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Introduction

Nuclear dimension plays an important role in the classification programme. It is therefore crucial to find good esti-
mates for the nuclear dimension of crossed products. It has turned out that a certain dynamical property, the Rokhlin
property is very useful in obtaining good estimates. Moreover, one can define a higher dimensional version of it which
still gives good estimates and which for large classes of dynamical systems on compact spaces is automatically verified.

We will begin with some background in approximation properties related to nuclearity and exactness, and then define
nuclear dimension and study some of its basic properties, including a number of examples related to group C∗-algebras
and coarse geometry. Next we will survey the classical Rokhlin property and introduce higher dimensional versions and
their applications to the theory of nuclear dimension. Most of the current results are restricted to actions of finite groups
or the integers Z.

1. Nuclear C∗-algebras

The notion of nuclearity arose when people were trying to endow a tensor product of C∗-algebras with a norm.
Nuclearity is a regularity property for C∗-tensor products.

Let A and B be C∗-algebras, and assume that they are unital. One can form the algebraic tensor product of A and B,
denoted A�B. There are natural embeddings of A and B into A�B and one may ask whether there is a C∗-norm on
A�B extending the norms of A and B simultaneously. As it turns out, this is always possible. Indeed, if A ↪→ B(H) and
B ↪→ B(K) are faithful representations, then one can faithfully represent A�B in B(H⊗K). (Notice that H⊗K has an
unambiguous definition.) The minimal norm, denoted by ‖ · ‖min, is the norm induced on A�B, and it is independent
of the faithful representation of A and B. One can then define the minimal tensor product of A and B by

A⊗min B = A�B‖·‖min ⊆ B(H⊗K).

It can moreover be shown that ‖·‖min is the smallest C∗-norm on A�B extending the norms of A and B (and sometimes
it is the only one).

There is also a maximal norm constructed as follows. Let σ : A→ B(H) and ρ : B → B(H) be faithful representations
of A and B on the same Hilbert space with commuting ranges. There is an induced representation σ⊗ρ : A�B → B(H).
One then defines K to be the sum of all such Hilbert spaces, and τ : A � B → B(K) to be the direct sum of all
representations of the form ρ ⊗ σ. The maximal norm], denoted by ‖ · ‖max, is the norm induced on A � B by τ . The
maximal tensor product of A and B is then

A⊗max B = A�B‖·‖max ⊆ B(K).

These constructions naturally lead to the following definition.

Definition 1.1. A C∗-algebra A is said to be nuclear if A ⊗min B = A ⊗min B for all C∗-algebras B, this is, if the
minimal and the maximal norm on A�B coincide for all C∗-algebras B.
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Nuclear C∗-algebras form a very large class, containing all finite dimensional C∗-algebras (since Mn ⊗ B ∼= Mn(B)
has a unique norm), commutative C∗-algebras (since C0(X)⊗B ∼= C0(X,B) has a unique norm), group C∗-algebras of
amenable discrete groups, and more.

Nuclearity is closed under many natural operations: direct limits, quotients, extensions, passage to hereditary sub-
algebras, tensor products, crossed products by amenable groups. The class of nuclear C∗-algebra is not closed under
passage to subalgebras. A subalgebra of a nuclear C∗-algebra is called an exact C∗-algebra.

There is an alternative description of nuclearity in terms of a certain approximation property that does not mention
tensor products. We first define the class of maps by which nuclear C∗-algebras are approximated.

Definition 1.2. Let ϕ : A→ B be a linear map.

(1) The map ϕ is said to be positive if a ≥ 0 implies ϕ(a) ≥ 0.
(2) The map ϕ is said to be completely positive if ϕ⊗ idMn : Mn(A)→Mn(B) is positive for all n ∈ N.

The following may be the most cited theorem in Operator Algebras.

Theorem 1.3. (Stinespring) Let ϕ : A → B(H) be a completely positive map. Then there exist a Hilbert space K, a
homomorphism π : A→ B(K), and a bounded operator V : H → K such that

ϕ(a) = V ∗π(a)V

for all a ∈ A. If moreover ϕ(1) = 1, then V ∗V = 1H and hence H can e regarded as a closed subspace of K. We then
have that ϕ is a cut-down of π, this is:

π(a) =

(
ϕ(a) ∗
∗ ∗

)
for all a ∈ A. If ϕ is not unital, we still have ϕ(a) = h1/2PHπ(a)PHh

1/2 for all a ∈ A, where h = ϕ(1).

Theorem 1.4. Let A be a C∗-algebra. Then the following are equivalent:

(1) The C∗-algebra A is nuclear.
(2) There exists a net (ψλ, Fλ, ϕλ)λ∈Λ, where for all λ ∈ Λ, the maps ψλ : A→ Fλ and ϕλ : Fλ → A are completely

positive with ‖ψλ‖ and ‖ϕλ‖ uniformly bounded, and

lim
λ→∞

‖ϕλ ◦ ψλ(a)− a‖ = 0

for all a ∈ A.
(3) The bidual A∗∗ is hyperfinite, this is, it is a von Neumann inductive limit of finite dimensional algebras.

Proof. Most of these implications are highly non-trivial, except for (2) implies (1). Indeed, given an approximation as in
(2), one can construct systems

A⊗min B → Fλ ⊗min B = Fλ ⊗max B → A⊗max B

approximating A⊗max B. Since the maps involved are contractive, it follows that ‖ · ‖max ≤ ‖ · ‖min, and thus they are
equal. �

Let us show how to construct approximations in a concrete example.

Example 1.5. Let X be a compact Hausdorff space and set A = C(X). Let

Λ = {U : U is a finite open cover of X}

with the partial order given by U � V if for all U ∈ U there exists V ∈ V such that U ⊆ V . Given U ∈ Λ, there are
functions fU : X → [0,∞) for U ∈ U such that supp(fU ) ⊆ U and

∑
U∈U fU (x) = 1 for all x ∈ X. For each U ∈ U ,

choose a probability measure νU supported on U . Define

ψU : C(X)→ CU by ψU (f) = (νU (f))U∈U

for all f ∈ C(X). It follows that ψU is completely positive. Define

ϕU : CU → C(X) by ϕU ((αU )U∈U ) =
∑
U∈U

αUfU

for all (αU )U∈U in CU . One checks that ϕU is also completely positive and that ϕU ◦ ψU (f) → f as U → ∞, for all
f ∈ C(X). It follows that C(X) is nuclear.

Looking at this approximation of C(X), it is actually possible to read off the covering dimension of X.

Definition 1.6. Let X be a compact space. Given n ∈ N, we say that X has covering dimension at most n, written
dim(X) ≤ n, if for every open cover U of X, there is a finite refinement V such that whenever V0, . . . , Vn+1 in V are
different, then V0 ∩ · ∩ Vn+1 = ∅.

Finally, the covering dimension of X is the smallest integer n such that dim(X) ≤ n.

A variant of the covering dimension is the decomposition dimension.
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Definition 1.7. Given n ∈ N, we say that X has decomposition dimension at most n, written ddim(X) ≤ n, if for every
open cover U of X, there is a finite refinement V which is the disjoint union of subfamilies V = V(0) ∪ · · · ∪V(n) such that
the elements of V(j) are pairwise disjoint for all j = 0, . . . , n.

Finally, the decomposition dimension of X is the smallest integer n such that ddim(X) ≤ n.

The covering dimension and the decomposition dimension agree for compact spaces, although they may be different
for locally compact spaces.

2. Nuclear dimension

The connection between nuclearity and dimension of spaces is the fact that the maps ϕU : CU → C(X) have order n
in some sense. This leads to the notion of completely positive rank of a C∗-algebra, denoted by cpr(A). This notion was
introduced by Winter in 2002, and it is not a very well-behaved dimension theory.

On the other hand, the notion of decomposition dimension for compact spaces gives rise to a better-behaved dimension
theory for C∗-algebras. If one has a decomposition V = V(0) ∪ · · · ∪ V(n) as in the definition of decomposition dimension,

then the maps ϕV |CV(j) : CV(j) → C(X) are order zero, this is, they preserve orthogonality.

For a general C∗-algebra, this notion leads to the concept of decomposition rank of a C∗-algebra A, denoted dr(A).
This theory was introduced by Kirchberg-Winter in 2004. Further improvements of this theory lead to the notion of
nuclear dimension of a C∗-algebra, denoted dimnuc(A), which was introduced by Zacharias-Winter in 2010.

We begin by formalizing the notion of order zero map.

Definition 2.1. (Winter-Zacharias) A completely positive map ϕ : A → B is said to have order zero if ab = 0 implies
ϕ(a)ϕ(b) = 0 for elements a and b in A.

Completely positive order zero maps are in some sense close to being homomorphisms.

Theorem 2.2. (Winter-Zacharias) Let ϕ : A → B be a completely positive order zero map with A unital. Then there
exists a homomorphism π : A→M(C∗(ϕ(A))) ⊆M(B) such that

ϕ(a) = hπ(a) = π(a)h = h1/2π(a)h1/2

for all a ∈ A, where h = ϕ(1) ≥ 0.

We now turn to the definition of nuclear dimension and decomposition rank.

Definition 2.3. Let A be a C∗-algebra. Given n ∈ N, we say that A has decomposition rank at most n, written
dr(A) ≤ n, if there exists a completely positive approximation (ψλ, Fλ, ϕλ)λ∈Λ, where for each λ, there is a decomposition

Fλ = F
(0)
λ ⊕ · · · ⊕ F (n)

λ such that

A

⊕ϕ(j)
λ &&

idA // A

F
(0)
λ ⊕ · · · ⊕ F (n)

λ

∑
ψ

(j)
λ

88

such that each ϕ
(j)
λ is order zero and ‖ψλ‖, ‖ϕλ‖ ≤ 1 for all λ ∈ Λ and all j = 0, . . . , n.

Finally, the decomposition rank of A is the smallest integer n such that dr(A) ≤ n.
The nuclear dimension for A is a slight weakening of the decomposition rank, where instead of requiring ‖ϕλ‖ ≤ 1,

we just require ‖ϕ(j)
λ ‖ ≤ 1 for all j = 0, . . . , n and for all λ ∈ Λ. (Notice that this implies ‖ϕλ‖ ≤ n+ 1 for all λ ∈ Λ.)

Remark 2.4. If A is a C∗-algebra, then dimnuc(A) ≤ dr(A).

Proposition 2.5. Let A be a C∗-algebra with finite decomposition rank. Then A is quasidiagonal.

Proof. It follows from a perturbation argument that the completely positive approximation satisfies

lim
λ→∞

‖ϕλ(ab)− ϕλ(a)ϕλ(b)‖ = 0 and lim
λ→∞

‖ϕλ(a)‖ = ‖a‖

for all a and b in A. Since each Fλ is finite dimensional, it follows that A is quasidiagonal. �

The conclusion of the above statement can be strengthened: it follows that A is strongly quasidiagonal.

Proposition 2.6. Let X be a compact Hausdorff space. Then

dimnuc(C(X)) = dr(C(X)) = dim(C(X).

Proof. One checks that the finite dimensional C∗-algebras F
(j)
λ in the definition of the decomposition rank are necessarily

commutative, yielding an approximation as in the definition of covering dimension. This shows that dr(C(X)) = dim(X).
Proving dimnuc(C(X)) = dim(X) takes a bit more work but it is analogous. �

Proposition 2.7. Nuclear dimension enjoys the following properties:

(1) dimnuc(A⊕B) = max{dimnuc(A),dimnuc(B)}.
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(2) dimnuc(A⊗B) ≤ (dimnuc(A)+1)(dimnuc(B)+1)−1, and dimnuc(A⊗B) = dimnuc(A) wheneverB is an AF-algebra.
(Notice that the natural guess dimnuc(A⊗B) ≤ dimnuc(A)+dimnuc(B) based on dim(X×Y ) = dim(X)+dim(Y )
is in general not true.)

(3) dimnuc(lim←−An) ≤ lim inf dimnuc(An).

(4) If I is an ideal in A, then dimnuc(A/I) ≤ dimnuc(A).
(5) Given a short exact sequence

0→ I → A→ B → 0,

one has
dimnuc(A) ≤ dimnuc(I) + dimnuc(B) + 1.

(It is not known if the +1 is needed. Also, the analogous statement for the decomposition rank is not true since
an extension of a quasidiagonal C∗-algebra by a quasidiagonal C∗-algebra need not be quasidiagonal.)

(6) If B is hereditary in A, then dimnuc(B) ≤ dimnuc(A).
(7) dimnuc(A) = 0 if and only if A is an AF-algebra.

Proof. Statements (1), (2) and (3) are easy to prove. To prove (4), use Choi-Effros lifting Theorem to choose a completely
positive lift ρ : A/I → A and compose it with the approximation for A to obtain a decomposition for A/I with the same
number of summands. Property (5) takes considerable work. For (6), assume first that A is separable and that B is full
in A. It follows that A⊗K ∼= B ⊗K, and hence they have the same nuclear dimension. In the general case, B is stably
isomorphic to an ideal of A. One checks using quasi-central approximate units for ideal that dimnuc(I) ≤ dimnuc(A). �

Example 2.8. Let T be the Toeplitz algebra. Then dimnuc(T ) ≤ 2.

Proof. This follows from the fact that there is a short exact sequence

0→ K → T → C(S1)→ 0,

and using properties 5 and 7 above, together with Proposition 2.6. �

Question 2.9. Assume that the extension 0→ I → A→ B → 0 has a splitting B → A. Does it follow that

dimnuc(A) ≤ dimnuc(B) + dimnuc(I)?

Example 2.10. Let θ ∈ R. Then

dimnuc(Aθ) =

{
1, if θ is irrational;
2, if θ is rational.

Proof. If θ is irrational, Elliott proved that Aθ is an AT-algebra, and hence its nuclear dimension is 1. If θ is rational,
then Aθ can be deformed into C(T2), so it has nuclear dimension 2. �

Example 2.11. Denote by Z the Jiang-Su algebra. Then dimnuc(Z) = 1, since its building blocks have nuclear dimension
1.

The Jiang-Su algebra plays an important role in classification, and in fact one has the following.

Theorem 2.12. Let A be a simple, separable, non-elementary C∗-algebraof finite nuclear dimension. Then A ∼= A⊗Z.

Remark 2.13. There are examples of C∗-algebras with dimnuc(A) < ∞ and dr(A) = ∞. For instance, any Kirchberg
algebra, since they are not quasidiagonal and have nuclear dimension at most 3 in general, and at most 2 whenever they
satisfy the UCT.

However, the following question remains open.

Question 2.14. Suppose A is a simple C∗-algebra such that dr(A) <∞. Does it follow that dimnuc(A) = dr(A)?

There is an example of a unital C∗-algebra A with a faithful tracial state such tat dimnuc(A) < ∞ and dr(A) = ∞.
This algebra is quasidiagonal and non-simple. The proof consists in showing that A is not strongly quasidiagonal.

3. Kirchberg algebras

We begin with the Cuntz algebras. Note that O1 = C(S1).

Theorem 3.1. Let n ∈ N. Then dimnuc(On) = 1. Moreover, dimnuc(O∞) ≤ 2. (It is now known that dimnuc(O∞) = 1,
but the proof is more involved.)

Proof. Fix n ∈ N. Denote by Tn the Toeplitz-Cuntz algebra, this is, the universal C∗-algebra generated by isometries
s1, . . . , sn such that s∗jsk = δj,k for all j, k ∈ {1, . . . , n}. Then there is a short exact sequence

0→ K → Tn → On → 0.

Use the Fock representation of Tn to obtain completely positive maps Tn → MN and Tn → M ′N . Compose these with
a Choi-Effros lift On → Tn and construct from this a completely positive contractive order zero approximation with 2
summands. One has to use, among other things, that any unital endomorphism of On is approximately inner.

It also follows that dimnuc(T ) ≤ 2. Since O∞ is a direct limit of Cuntz-Toeplitz algebras, we conclude that
dimnuc(O∞) ≤ 2. �
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We now know that the estimate in the following theorem can be improved to 2. When the algebra A is not assumed
to satisfy the UCT, the finest estimate now available is dimnuc(A) ≤ 3.

Theorem 3.2. Let A be a unital Kirchberg algebra satisfying the UCT. Then dimnuc(A) ≤ 5.

Proof. By classification, A is isomorphic to an inductive limit of algebras of the form

(Mm1
(On1

)⊕ · · · ⊕Mmk(Onk))⊗ C(T),

for some k,m1, . . . ,mk ∈ N and some n1, . . . , nk ∈ N ∪ {∞}. Such algebras have nuclear dimension at most 5, and the
estimate passes to the limit. �

4. Uniform Roe algebras

Let (X, d) be a metric space. The topology of X refers to the small scale structure. In contrast, the coarse geometry
refers to the large scale structure. For instance, the integers Z are equivalent to a line in this sense. For this reason, one
mostly deals with discrete spaces in coarse geometry, since every metric space is coarse equivalent to one such space.

Definition 4.1. A discrete metric space (X, d) is said to be of bounded geometry if for all R > 0 and all x ∈ X, the
cardinality of BR(x) is uniformly bounded on x.

One can associate a C∗-algebra to every discrete metric space of bounded geometry as follows. Consider infinite
matrices (αx,y)x,y∈X with complex coefficients such that

(1) There exists R > 0 such that αx,y = 0 whenever d(x, y) > R, and
(2) There exists M ≥ 0 such that |αx,y| ≤M for all x, y ∈ X.

Consider the Hilbert space

`2(X) = {(βx)x∈X :
∑
x∈X
|βx|2 <∞}.

Then each matrix (αx,y)x,y∈X as above defines a bounded operator on `2(X). The set of all such matrices is a ∗-subalgebra

of B(`2(X)), which we denote by UC(X).

Definition 4.2. Define the uniform Roe algebra of a discrete metric space (X, d) by

UC∗R(X) = UC(X) ⊆ B(`2(X)).

Example 4.3. Let Γ be a discrete group, with length function `(x) = min{n : x = s1 · · · sn, sj ∈ S}, where S is a set of
generators with S−1 = S. Now, d(x, y) = `(x−1y) defines a metric on Γ of bounded geometry. Then,

UC∗R(X) ∼= `∞(Γ) oLt,r Γ ⊆ B(`2(Γ)).

Definition 4.4. Two metric spaces X and Y are said to be coarse equivalent if there exist M > 0 and continuous maps
f : X → Y and g : Y → X such that

d(f ◦ g(y), y) < M and d(g ◦ f(x), x) < M

for all x ∈ X and all y ∈ Y .

It turns out that the uniform Roe algebra is a complete invariant for coarse equivalence of discrete metric spaces. In
other words:

Theorem 4.5. Let X and Y be discrete metric spaces. Then X and Y are coarse equivalent if and only if UC∗R(X) ∼=
UC∗R(Y ).

Although it seems like the Roe algebras will not be nuclear in most cases, it actually is in many situations of interest.

Theorem 4.6. (Guentner-Karmintnar-Ozawa, 2000) Let Γ be a discrete finitely generated group. Then the following
are equivalent:

(1) The group Γ is exact.
(2) The C∗-algebra UC∗R(X) is nuclear.

The class of groups covered in this Theorem is very large. Presumably every discrete group is exact!

We introduce the notion of asymptotic dimension for a discrete metric space (X, d).

Definition 4.7. A uniform cover of X is a cover by sets of uniformly bounded diameter. (Notice that a uniform cover
on an infinite space must be infinite.)

Given n ∈ N, we say that X has asymptotic dimension at most n, written asdim(X) ≤ n, if for every uniform cover
U of X, there exists another uniform cover V which is refined by U (this is, V is coarser than U) such that V has order
n, this is, no point in X is in more than n+ 1 elements of V.

Finally, the asymptotic dimension of X is the smallest integer n such that asdim(X) ≤ n.

Examples 4.8. Some computations of asymptotic dimensions:
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(1) For the real line, one has asdim(R) = 1.
(2) For the integers, one has asdim(Z) = 1. Indeed, the uniform cover {(n, n+ 1): n ∈ Z} shows that asdim(Z) 6= 0.
(3) If K is a compact space, then asdim(K) = 0.

Theorem 4.9. (Winter-Zacharias) Let X be a discrete metric space. Then

dimnuc(UC∗R(X)) ≤ asdim(X).

There is evidence that equality may hold.

5. Crossed products

There are in general no good estimates for the nuclear dimension of A o G in terms of the nuclear dimension of A,
even for G = Z or G finite. A useful dynamical property in this situation is the Rokhlin property. This is best seen in
the finite group case.

Definition 5.1. Let A be a unital C∗-algebra, let G be a finite group, and let α : G → Aut(A) be an action. We say
that α has the Rokhlin property if for all finite subsets F ⊆ A and all ε > 0, there are projections eg in A for g ∈ G such
that

(1) ‖αg(eh)− egh‖ < ε for all g and h in G.
(2) ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .
(3)

∑
g∈G eg = 1.

Theorem 5.2. Let α : G→ Aut(A) be a finite group action with the Rokhlin property. Then

dimnuc(Aoα G) ≤ dimnuc(A).

Proof. Let n = |G|. One may think of Aoα G as a subalgebra of Mn(A) via

aug 7→
∑
h∈G

egh,h ⊗ α−1(a) ∈Mn ⊗A.

Recall that dimnuc(A) = dimnuc(Mn(A)), and denote this value by N . One has a diagram

Aoα G

%%

Mn(A)

''

Mn(A).

F (0) ⊕ · · · ⊕ F (N)

77

Given a finite subset F ⊆ A and ε > 0, choose a family of Rokhlin projections eg ∈ A for g ∈ G and define ρ : Mn(A)→
Aoα G by

ρ(eg,h ⊗ a) = ehugau
∗
heh.

Then

• ρ is approximately order zero on Mn((F ).
• ρ(aug) ≈ aug for a ∈ F and g ∈ G.

Given a finite set F̃ ⊆ AoαG, let F ⊆ A be the set of all matrix coefficients of elements of F̃ when regarded as a subset
of Mn(A). This yields the diagram

Aoα G
idA //

%%

Aoα G

Mn(A)

''

Mn(A)

ρ

99

F (0) ⊕ · · · ⊕ F (N)

⊕ϕ(j)

77

.

The maps ρ ◦ ϕ(j) are approximately order zero, and hence can be perturbed to get an N -decomposable system. �

Remark 5.3. A similar argument shows that in the presence of the Rokhlin property, one has dimnuc(Aα) ≤ dimnuc(A).
Moreover, the analogous statements for the decomposition rank are true.

The Rokhlin property is quite restrictive, and it is therefore necessary to introduce a more flexible notion.

Definition 5.4. Let A be a unital C∗-algebra, let G be a finite group, and let α : G → Aut(A) be an action. Given
n ∈ N, we say that α has Rokhlin dimension at most n, written Rokdim(α) ≤ n, if for all finite subsets F ⊆ A and all

ε > 0, there is a family of positive elements
(
f

(j)
g

)
g∈G,j=0,...,n

in A such that
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(1) ‖f (j)
g f

(j)
h − f

(j)
h f

(j)
g ‖ < ε for all g and h in G and all j = 0, . . . , n.

(2) ‖αg
(
f

(j)
h

)
− f (j)

gh ‖ < ε for all g and h in G and all j = 0, . . . , n.

(3) ‖f (j)
g a− af (j)

g ‖ < ε for all g ∈ G, all j = 0, . . . , n and all a ∈ F .

(4) ‖
∑
g∈G,j=0,...,n f

(j)
g − 1‖ < ε.

Finally, the Rokhlin dimension of α is thee smallest integer n such that Rokdim(α) ≤ n.

Once again, we have estimates for the nuclear dimension of the completely positive.

Theorem 5.5. Let α : G→ Aut(A) be a finite group action. Then

dimnuc(Aoα G) ≤ (Rokdim(α) + 1)(dimnuc(A) + 1)− 1.

Proof. The argument is now similar, except that one gets n+ 1 maps ρ(0), . . . , ρ(n) at the last stage, each of which comes
from a different tower. �

We turn to automorphisms.

Definition 5.6. An action α : Z → Aut(A) is said to have Rokhlin dimension at most n, written Rokdim(α) ≤ n, if for

all finite subsets F ⊆ A, for all p ∈ N and all ε > 0, there is a family of positive elements
(
f

(j)
k

)
k=0,...,p−1,j=0,...,n

in A

such that

(1) ‖f (j)
k f

(j)
` − f

(j)
h f

(j)
g ‖ < ε for all k, ` = 0, . . . , p− 1 and all j = 0, . . . , n.

(2) ‖α
(
f

(j)
k

)
− f (j)

k+1‖ < ε for all k = 0, . . . , p− 1 and all j = 0, . . . , n, where the indices are taken modulo p.

(3) ‖f (j)
k a− af (j)

k ‖ < ε for all k = 0, . . . , p− 1, all j = 0, . . . , n and all a ∈ F .

(4) ‖
∑
k=0,...,p−1,j=0,...,n f

(j)
k − 1‖ < ε.

Finally, the Rokhlin dimension of α is thee smallest integer n such that Rokdim(α) ≤ n.

Theorem 5.7. Let A be a unital C∗-algebra and let α be an automorphism of A. Then

dimnuc(Aoα Z) ≤ 2(Rokdim(α) + 1)(dimnuc(A) + 1)− 1.

Automorphisms with finite Rokhlin dimension are plentiful: they are generic on Z-stable C∗-algebras. One moreover
has

Theorem 5.8. Let X be a finite dimensional compact metric space and let α ∈ Aut(C(X)) be given by a minimal
homeomorphism of X. Then

Rokdim(α) ≤ 2 dim(X) + 1.


