
ACTIONS OF FINITE GROUPS ON KIRCHBERG ALGEBRAS

Abstract. We consider the classification of pointwise outer actions os finite groups on Kirchberg algebras. The best results

are for cyclic groups of prime order. Ingredients include equivariant semiprojectivity, equivariant versions of Kirchberg’s

absorption theorems, and Köler’s universal coefficient theorem for equivariant KK-theory for cyclic groups of prime order.

These are lecture notes of a course given by Chris Phillips at the SFB Miniworkshop on C∗-Algebras, C∗-Bundles,
and Group Actions at the University of Münster, November 25-29, 2013. Notes taken by Eusebio Gardella.

Warning: little proofreading has been done.

Contents

1. Introduction and Motivation. 1
2. Semiprojectivity without group action. 1
3. Equivariant semiprojectivity. 4
4. Classification results. 8
References 9

1. Introduction and Motivation.

The target is the classification of pointwise outer finite group actions on unital Kirchberg algebras. There are four
main steps to the (intended) proof:

(1) Equivariant versions of Kirchberg absorption theorems:
• O2 ⊗A ∼= O2 whenever A is a simple, separable, nuclear, unital C∗-algebra, and
• O∞ ⊗A ∼= A whenever A is a purely infinite, simple, separable, nuclear C∗-algebra.

(2) If A is a unital Kirchberg algebra, G a finite group, α : G → Aut(A) a pointwise outer action, D any unital
C∗-algebra, and t 7→ ϕt is an equivariant asymptotic morphism A→ O∞ ⊗D (this is, ϕt is a unital completely
positive map for all t in R and moreover

lim
t→∞

‖ϕt(ab)− ϕt(a)ϕt(b)‖ = 0

for all a, b in A), then there exists a continuous path t 7→ ut of invariant unitaries and an equivariant homomor-
phism ψ : A→ O∞ ⊗D such that

lim
t→∞

‖ϕt(a)− utψ(a)u∗t ‖ = 0

for all a in A.
(3) If A and B are unital Kirchberg algebras with pointwise outer actions of a finite group G, then KKG

∗ (A,B) is
essentially given by asymptotic unitary equivalence classes of equivariant “full” homomoprhisms A→ B.

(4) Universal Coefficient Theorem for equivariant KK-theory, due to Köler. Needs G cyclic of prime order. (There
is a candidate for the general case involving orbit categories, but this is still open.)

We take N = {1, 2, . . .}. The p-adic integers will not appear in this document, so for n in N, we denote the cyclic
group of order n by Zn.

2. Semiprojectivity without group action.

The following lemma was known even before semiprojectivity was formally introduced.

Lemma 2.1. Let ε > 0. Then there exists δ > 0 such that whenever A is a C∗-algebra and a in A satisfies

‖a2 − a‖ < δ and ‖a∗ − a‖ < δ,

then there exists a projection p in A such that ‖p− a‖ < ε.

Proof. Assume that a = a∗. Then the condition ‖a2 − a‖ < δ implies that 1/2 is not in the spectrum of a, and hence
p = χ[1/2,∞)(a) is a projection in A that can be shown to be close to a. �
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In modern language, Lemma 2.1 states that any approximate homomorphism C → A is close to a genuine homo-
morphism. More generally, for all n in N, approximate homomorphisms Cn → A can be perturbed to obtain an honest
homomorphism Cn → A.

Lemma 2.2. Let ε > 0 and n in N. Then there exists δ > 0 such that whenever A is a C∗-algebra and a1, . . . , an in A
satisfy

‖a2j − aj‖ < δ, ‖a∗j − aj‖ < δ and ‖ajak‖ < δ,

for all distinct j, k = 1, . . . , n, then there exist orthogonal projections p1, . . . , pn in A such that ‖pj − aj‖ < ε for all
j = 1, . . . , n.

Proof. Assume n = 2. (The rest is an inductive argument.) Assume that aj = a∗j for all j = 1, 2. Use Lemma 2.1 to find
a projection p1 in A close to a1. Replace a2 by b2 = (1−p1)a2(1−p1). Since p1 is close to a1 and c = (1−a1)a2(1−a1) is
close to a2 (which can be seen by multiplying this expression out), one gets that ‖b22− b2‖ is small. Also, b2 is self-adjoint
and is close to a2. Use Lemma 2.1 in (1− p1)A(1− p1) to find a projection p2 in (1− p1)A(1− p1) such that ‖p2 − b2‖
is small. Then p1 and p2 are orthogonal and

‖p2 − a2‖ ≤ ‖p2 − b2‖+ ‖b2 − a2‖,
so p2 is close to a2. �

Remark 2.3. Fix ε > 0 and for n in N denote by δ(n) the positive number given by Lemma 2.2. Then δ(n)→ 0 fairly
fast as n→∞.

Exercise 2.4. Work out the induction argument in Lemma 2.2

Exercise 2.5. Write down the details of the proof of Lemma 2.1 and Lemma 2.2 assuming self-adjointness.

There is a similar result for approximate homomorphism from Mn.

Lemma 2.6. Let ε > 0 and n in N. Then there exists δ > 0 such that whenever A is a C∗-algebra and aj,k in A for
j, k = 1, . . . , n satisfy

‖a∗j,k − aj,k‖ < δ and ‖aj,kal,m − δk,laj,m‖ < δ,

for all j, k, l,m = 1, . . . , n, then there exist matrix units fj,k in A such that ‖fj,k − aj,k‖ < ε for all j, k = 1, . . . , n.

Proof. (Sketch) Use Lemma 2.2 to find projections fj,j . To get f1,j , let x = f1,1a1,jfj,j and set f1,j = x(x∗x)−1/2. Here

x∗x ∈ fj,jAfj,j is close to fj,j , so it is invertible and this gives (x∗x)−1/2. Now take fj,k = f∗1,jf1,k. �

Exercise 2.7. Fill in the details in the proof of Lemma 2.6 with ε and δ.

Lemma 2.6 was first obtained by Glimm and was used in the classification of UHF-algebras. A generalization of this
result to finite-dimensional C∗-algebras was proven by Bratteli.

All of these results can be expressed in terms of semiprojectivity.

Definition 2.8. A C∗-algebra A is said to be semiprojective if whenever C is a C∗-algebra, J1 ⊆ J2 ⊆ · · ·A is an
increasing sequence of ideals in C with J =

⋃
n∈N Jn, and ϕ : A→ C/J is a homomorphism, then there exist n in N and

a homomorphism ψ : A→ C/Jn such that πn ◦ ψ = ϕ:

C

κn

��

C/Jn

πn

��

A

ψ

77

ϕ
// C/J.

If one can always choose the lift to be ψ : A→ C, then A is called projective.

For unital C∗-algebras, it does not make a difference if in the definition of semiprojectivity we require that the
homomorphisms be unital. (See Proposition 2.15.)

Remark 2.9. If one assumes that everything is unital and commutative with A = C(X), then the condition is equivalent
to X being an absolute neighborhood retract.

The lemmas proved before can be rephrased by saying that the C∗-algebras C, Cn and Mn are semiprojective. To see
this explicitly, we need a technical lemma of independent interest.
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Lemma 2.10. Let C be a C∗-algebra, let J1 ⊆ J2 ⊆ · · · ⊆ C be an increasing sequence of ideals in C and set J =
⋃
n∈N Jk.

For k in N, denote by κk : C → C/Jk the partial quotient maps, and let κ : C → C/J be the total quotient map. Then

‖κ(a)‖ = lim
k→∞

‖κk(a)‖

for all a in A.

Lemma 2.11. Let n in N. Then Cn is semiprojective.

Proof. Let ϕ : Cn → C/J be a homomorphism and let qj in Cn be the j-th standard vector. Lift ϕ(qj) to cj in C
self-adjoint, so that κ(cj) = ϕ(qj) for j = 1, . . . , n. Then κ(c2j − cj) = 0, and hence by Lemma 2.10, for k large enough,

we have that ‖κk(cj)
2 − κk(cj)‖ is small for j = 1, . . . , n. Similarly, ‖κk(cj)κk(cl)‖ is small for j 6= l if k is large enough.

Apply Lemma 2.2 to find orthogonal projections pj in C/Jk such that ‖pj − κk(cj)‖ is small for j = 1, . . . , n. This gives
a homomorphism ψ : Cn → C/Jk. Since π commutes with functional calculus, one gets that πk(ψ(qj)) = πn(pj) = ϕ(qj)
for all j = 1, . . . , n, which concludes the proof. �

We would like to show that semiprojectivity for Cn implies the perturbation argument proved in Lemma 2.2.

Proof. Suppose the perturbation property fails. Then there exists ε > 0 such that for all δ > 0 there exists a C∗-algebra
Bδ and elements aδ1, . . . , a

δ
n in Bδ such that

(1) ‖(aδj)2 − aδj‖ < δ, ‖(aδj)∗ − aδj‖ < δ and ‖aδjaδk‖ < δ,

for all distinct j, k = 1, . . . , n, but there are not orthogonal projections pδ1, . . . , p
δ
n in Bδ such that ‖pδj − aδj‖ < ε for all

j = 1, . . . , n. Set C =
∏
m∈NB1/m, and for r in N, take

Jr = {(b1, . . . , br, 0, . . .) : bj ∈ B1/j} ⊆ C.
Note that C/Jr ∼=

∏∞
m=r+1B1/m and

J =
⋃
r∈N

Jr = {(bm)m∈N ∈ B : lim
m→∞

‖bm‖ = 0}.

With q1, . . . , qn denoting the canonical projections in Cn, set ϕ(qj) = κ(a1j , a
1/2
j , a

1/3
j , . . .). Then ϕ : Cn → C/J is a

homomorphism by the inequalities in (1). By semiprojectivity of Cn, the homomorphism ϕ lifts to ψ : Cn → C/Jr for

some r in N. One therefore gets projections (p
1/m
j )m∈N in the product

∏∞
m=r+1B1/m whose image in C/J is ϕ(qj) for

all j = 1, . . . , n. This gives ‖p1/mj − a1/mj ‖ → 0 as m→∞. Pick m large enough so that all of these are less than ε. This
is a contradiction. �

There is a more general statement behind this fact.

Proposition 2.12. For all ε > 0 and for all n in N, there exists δ > 0 such that for all C∗-algebras B and D, for all
homomorphisms η : B → D and for all positive elements a1, . . . , an in B such that

‖a2j − aj‖ < δ, ‖a∗j − aj‖ < δ and ‖ajak‖ < δ

for all distinct j, k = 1, . . . , n and the elements η(aj) are orthogonal projections and satisfy the conditions exactly, then
there are orthogonal projections p1, . . . , pn in B such that ‖pj − aj‖ < ε and η(pj) = η(aj) for all j = 1, . . . , n.

Exercise 2.13. Prove Proposition 2.12.

Examples 2.14. Semiprojective and non-semiprojective C∗-algebras.

(1) Finite dimensional C∗-algebras are semiprojective.
(2) C(S1) is semiprojective (in the unital category – which is equivalent to being semiprojective in the non-unital

category; see Proposition 2.15).

Proof. We regard C(S1) as the universal C∗-algebra generated by a unitary. Given an almost unitary a in B,
get a nearby unitary by setting u = a(a∗a)−1/2. �

(3) The Cuntz algebras On for 2 ≤ n ≤ ∞ are semiprojective. The result for O∞ is trickier than for the other Cuntz
algebras, and it is due to Blackadar.

(4) C([0, 1]) is semiprojective.
(5) C([0, 1]2) is not semiprojective, and neither is C(X), where X is the Cantor set.
(6) (Sørensen-Thiel [6]) C(X) is semiprojective if and only if X is an absolute neighborhood retract of dimension at

most 1.
(7) Various dimension drop algebras are semiprojective.
(8) C(S1, F ) and C([0, 1], F ) are semiprojective for any finite dimensional C∗-algebra F .
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(9) If Fn denotes the free group on n generators, then C∗(Fn) is semiprojective for 1 ≤ n <∞ and C∗(F∞) is not.
(10) K is not semiprojective.

We now turn to the difference between the unital and non-unital versions of semiprojectivity.

Proposition 2.15. Let A be a unital C∗-algebra. Then A is semiprojective in the unital category if and only if it is
semiprojective in the non-unital category.

Proof. If A is unitally semiprojective and we consider a lifting problem with non-unital maps, partially lift ϕ(1) to
qr ∈ C/Jr. For s > r, let qs be its image on C/Js. Replace C/Js by qs(C/Js)qs.

Conversely, if A is unital and non-unitally semiprojective, consider a lifting problem with unital maps. Get a non-
unital lift ψ : A→ C/Jr for some r in N. Then πr(ψ(1)) = 1 because ϕ is unital, and thus ‖πs,r(ψ(1))− 1‖ is small for
s > r big enough. In particular, if it is less than 1, then πs,r(ψ(1)) = 1, being an invertible projection. Thus πs,r ◦ ψ is
a unital partial lift of ϕ. �

Note that the argument breaks down for projectivity. In fact, the unital and non-unital versions of projectivity do not
agree.

3. Equivariant semiprojectivity.

Equivariant semiprojectivity is defined similarly to usual semiprojectivity. Given a group G, take the category where
the morphisms and objects in the diagram live to consist of all dynamical systems (G,A, α), where α : G→ Aut(A) is a
continuous action, with morphisms given by equivariant homomorphisms.

(G,C, γ)

κn

��

(G,C/Jn, γ
(n))

πn

��

(G,A, α)

ψ
55

ϕ
// (G,C/J, γ(∞)).

The reason why the argument in Proposition 2.15 works is that C is non-unitally semiprojective. This motivates the
following example.

Example 3.1. Let G be any compact group, and let α : G → Aut(C) be the trivial action (there is no other choice).
Then (G,C, α) is equivariantly semiprojective.

Proof. Given ϕ : (G,C, α)→ (G,C/J, γ(∞)), lift ϕ(1) to some self-adjoint element c0 in C and set c =
∫
G
γg(c0) dg. Then

κ(c) = κ(c0) = ϕ(1) because ϕ is equivariant. Proceed as before, using that functional calculus on invariant elements
gives invariant elements. Push c down far enough to form χ[1/2,∞)(

1
2 (c+ c∗)). �

Examples 3.2. Let G be a compact group.

(1) If F is a finite dimensional C∗-algebra and α : G→ Aut(F ) is any continuous action, then (G,F, α) is equivariantly
semiprojective.

(2) The system (G,On, α), if 2 ≤ n <∞ and α is a quasifree action, is equivariantly semiprojective.
(3) The system (G,O∞, α), if G is finite and α is a quasifree action, is equivariantly semiprojective.
(4) Let n in N and let Z2n act on C0((0, 1], C(Z2n)) by left translation on C(Z2n). Then (Z2n , C0((0, 1], C(Z2n)), lt)

is equivariantly semiprojective. (This should be true for abitrary finite groups, but it is not known.)

The following result relates equivariant semiprojectivity of a system and semiprojectivity of the underlying algebra.

Theorem 3.3. (Phillips [4]) Suppose G is compact and (G,A, α) is semiprojective. Then A is semiprojective.

More generally:

Theorem 3.4. (Phillips-Sørensen-Thiel [5]) Let G be a locally compact group and let (G,A, α) be equivariantly semipro-
jective. If H is a subgroup of G such that G/H is compact, then (A,H,α|H) is equivariantly semiprojective.

If in Theorem 3.4 we assume that G is compact and take H to be the trivial subgroup, then we recover Theorem 3.3.
The result is known to fail if one does not assume that G/H is compact; see Remark 3.7.

As of equivariant projectivity, we have the following result on restrictions.

Theorem 3.5. Let G be a locally compact group and let (G,A, α) be equivariantly projective. If H is a subgroup of G
that satisfies very weak conditions, then (A,H,α|H) is equivariantly projective.
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The weak conditions mentioned above are satisfied whenever G is discrete and H is arbitrary, or when G/H is compact,
among others. It is not known whether the result is true without any assumptions on the subgroup H. This is, it may
be true that an arbitrary restriction of an equivariantly projective system is again equivariantly projective.

As an example of an equivariantly semiprojective system with a non-compact group, we have the following.

Example 3.6. Let G be discrete and let A be the full group C∗-algebra on the generators ag for g in G. Let G act on
A by translating the generators: αg(ah) = agh for all g and h in G. Then (G,A, α) is equivariantly semiprojective in the
unital category. Indeed, lift ϕ(a1) to some unitary u1 in C/Jr for some r in N. Now take ψ(ag) to be γg(u1) = ug.

Remark 3.7. If |G| = ∞, then A ∼= C∗(F∞) itself is not semiprojective. (See (9) in Example 2.14.) It follows that
Theorem 3.3 is not true if G is not compact, and that Theorem 3.4 is not true if G/H is not compact.

We mention two applications of equivariant semiprojectivity (not using Kirchberg algebras).

Theorem 3.8. (Gardella [1]) If α : G → Aut(A) is an action of a finite group G with the Rokhlin property, then α is
the dual of some coaction on AG.

This uses semiprojectivity of the system (G,C(G), lt) for a finite group G.

Theorem 3.9. (Pasnicu-Phillips [3]) Let A be a non-necessarily simple purely infinite C∗-algebra (in the sense of
Kirchberg-Rørdam) with the ideal property (ideals are generated by their projections), an let α : Z2 → Aut(A) be any
action. Then Aoα G is purely infinite and has the ideal property.

The result above uses equivariant semiprojectivity of the system (Z2, C0((0, 1], C(Z2)), lt). The result should be true
for arbitrary finite groups.

It is not known, and it is probably false, whether pure infiniteness by itself is preserved under formation of crossed
products by arbitrary actions of Z2. It is known that the ideal property is not preserved in general.

Example 3.10. Let G be a finite group, let m in N, and set n = m|G|. Consider On with generators sg,j for j = 1, . . . ,m
and g in G, and let G act on On by αg(sh,j) = sgh,j for g, h in G and j = 1, . . . ,m. Then (G,On, α) is equivariantly
semiprojective.

Proof. (Sketch) Assume m = 1 so n = |G| and G acts on On by translation of the generators sg for g in G. Equivariantly
partially lift Cn = span({sgs∗g : g ∈ G}) to C/Jr0 and denote the lifts by q1, . . . , qn. (Since the algebra is finite dimensional
and the group is compact, the system is equivariantly semiprojective; see Theorem 3.22.) Then partially lift the isometry
s1 to have range equal to the corner in C/Jr1 given by the image of the lift of s1s

∗
1. (We are using that the Toeplitz

algebra is semiprojective – this is standard.)

C

��

C/Jr0

��

C/Jr1

��

(G,On, α)

ψ
66

ϕ
// C/J.

Denote by e1, . . . , en ∈ C/Jr1 the images of q1, . . . , qn. Get t1 such that t∗1t1 = 1 and t1t
∗
1 = e1. Take tg = γg(t1) for

g in G. Then {tg : g ∈ G} satisfies the relations defining the Cuntz algebra On, and hence generate a copy of On. This
is the partial lift. �

Remark 3.11. The argument works for Omn, and using Blackadar’s method, also for O∞. This particular action is the
one on O∞ needed for Kirchberg’s equivariant stability.

We collect some facts about equivariant semiprojectivity. Many will appear in the paper [5]. The first one is an
equivariant analog of Proposition 2.15.

Theorem 3.12. If G is a compact group and A is a unital C∗-algebra, then (G,A, α) is equivariantly semiprojective in
the unital category if and only if it is equivariantly semiprojective in the non-unital category.
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The result is not true for non-compact groups. Indeed, the system (G,C∗(FG), α) constructed in Example 3.6 is
equivariantly semiprojective in the unital category but not in the non-unital category. This follows from the following
result.

Theorem 3.13. If (G,A, α) is equivariantly semiprojective in the non-unital category and G is not compact, then
AG = {0}.

In particular, if G is not compact and A is unital, no action of G on A can be equivariantly semiprojective in the
non-unital category. This shows that Example 3.6 is not equivariantly semiprojective in the non-unital category.

The following is another example of an algebra that is not semiprojective itself but is equivariantly semiprojective
with a suitable action. It turns out that although one can not partially lift the algebra by itself, the action helps one
find a partial lift.

Example 3.14. Let G be a discrete group and let A = ∗g∈GC be the full free product of copies of C indexed by G
(not amalgamated even over the unit). Let G act on A via the “free Bernoulli shift”: translation on the indices. Then
(G,A, α) is equivariantly semiprojective. To see this, lift one of the projections, say the projection indexed by 1 ∈ G, to,

say, p1 in C/Jr for some r in N. We determine the other projections by setting pg = γ
(r)
g (p1) for all g in G.

The algebra A itself is not semiprojective in general, unless G is finite. The problem is that when one finds lifts pg in
C/Jr(g) for g in G, one could have supg∈G r(g) =∞ and hence may not be able to lift them all to a finite stage.

Remark 3.15. Example 3.14 above works for any semiprojective C∗-algebra in place of C.

Remark 3.16. If in Example 3.14 one replaces C with a projective C∗-algebra, then one obtains an equivariantly
projective system (G,A, α). In this case, though, the algebra A itself is projective since one has r(g) = 0 for all g in G.

For G acting on A = ⊕g∈GB with G discrete acting on A by translation of the summands, and such that A is
(semi)projective, one would like to conclude that (G,A, α) is equivariantly (semi)projective. This is only known for
G = Z2n , and open in all other cases.

The following is one relation between equivariant semiprojectivity of a system and semiprojectivity of the crossed
product.

Theorem 3.17. If G is discrete and C∗(G) is semiprojective (for example, if G is either finite or Z, but not if G is Z2),
and (G,A, α) is semiprojective, then Aoα G is semiprojective.

For G compact and infinite, the trivial action on C is equivariantly semiprojective but C∗(G) is not semiprojective.

There exists a non-equivariantly semiprojective action of Z2 on O2.

Question 3.18. If F is finite dimensional with some action of a compact group G, is any of

C0((0, 1])⊗ F C(S1)⊗ F or C([0, 1])⊗ F,
with the trivial action on the first factor, equivariantly semiprojective? This is not known even if G is finite, F = C(G),
and the action is by translation (except when G = Z2n).

More generally,

Question 3.19. If F is finite dimensional with some action γ of a compact group G, and (G,A, α) is equivariantly
semiprojective, is (G,A⊗ F, α⊗ γ) equivariantly semiprojective? (This is true without the actions.)

The relationship between equivariant semiprojectivity and the Rokhlin property is still unclear.

Question 3.20. Are Rokhlin actions of finite groups on O2 equivariantly semiprojective?

The question above is known to have an affirmative answer for Z2. By Izumi’s results, up to conjugacy there is a
unique action of Z2 on O2 with the Rokhlin property, and there is one such action that is quasifree. Now, arbitrary
quasifree actions of compact groups on On with n <∞ are equivariantly semiprojective.

The following more general question was asked by George Elliott.

Question 3.21. (Elliott) If G is finite, A is semiprojective, and α : G→ Aut(A) has the Rokhlin property, is (G,A, α)
equivariantly semiprojective?

The following result was used to show that the dynamical system constructed in Example 3.10 is equivariantly semipro-
jective, and has other important applications.
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Theorem 3.22. Let G be a compact group, let F be a finite dimensional C∗-algebra, and let α : G → Aut(F ) be any
action. Then (G,F, α) is equivariantly semiprojective.

Proof. (Sketch) Find a non-equivariant lift of F → C/J to ψ0 : C/Jr0 . Push down to ψ1 : A→ C/Jr1 to get approximate
equivariance, this is,

‖ψr1(αg(a))− γ(r1)g (ψr1(a))‖ < ε‖a‖
for all a in A. (We use that A is finite dimensional to get the uniform bound.)

(G,C, γ)

��

(G,C/Jr0 , γ
(r0))

��

(G,C/Jr1 , γ
(r1))

��

(G,F, α)

ψ1

55

ψ2

::

ϕ
// C/J.

Now we look at the respective unitary groups, and restrict ψ1 to T1 : U(A) → U(C/Jr1). Since G is compact, one can
average to get a nearby map S0 : U(A)→ C/Jr1 that is exactly equivariant, nearly unitary, nearly multiplicative. For u
in U(A), set

ρ0(u) = S0(u)[S0(u)∗S0(u)]−1/2.

Then ρ0 is close to S0, so it is nearly multiplicative, exactly unitary, and exactly equivariant. Set

ρ1(u) = exp

(∫
G

log(ρ0(v)∗ρ0(vu)ρ0(u)∗)dv

)
ρ0(v).

(The measure dv is the normalized Haar measure on U(A). The expression inside the logarithm is close to 1 because ρ0
is approximately multiplicative, and hence there is no problem in the choice of the branch of the logarithm.) It follows
that ρ1 is exactly unitary, exactly equivariant, and nearly multiplicative. The point is that ρ1 is much closer to being
multiplicative than ρ0.

There are two points.
If everything were abelian, then ρ1 would already be a homomorphism. If written additively: given a map ρ0 : H → V

from a compact group H to a vector space V , set

ρ1(g) =

∫
H

[ρ0(g + x)− ρ0(x)] dx

for g in H, where dx is the Haar measure on H. By using the change of variables x 7→ h+ x in the first integral (using
that the Haar measure is translation invariant), we get

ρ1(g) + ρ1(h) =

∫
H

[ρ0(g + x)− ρ0(x)] dx+

∫
H

[ρ0(h+ x)− ρ0(x)] dx

=

∫
H

[ρ0(g + h+ x)− ρ0(h+ x) + ρ0(h+ x)− ρ0(x)] dx

= ρ1(g + h)

for all g and h in H. In general, if ε0 > 0 is small enough, there exists a constant C depending on ε0 such that for all
ε < ε0, whenever ‖u− 1‖ ≤ ε, then

‖ log(u)− (u− 1)‖ ≤ Cε2.
Similarly with exponentials, one gets that whenever ‖a‖ ≤ ε and ‖b‖ ≤ ε, then∥∥ea+b − eaeb∥∥ ≤ C0ε

2.

Analogoulsy,

‖ log(uv)− log(u)− log(v)‖ ≤ C1ε
2.

This implies that if ρ0 is ε-multiplicative, then ρ1 is Cε2-multiplicative. This is, if ε > 0 is such that

‖ρ0(uv)− ρ0(u)ρ0(v)‖ ≤ ε
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for all u and v in U(A). (Use compactness of U(A) to get the uniform bound.) Then there are universal constants C2

and C3 such that
‖ρ1(u)− ρ0(u)‖ ≤ C2ε and ‖ρ1(uv)− ρ1(u)ρ1(v)‖ ≤ C3ε

2.

(Note the ε2 factor in the second inequality.) Iterate the process and take the limit, say ρ, of the resulting Cauchy
sequence. This will be ψ|U(A). One must still get back a homomorphism from A. This involves a relatively simple but
somewhat lengthy trick and we omit it. �

We make a few comments about why conventional methods do not work. Suppose G = Z3 acts on a C∗-algebra B via
β, and that there are approximate orthogonal approximate projections b0, b1, b2 in B that are exactly permuted by G.
The conventional approach is to first find a projection q0 close to b0. Next one would work in the corner (1−q0)B(1−q0),
but one does not in general get β(q0) ⊥ q0. If one instead gets q1 in (1− q0)B(1− q0) and then try to change q0 to get
β(q0) = q1, then one does not in general get q0 ⊥ q1.

4. Classification results.

We proceed to present some results relevant to the classification theorems for actions on Kirchberg algebras.

Lemma 4.1. Let (G,A, α) be equivariantly semiprojective, with G finite and A unital and separable. Suppose that
(G,D, δ) is another dynamical system such that any two unital equivariant homomorphisms A → C([0, 1], D) are ap-
proximately unitarily equivalent. Then any two asymptotic morphisms A→ D are equivariantly asymptotically unitarily
equivalent.

The most important case of this lemma is when A = O∞ and α is the action of G given by αg(sh,j) = sgh,j for all
g, h in G and for all j in N. The C∗-algebra D will be any G-algebra that absorbs (G,O∞, α) equivariantly. (Note that
C([0, 1], D) again has this form.)

Proof. (Sketch) Using equivariant semiprojectivity, one can assume that ϕt and ψt are equivariant homomorphisms for
all t in [0,∞). Also, assume that t 7→ ϕt is constant with value ϕ. Start by choosing u1(t) on [0, 1] such that

u1(t)ψt(a)u1(t)∗

for 0 ≤ t ≤ 1, is close to ϕ(a) for all a in some finite subset F of A. Extend u1 to [0,∞) by setting u1(t) = u1(1) for
t > 1. Set

γ
(1)
t (a) = u1(t)ψt(a)u1(t)∗.

Replace γ
(1)
t by γt, where γt = ϕ for t ∈ [0, 1], and on [1, 1 + ρ] for some small ρ > 0, use a straight line homotopy from

ϕ to γ
(1)
1+ρ, and then set σt = γ

(1)
t for t > 1 + ρ. (Note that γ

(1)
1 is close to ϕ, and that γ

(1)
1+ρ is not a homomorphism

but an approximate homomorphism.) Use equivariant semiprojectivity of (G,A, α) to perturb σt to get a path t 7→ τt of
equivariant homomorphisms which is the same as σt except on [1, 1 + ρ].

Apply approximate unitary equivalence for τ |[1,2] : A→ C([1, 2], D) getting u2(t), and proceed inductively. �

Recall the following definitions.

Definition 4.2. Let G be a finite group, let A be a unital C∗-algebra, and let α : G→ Aut(A) be an action.

(1) We say that α has the Rokhlin property if there exist sequences (e
(n)
g )n∈N of projections in A for g in G, such

that∑
g∈G

e(n)g = 1 for all n ∈ N, lim
n→∞

‖αg(e(n)h )− e(n)gh ‖ = 0 and lim
n→∞

‖e(n)g a− ae(n)g ‖ = 0 for all a ∈ A.

(2) We say that α has the continuous Rokhlin property if one can choose continuously parametrized families (e
(t)
g )t∈[0,∞)

of projections in A for g in G satisfying analogous conditions as above.

What is actually wanted is:

(1) For any G-algebra D, any two unital equivariant asymptotic morphisms O2 → O∞⊗D are equivariantly asymp-
totically unitarily equivalent. The action on O2 is the unique action of G with the Rokhlin property; see [2].

(2) For any G-algebra D, any two unital equivariant asymptotic morphisms O∞ → O∞ ⊗ D are equivariantly
asymptotically unitarily equivalent. The action on O∞ is the one constructed based on the actions in Example
3.10. See also Remark 3.11.

We get useful results using the (continuous) Rokhlin property.

Theorem 4.3. Let G be a finite group and let A and B be G-algebras. If one of the actions has the Rokhlin property
and if two equivariant homomorphisms ϕ,ψ : A→ B are approximately unitarily equivalent, then they are equivariantly
approximately unitarily equivalent.
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There is an analogous statement using the continuous Rokhlin property and asymptotic morphisms.

Theorem 4.4. Let G be a finite group and let A and B be G-algebras. If one of the actions has the continuous Rokhlin
property and if two equivariant asymptotic homomorphisms (ϕt), (ψt) : A → B are asymptotically unitarily equivalent,
then they are equivariantly asymptotically unitarily equivalent.

It is known that any two unital asymptotic morphisms O2 → O∞ ⊗D are asymptotically unitarily equivalent. Since
the unique action of G on O2 with the Rokhlin property in fact has the continuous Rokhlin property, one gets (1) using
Theorem 4.4.

However, there is no action of any non-trivial finite group on O∞ with the Rokhlin property. To get a result on
approximate unitary equivalence for homomorphisms from O∞, a trick from the non-equivariant case allows one to
reduce to the case [1] = 0 in KG

0 (O∞ ⊗D). We need another standard definition.

Definition 4.5. Let n in N. Define the extended Cuntz algebra En to be the univeral C∗-algebra on generators s1, . . . , sn
such that

s∗jsj = 1 for all j ∈ N, and sjs
∗
j , sks

∗
k are orthogonal if j 6= k.

(We omit the relation
∑n
j=1 sjs

∗
j = 1 in the definition of the standard Cuntz algebra On.)

Remark 4.6. For all n in N, there is an exact sequence 0→ K → En → On → 0. Moreover, lim−→En ∼= O∞.

Take two unital equivariant homomorphisms O∞ → O∞ ⊗D. Restrict these homomorphisms to the extended Cuntz
algebra Em|G|. Use [1] = 0 to extend to a homomorphism

O(m+1)|G| → O∞ ⊗D.
The acton on O(m+1)|G| does have the Rokhlin property. K-theory implies that the two homomorphisms are approxi-
mately unitarily equivalent. So the two homomorphisms are equivariantly approximately equivalent by Theorem 4.3.
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