B is an isomorphism, then the same UCT sequence holds for B. Conversely, assume that B satisfies

the UCT. Embed ϕ into a right triangle B̃ → B → C → ΣB̃. Then F (C) = 0 because F (ϕ) (and hence F (Σϕ)) is
invertible and using the long exact sequence. Since B satisfies the UCT, we have τ(B,C) = 0 so in particular g = 0. We

also know that τ(B̃, C) = 0 since the UCT holds for B̃ as well. Now the long exact sequence for τ(−, C) implies that
τ(C,C) = 0, so idC = 0 and hence C = 0. It follows that ϕ is an isomorphism. �

Corollary 3.14. We have the following description of the Bootstrap class:

Bootstrap class = {objects constructible from P̂ , with P projective in A}
= {objects A ∈ A : τ(A,D) = 0 whenever F (D) = 0}.

In other words, it suffices to check that the UCT holds for (A,D) whenever K∗(D) = 0 to conclude that it holds for
any pair (A,B).

How does the UCT help in classification? The UCT for B implies that any map α : F (B) → F (D) lifts to an
element in τ(B,D). If α is invertible and D also satisfies the UCT, then any lift of α must also be invertible. Indeed, lift

α and α−1 to α̂ and α̂−1 respectively. Then α̂◦ α̂−1 and α̂−1 ◦ α̂ lift the identity maps, so we only need to check that lift-
ings of the identity maps of F (B) and F (D) are invertible. This is true because ker(F ) ⊆ τ(B,B) and ker(F ) ⊆ τ(D,D)
are nilpotent.

Theorem 3.15. (Naturality of the UCT) Let f : D → D′ be a morphism in τ and let B ∈ τ . Then there are maps
F (f)∗, f∗ and F (f)∗ making the diagram

0 // Ext1
A(ΣF (B̃), F (D)) //

F (f)∗
��

τ(B̃,D) //

f∗
��

HomA(F (B̃), F (D)) //

F (f)∗
��

0

0 // Ext1
A(ΣF (B̃), F (D′)) // τ(B̃,D′) // HomA(F (B̃), F (D′)) // 0

commute.

We will now discuss the range of the invariant. We still need to assume that for every object B in τ , the invariant
F (B) has a length one projective resolution in A.

Lemma 3.16. Assume that for every object B in τ , the invariant F (B) has a length one projective resolution in A.
Then any X in A with length 1 projective resolution is of the form F (B) for some B ∈ τ .

Proof. If 0→ P1 → P1 → X → 0 is a projective resolution of X in A, lift P1 → P0 and embed it into an exact triangle

P̂1 → P̂0 → B → ΣP̂1. Then F (B) ∼= X. �

One remarkable case in which this happens is K∗ : kk→ AbZ2
c .

Example 3.17. Let X = {a, b} with topology {∅, {a}, {a, b}}. Set τ = kk(X) and F (ICA) is the 6-term exact sequence

K0(I) // K0(A) // K0(A/I)

��

K1(A/I)

OO

K1(A)oo K1(I)oo

Hence we may take A to consist of all 6-periodic chain complexes of countable abelian groups. One should not take all
6-periodic exact chain complexes, because they do not form an additive category. The projective objects in A can be
described as follows: a chain C is projective if and only if every group appearing in it is projective (free) and C is exact.
One such example is

Z id // Z // 0

��

0

OO

0oo 0oo

and there are 5 more such examples obtained by rotating this one. These in fact generate all projective chains. It is easy
to check that CC C is a lift for this projective object. The lift for

0 // Z id // Z

��

0

OO

0oo 0oo
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is 0C C, and the lift for

0 // 0 // Z

id
��

0

OO

0oo Zoo

is C0((0, 1))C C0((0, 1]). The remaining three generators are lifted by taking suspensions in these three examples.
We look at projective resolutions. If C is a chain complex, there exists a projective object P0 in A and an epimorphism

P0 → C → 0. Let P1 be the kernel of this map. We claim that P1 is projective if C is exact. Since P1 ⊆ P0 and P0

contains free groups, so does P1. Now consider the long exact sequence in homology:

· · · → Hn(P1)→ Hn(P0)→ Hn(C)→ Hn+1(P1)→ Hn+1(P0)→ · · · .
It follows that P1 is exact if and only if C is exact. We conclude that P1 is projective if C is exact. If C is not exact, then
it has infinite length of projective resolutions.

4. Lifting invariants with projective resolutions of length two

We will focus on the case where projective resolutions have length two. This is a very common situation.

Example 4.1. Let X be a finite unique path space (between any two points, there is at most one path connecting
them). Then its quiver algebra Z[X] has cohomological dimension 2: every module has a length 2 projective resolution.
For Z[X] itself, we have

0→
⊕
x→y

Z[X]ey ⊗ exZ[X]→
⊕
x∈X0

Z[X]ex ⊗ exZ[X]→ Z[X]→ 0,

where the first map is a⊗ b 7→ a(x→ y)⊗ b− a⊗ (x→ y)b, and the second one is z ⊗w 7→ zw. If M is a Z[X]-module,
then by tensoring the resolution for Z[X] with M , we get an exact sequence of Z[X]-modules

0→
⊕
x→y

Z[X]ey ⊗Mx →
⊕
x∈X0

Z[X]ex ⊗Mx →M → 0.

Then take long exact sequence and use the identification

ExtnZ[X](Z[X]ex ⊗Z My, N) ∼= ExtnZ(My, Nx)

to conclude that ExtnZ[X] = 0 for n ≥ 3. On the other hand, Ext2
Z[X] = coker(Ext1

Z → Ext1
Z) is non-zero in general.

Now let τ = kk(X) and A = Z[X]-modules, with

F (A) = (K∗(A(Ux)))x∈X ,

where Ux is the minimal open set containing x. Notice that if x ≤ y, then Ux ⊆ Uy and hence there is a map

K∗(A(Ux))→ K∗(A(Uy)).

Check that Z[X]ex lifts to Cx, so liftings of resolutions work as usual.

Example 4.2. The category of countable abeliab Z2-graded Z[x, x−1]- and Z[x]-modules have homological dimension
two. (The proof is similar to the example above.) Our machinery can be applied to circle actions with τ = KKT and
F = KT

∗ .

Let F : τ → A be as usual.

Theorem 4.3. Let B be an object of A with a length two projective resolution. Then B lifts to an object in τ .

Proof. Choose a length two projective resolution

0 // P2
d2 // P1

d1 // P0
d0 // B // 0

of B. Let ΩB = ker(d0) = =(d1). Since there is a length one projective resolution 0 → P2 → P1 → ΩB → 0, it follows

that ΩB lifts to Ω̂B in τ , and Ω̂B satisfies the UCT:

0→ Ext1
A(ΣF (B̃), F (D))→ τ(B̃,D)→ HomA(F (B̃), F (D))→ 0.

Hence the inclusion ΩB ↪→ P0 lifts to ϕ ∈ τ(Ω̂B, P̂0). Set B̂ = cone(ϕ). We claim that B̂ is a lift of B. Since

Ω̂B
ϕ
// P̂0

// B̂ // ΣΩ̂B

is an exact triangle, it follows that

F (Ω̂B → F (P̂0)→ F (B̂)→ F (ΣΩ̂B)→ F (ΣP̂0)

is also exact. Since the first three terms can be identified with 0→ ΩB ↪→ P0 � F (B̂), it follows that F (B̂) = B. �

Since we are mainly concerned with classification, we want to study to what extent the lifting is unique.
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Theorem 4.4. Liftings of B are in bijection with the elements of Ext2
A(B,Σ−1(B)). Hence, there is a unique lift if and

only if Ext2
A(B,Σ−1(B)) = 0.

A lift of B is a pair (B̂, θ) where B̂ ∈ τ is in the UCT class and θ : F (B̂)→ B is an isomorphism.

Remark 4.5. The bijection with Ext2
A(B,Σ−1(B)) is not canonical: it depends on the choice of a particular lifting

corresponding to the zero element in the Ext2
A group.

Here is a case in which the bijection becomes canonical. Assume that A = AZ2
0 has a canonical decomposition into

even and odd parts. Write B = B0 ⊕B1. Since Ext2
A(Bj ,Σ

−1(Bj)) = 0 for parity reasons, the even and odd parts of B

have unique liftings, say B̂0 and B̂1. Hence B̂ = B̂0 ⊕ B̂1 lifts B, and in this way the lifting becomes natural.

Example 4.6. For gauge actions on Cuntz-Krieger algebras, the equivariant K-theory is the same as the K-theory of the
fixed point algebra, which is AF. Hence the Ext2

A group vanishes for parity reasons again. In particular, gauge actions
on Cuntz-Krieger algebras are uniquely determined up to KKT-equivalence by their equivariant K-theory.

Proof. (of the lifting result) Let (B̂, θ : F (B̂)→ B) be a lifting of B, and let

0 // P2
d2 // P1

d1 // P0
d0 // B // 0

be a projective resolution. Lift d0 : P0 → B ∼= F (B̂) to d̂0 ∈ τ(P̂0, B̂), and construct an exact triangle

ΣB̂ → Ω̂B → P̂0 → B̂,

where the last map is d̂0. Applying F to this triangle we get

0→ F (Ω̂B → P0 → B → 0,

where the last map is d0. Thus F (Ω̂B) = ker(d0) = ΩB. Thus every lifting comes from some ϕ ∈ τ(Ω̂B, P̂0) lifting the
inclusion map ΩB → P0. (Recall that ΩB has a unique lifting because it has a length one projective resolution.) The

source of non-uniqueness of the lifting of B is the map ϕ. If B̂1 and B̂2 are two liftings of B, then the corresponding

maps ϕ1 and ϕ2 satisfy ϕ1 − ϕ2 ∈ Ext1
A(ΩB,P0) by the UCT for Ω̂B. Now, B̂1 and B̂2 are isomorphic lifts, there is an

isomorphism β ∈ τ(B̂1, B̂2) lifting idB . Consider the exact triangles

B̂1

β

��

P̂0
oo

=

��

Ω̂B
ϕ1

oo

ψ
��

ΣB̂1
oo

Σβ

��

B̂2 P̂0
oo Ω̂B

ϕ2

oo ΣB̂2
oo

The diagram commutes because τ(P̂0, B̂2) = HomA(P0, B2) and β lifts the identity on B. By the axioms of triangulated

categories, there exists ψ ∈ τ(Ω̂B, Ω̂B) making all squares commute. If we apply F to the above diagram, both rows
become

0→ ΩB → P0 → B → 0

with vertical arrows being the respective identities. It follows that F (ψ) = idΩB and thus ψ − id
Ω̂B
∈ Ext1

A(ΩB,ΩB).

It turns out that ϕ1 − ϕ2 is the image of ψ − id
Ω̂B

under the map k : Ext1
A(ΩB,ΩB)→ Ext1

A(ΩB,P0). Thus ϕ1 and ϕ2

give isomorphic liftings if and only if ϕ1 − ϕ2 ∈ Im(k).
There is a long exact sequence

· · · // Ext1
A(ΩB,ΩB)

k // Ext1
A(ΩB,P0)

` // Ext1
A(ΩB,B) // Ext2

A(ΩB,ΩB) // · · ·

and hence ϕ1 and ϕ2 give isomorphic lifts if and only if `(ϕ1 − ϕ2) = 0. We will make use of the fact that there is
an isomorphism Ext1

A(ΩB,B) ∼= Ext2
A(B,B). Note that Ext2

A(ΩB,ΩB) = 0. The bijection can then be described as
follows. Fix a lift ϕ0. For any element in Ext1

A(ΩB,B), since ` is surjective, one can find a lift in Ext2
A(ΩB,P0), which

must have the form ϕ1 − ϕ2 for some other maps ϕ1 − ϕ2, Now take ϕ0 + (ϕ1 − ϕ2). �

The main purpose of developing this machinery is to apply it to the classification of circle actions. Many gauge actions
have stably finite fixed point algebras, so KKT-equivalence will be far from cocycle equivalence. Also, for many natural
examples, the groups Ext2

R(T)(K
T
∗ (A),KT

∗+1(A)) = 0.

4.1. Computation of Ext2
R(T). Start with an R(T)-bimodule resolution

0 // R(T)⊗R(T)
j
// R(T)⊗R(T)

mult // R(T) // 0,

where j(a⊗ b) = ax⊗ b− a⊗ xb. Now, if M is an R(T)-module, then we get a short exact sequence

0→ R⊗Z M → R⊗Z M →M → 0.

For two R-modules M and N , we get the following long exact sequence by applying HomR(T)(−, N)
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0 // HomR(T)(M,N) // HomR(T)(R(T)⊗Z M,N)
j∗
// HomR(T)(R(T)⊗Z M,N) //

// Ext1
R(T)(M,N) // Ext1

R(T)(R(T)⊗Z M,N)
j∗
// Ext1

R(T)(R(T)⊗Z M,N) // Ext2
R(T)(M,N).

Using that ExtnR(T)(R(T)⊗Z M,N) = ExtnZ(M,N), the above sequence is identified with

0 // HomR(T)(M,N) // HomZ(M,N)
j∗
// HomZ(M,N) // Ext1

R(T)(M,N) //

// Ext1
Z(M,N)

j∗
// Ext1

Z(M,N) // Ext2
R(T)(M,N).

The map j∗ is given by the difference of the actions of x on N and M .


