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1. Classification of amenable factors

Recall that a von Neumann algebra M is said to be a factor if it has trivial center. Any von Neumann
algebra can be written as a direct integral of factors over its center, so we therefore focus on factors. Thanks
to Murray and von Neumann, these are classified into three types:

• Type I: there exists a minimal nonzero projection. In this case, M ∼= B(H)
• Type II: there does not exist a minimal nonzero projection, and there exists a finite projection.

There are two subclasses:
– Type II1: 1 is a finite projection.
– Type II∞: 1 is an infinite projection.

• Type III: All nonzero projections are infinite.

We now turn to structural properties.

Theorem 1.1. A factor M is II1 if and only if it has a unique tracial state. This trace is automatically
normal (σ-weakly continuous on the unit ball) and faithful (τ(p) = 0 implies p = 0 for all projections p ∈M).

Theorem 1.2. Let M be a II∞-factor. Then there exist a II1-factor N and an infinite dimensional Hilbert
space H such that M ∼= N⊗B(H).

For quite some time, not much could be said about type III factors.

Definition 1.3. A von Neumann algebra M is said to be hyperfinite if there exists a sequence (An)n∈N of
finite dimensional von Neumann subalgebras An ⊆M , with An ⊆ An+1 for all n ∈ N, and such that

⋃
n∈N

An

is weak;y dense in M .

Theorem 1.4. There exists a unique hyperfinite II1-factor (usually denoted by R).
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Here is one way to construct R: consider the direct system

C ↪→M2(C) ↪→M4(C) ↪→ · · ·
with diagonal maps a 7→ diag(a, a). The resulting direct limit ∗-algebra R0 has a trace τ (unique if moreover
τ(1) = 1). Define H to be the completion of R0 with respect to the inner product 〈a, b〉 = τ(ab∗). Represent
R0 by left multiplication on H. The weak closure of R0 is then R.

Beyond type II, we have the work of Tomita-Takesaki and Connes modular theory for type III factors:
these are divided in type IIIλ, for 0 ≤ λ ≤ 1. Moreover, there is a notion of amenability for factors, and
amenable factors can be completely classified:

Theorem 1.5. (Connes). Every amenable II1-factor is hyperfinite. He could also handle the cases IIIλ for
0 ≤ λ < 1.

Theorem 1.6. (Haagerup). Case III1.

2. Beyond amenable factors

The factors we will focus on come from crossed product constructions.

Definition 2.1. Let Γ be a countable group acting on a tracial von Neumann algebra (P, τ) via trace
preserving automorphisms αg, for g ∈ Γ. The crossed product P oα Γ is the unique tracial von Neumann
algebra containing P unitally, and a unitary representation (ug)g∈Γ of Γ satisfying ugau

∗
g = αg(a) for all

a ∈ P and all g ∈ Γ, and the trace is given by

τ

∑
g∈Γ

agug

 = τ(a1).

Here is a concrete construction of P oα Γ: consider the Hilbert space L2(P, τ) constructed from P using
τ , where P acts by left multiplication. Then P oα Γ is represented on the Hilbert space L2(P )⊗ `2(Γ) by

aug · (b⊗ δh) = aαg(b)⊗ δgh.
Finally, τ is given by the vector state of 1⊗ δ1.

Example 2.2. Take P = C. Then M = L(Γ) is the group von Neumann algebra generated by a unitary
representation (ug)g∈Γ with τ(ug) = δg,e.

Example 2.3. When P ∼= L∞(X,µ) is abelian, a trace preserving action corresponds to a probability
measure preserving action on X.

We turn to factoriality of P oα Γ:

Theorem 2.4. L(Γ) is a factor if and only if Γ is ICC.

Theorem 2.5. Let Γ act on (X,µ) by probability measure preserving automorphisms, and set M =
L∞(X,µ) o Γ. Then L∞(X,µ)′ ∩M = L∞(X,µ) (the smallest possible) if and only if the action is es-
sentially free, that is, for g ∈ Γ \ {1} we have

µ ({x ∈ X : g · x = x}) = 0.

When the action is essentially free, then Z(L∞(X,µ)oΓ) consists of the Γ-invariant functions on L∞(X,µ).
Consequently, L∞(X,µ) o Γ is a factor if and only if the action is ergodic. (No characterization is known
for actions that are not essentially free.)

Example 2.6. Bernoulli shift: if Γ acts on (X0, µ0), consider X = XΓ
0 =

∏
g∈Γ

X0 with (g · x)h = xg−1h.

Definition 2.7. For N ⊆ M , a conditional expectation is a completely positive unital map E : M → N
satisfying E(axb) = aE(x)b for all a, b ∈ N and for all x ∈M .

Theorem 2.8. If M has a trace τ and N ⊆ M , then there exists a unique trace preserving conditional
expectation EN : M → N .

Corollary 2.9. If M is hyperfinite, then it is amenable.
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Proof. Take ψn : M → An to be ψn = EAn , for an increasing sequence (An)n∈N of finite dimensional
subalgebras An ⊆M with weakly dense union. �

If (M, τ) is a tracial von Neumann algebra, we set ‖x‖2 = τ(x∗x)1/2 for x ∈M .
We state here, as a fact, that every element x ∈ P oα Γ can be uniquely written as a Fourier Series

x =
∑
g∈Γ

xgug, where the convergence is in the ‖ · ‖2-norm; take xg = E(xu∗g).

This minicourse will focus on families of crossed products of the form L∞(X,µ)oΓ, the main application
being to Γ = Fn.

3. Deformation / approximation properties and rigidity

Group Γ Tracial von Neumann algebra (M, τ)
Unitary representation π : Γ→ U(H) Bimodule (or correspondence, à la Connes) MKM

Coefficient functions ϕ : Γ → C given by ϕ(g) =
〈π(g)ξ, ξ〉 for fixed ξ ∈ H

Completely positive maps ψ : M →M with ψ◦τ ≤ τ
and ψ(1) ≤ 1 (these conditions can be arranged).
They all arise as τ(ψ(x)y) = 〈xξy, ξ〉 for some ξ ∈M
KM .

Amenability: there exist positive definite functions
ϕn : Γ→ C with finite support and ϕn → 1 pointwise

Amenability: there exist completely positive maps
ψn : M → M with finite dimensional rank (once
regarded as maps L2(M, τ) → L2(M, τ)) and
lim
n→∞

‖ψn(x) − x‖2 = 0 for all x ∈ M . This no-

tion is somewhat strong: there is a unique amenable
II1-factor.

Haagerup property: there exist positive definite
functions ϕn : Γ → C in c0(Γ) and ϕn → 1 point-
wise

Haagerup property: there exist completely positive
maps ψn : M →M that are compact (once regarded
as maps L2(M, τ) → L2(M, τ)) and lim

n→∞
‖ψn(x) −

x‖2 = 0 for all x ∈M

Relative property (T) for Λ ≤ Γ (rigidity): if
ϕn : Γ → C are positive definite and converge to 1
pointwise, then they converge to 1 uniformly on Λ

Relative property (T) for P ⊆ M (rigidity): if
ψn : M → M are completely positive maps with
ψn → id pointwise in 2-norm, then ψn → id uni-
formly in 2-norm over the norm unit ball of P .

Γ has property (T) if Γ ≤ Γ has relative property
(T)

M has property (T) if M ⊆M has relative property
(T)

As the terminology indicates, we have

Theorem 3.1. Let Λ ≤ Γ be a subgroup, and set M = L(Γ) and P = L(Λ). Then Λ ≤ Γ has relative
property (T) if and only if P ⊆M has relative property (T).

(Relative) property (T) and the Haagerup property (or amenability) are rather orthogonal:

Proposition 3.2. If Λ ≤ Γ has the Haagerup property (in particular, if it is amenable) and has relative
property (T), then Λ is finite. Likewise, if P ⊆M has the Haagerup property (in particular, if it is amenable)
and has relative property (T), then P is a (possibly infinite) direct sum of matrix algebras.

Examples 3.3. (1) Fn has the Haagerup property, but is not amenable if n ≥ 2.
(2) Z2 ≤ SL2(Z) o Z2 has relative property (T).
(3) SLn(Z) has property (T) for n ≥ 3.
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Our first example of deformation rigidity, due to Popa, is

A = L(Z2) ∼= L∞(T2) ⊆M = L(SL2(Z) o Z2) ∼= L∞(T2) o SL2(Z).

Proposition 3.4. For every α ∈ Aut(M), there exists a unitary u ∈ U(M) such that uα(A)u∗ = A.

Proof. (Sketch) Since F2 is a subgroup of Γ of finite index, it follows that Γ has the Haagerup property.
Choose positive definite functions ϕn : Γ → C in c0(Γ) converging to 1 pointwise. Define ψ : M → M by
ψn(aug) = ψn(g)aug. Then ψn → id pointwise in ‖ · ‖2-norm. Let α ∈ Aut(A). Since A ⊆ M has relative
property (T), the same is true for α(A). Therefore ψn converges to id uniformly over the norm unit ball
of α(A). In other words, given ε > 0, there exists n large enough such that ‖ψn(α(a)) − α(a)‖2 < ε for all
a ∈ A with ‖a‖ = 1. Since ϕn ∈ c0(Γ), we have |ϕn(g)| < ε outside a finite set F of Γ. One can show that

dist‖·‖2 (α(a), span{Aug : g ∈ F}) ≤
√

2ε

for all a ∈ A with ‖a‖ = 1. A result of Popa then implies that α(A) and A are unitarily conjugate. �

4. Cartan subalgebras in II1-factors

Definition 4.1. A ⊆M is a Cartan subalgebra if it is a maximal abelian subalgebra and it is regular, that
is,

NM (A) = {u ∈ U(M) : uAu∗ = A}

generates M .

Example 4.2. For an essentially free ergodic probability measure preserving action of Γ on (X,µ), the
subalgebra L∞(X,µ) ⊆ L∞(X,µ) o Γ is Cartan.

Theorem 4.3. (Singer, 1950). For an essentially free ergodic probability measure preserving action of Γ on
(X,µ), the inclusion L∞(X,µ) ⊆ L∞(X,µ) o Γ contains the same data as the orbit equivalence relation

R(Γ y X) = {(x, g · x) : x ∈ X, g ∈ Γ} ⊆ X ×X.

In other words, there is a one-to-one correspondence between isomorphisms

α : L∞(X,µ) o Γ→ L∞(Y, ν) o Λ

satisfying α(L∞(X,µ)) = L∞(Y, ν) and measurable functions ∆: X → Y satisfying ∆(Γ · x) = Λ ·∆(x) for
all x ∈ X.

An important question regarding Cartan subalgebras is whether they are unique (up to unitary conjugacy),
and whether they exist at all! It turn out that they do not always exist.

Theorem 4.4. (Voiculescu). L(Fn) has no Cartan subalgebras.

Theorem 4.5. (Ozawa-Popa, 2006). Constructed the first examples of II1-factors with a unique Cartan
subalgebra.

Theorem 4.6. (Popa-Vaes, 2011). If Fn y X is essentially free and ergodic, then L∞(X) ⊆ L∞(X) o Fn
is the unique Cartan subalgebra.

Corollary 4.7. For essentially free ergodic actions Fn y X and Fm y Y , if there exists an isomorphism

L∞(X) o Fn ∼= L∞(Y ) o Fm,

then n = m.

Proof. By uniqueness of the Cartan subalgebra, one gets orbit equivalence, and actions of Fn and Fm cannot
be orbit equivalent unless n = m. �
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5. A particular case of Ozawa-Popa

Recall that a subalgebra A ⊆M of a von Neumann algebra is said to be diffuse if it contains no minimal
projections. In this section, we will prove:

Theorem 5.1. (Ozawa-Popa). Let A ⊆ L(Fn) be an amenable diffuse subalgebra. Then NL(Fn)(A)′′ is
amenable. In other words, L(Fn) is strongly solid.

Corollary 5.2. L(Fn) has no Cartan subalgebras if n > 1.

Proof. If A ⊆ L(Fn) is a commutative subalgebra, then it is amenable. (Diffusenessf) By the theorem
above, NL(Fn)(A)′′ is amenable. Since Fn is not amenable, we must have NL(Fn)(A)′′ 6= L(Fn), so A is not
Cartan. �

To prove the theorem, we need to review some facts about the completely bounded and completely metric
approximation properties for groups and tracial von Neumann algebras.

Definition 5.3. A function ϕ : Γ→ C is called a Fourier multiplier if the map mϕ : L(Γ)→ L(Γ) given by
mϕ(ug) = ϕ(g)ug, for g ∈ Γ, is completely bounded. In this case, we set ‖ϕ‖cb = ‖mϕ‖cb.

Definition 5.4. (Cowling-Haagerup). We say that Γ has the completely bounded approximation property
if there exist Fourier multipliers ϕn : Γ → C with finite support, with lim sup

n→∞
‖ϕn‖cb < ∞ and satisfying

ϕn → 1 pointwise. The minimum value of lim sup
n→∞

‖ϕn‖cb, where (ϕn)n∈N ranges over all possible sequences

of Fourier multipliers as above, is denoted by Λch(Γ).
We say that Γ has the completely metric approximation property if Λch(Γ) = 1.

Remark 5.5. If Γ is amenable, then it has the completely metric approximation property. (Use that if
ϕ : Γ→ C is positive definite, then ‖ϕ‖cb = |ϕ(1)|.)

This notion ca be translated to von Neumann algebras as follows.

Definition 5.6. (Cowling-Haagerup). We say that a tracial von Neumann algebra (M, τ) has the completely
bounded approximation property if there exist completely bounded linear maps ψn : M →M with finite rank,
with lim sup

n→∞
‖ψn‖cb < ∞ and satisfying ψn → 1 pointwise weakly. The minimum value of lim sup

n→∞
‖ψn‖cb,

where (ψn)n∈N ranges over all possible sequences of completely bounded maps as above, is denoted by
Λch(M, τ).

We say that (M, τ) has the completely metric approximation property if Λch(M, τ) = 1.

Not surprisingly, we have:

Theorem 5.7. (Cowling-Haagerup). Λch(Γ) = Λch(L(Γ)).

Example 5.8. (Haagerup) Λch(L(Fn)) = 1.

Example 5.9. (Cowling-Haagerup) If Γ ≤ Sp(n, 1) is a lattice, then Λch(L(Γ)) = 2n − 1. In particular, if
Γn ≤ Sp(n, 1) and Γm ≤ Sp(m, 1) are lattices, then L(Γn) ∼= L(Γn) if and only if n = m.

Recall that if ω : M → C is a linear functional with ‖ω‖ ≤ 1 and such that ω(1) is close to 1, then ω is
close to a state; in fact, it is close to the state |ω|/‖ω‖. If moreover u ∈ U(M) is such that ω(u) is close to 1,
then ω ◦Ad(u) is close to ω. (For the last statement, first ω × u is close to ω, and then u∗ · ω is close to ω.)

Proof. (Of Ozawa-Popa). Set M = L(Fn). Fix a sequence ψn : M → M realizing the fact that M has the
completely metric approximation property. For P ⊆M amenable, define functionals

µPn : P⊗P op → C

by µPn (a⊗ bop) = τ(ψn(a)b) for a, b ∈ P .
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We claim that lim sup
n→∞

‖µPn ‖ ≤ 1. To see this, observe that there is a commutative diagram

P⊗P op ψn⊗id
//

µP
n

,,

M⊗P opleftmult⊗rightmult
//// B(L2(M))

〈·1,1〉

��

C.
By the completely metric approximation property, we have lim sup

n→∞
‖ψn⊗ id‖cb = 1. Since P is amenable,

leftmult⊗ rightmult is continuous (contractive) with respect to the spatial tensor product. Since the vector
state 〈·1, 1〉 has norm one, the claim follows.

By the comments before the beginning of the proof, there exist states ωPn : P⊗P op → C satisfying ‖µPn −
ωPn ‖ → 0. Moreover, one has

ωPn (a⊗ bop)→ τ(ab)

for all a, b ∈ P . For u ∈ U(P ), set u = (u∗)op. Then ωPn (u⊗ u)→ 1. In particular,

ωPn ◦Ad(u⊗ u)− ωPn ‖ → 0

for all u ∈ U(P ).
We claim that ωAn ◦Ad(u⊗ u)− ωAn ‖ → 0 for all unitaries u ∈ NM (A). To prove the claim, observe that,

for a fixed unitary u ∈ NM (A), the von Neumann algebra generated by A and u is again amenable (it is a
certain Z-crossed product of A). An inductive argument shows that NM (A) is amenable. Apply the previous
claim and the comments after it; the claim is proved.

Canonically implement ωAn : A⊗Aop → C by ξn ∈ L2(A)⊗ L2(Aop). We have thus found vectors

ξn ∈ L2(A)⊗ L2(Aop) ⊆ L2(M)⊗ L2(Mop)

satisfying 〈(a⊗ bop)ξn, ξn〉 → τ(ab) for all a, b ∈ A, and

‖(u⊗ u)ξn − ξn(u⊗ u)‖ → 0

for all u ∈ NM (A).
For the remainder of the proof, we will need to use that the canonical representation Fn×Fop

n → B(`2(Fn)),
by left and right multiplication, is contained, up to compact operators, in the left ⊗ right representation
Fn × Fop

n → B(`2(Fn)⊗ `2(Fop
n )). Roughly speaking this means that L(Fn)`

2(Fn)L(Fn) is contained in

L(Fn)⊗1(`2(Fn)⊗ `2(Fop
n ))1⊗L(Fn)

up to compact operators. Apply this to the first tensor factor of ξn, using diffuseness, to conclude that the
trivial representation is contained in the left regular representation. Hence NM (A)′′ is amenable, concluding
the proof. �

6. Popa’s intertwining by bimodules

We introduce a notion of weak inclusion of subalgebras relative to an ambient II1-factor.
Let M be a II1-factor and let A,B ⊆ M . The following generalizes the existence of a unitary u ∈ U(M)

such that u∗Au ⊆ B. We denote by EB : M → B the unique trace preserving conditional expectation; it is
the orthogonal projection of L2(M) onto L2(B).

Definition 6.1. We write A -M B if there exist a natural number n ∈ N, elements x1, . . . , xn ∈M , and a
positive number δ > 0, satisfying

n∑
j,k=1

‖EB(x∗jaxk)‖2 ≥ δ

for all a ∈ U(A).

Theorem 6.2. (Popa, 2001). Let A and B be subalgebras of a II1-factor M .
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(1) A -M B if and only if there exist projections p ∈ A and q ∈ B, a nonzero partial isometry v ∈ pMq,
and a normal homomorphism θ : pAp→ qBq such that av = vθ(a) for all a ∈ pAp.

(2) If A and B are Cartan, then A -M B if and only if there exists a unitary u ∈ U(M) satisfying
uAu∗ ⊆ B (and hence uAu∗ = B by maximality).

In the proof, one considers L = (B ∪Aop)′′ acting on BL
2(M)Aop .

We now define Ozawa’s class S.

Definition 6.3. (Ozawa). A group Γ is said to be in the class S if it is exact and there exists an isometry
V : `2(Γ)→ `2(Γ)⊗ `2(Γ) such that V ◦ λg ◦ ρh − (λg ⊗ ρh) ◦ V is compact for all g, h ∈ Γ.

Remark 6.4. If Γ ∈ S, then

C∗r (Γ)⊗min C
∗
r (Γ)→ B(`2(Γ))/K(`2(Γ))

is a homomorphism.

Example 6.5. Hyperbolic groups, in particular free groups, belong to the class S.

An obstruction to belonging to the class S is the existence of an infinite subgroup Λ ≤ Γ with

CΓ(Λ) = {g ∈ Γ: gh = hg for all h ∈ Γ}
nonamenable. Indeed, take hn ∈ Λ such that hn →∞. Consider

ξn = V (δhn) ∈ `2(Γ)⊗ `2(Γ).

Theorem 6.6. Let Γ be a group in the class S, and let Λ ≤ Γ be an infinite subgroup. For g ∈ CΓ(Λ), we
have

lim
n→∞

‖(λg ⊗ ρg)ξn − ξn‖ = 0.

In particular, CΓ(Λ) is amenable.
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