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Abstract. Since the work of Connes in the classification of von Neumann

algebras and their automorphisms, group actions have received a great deal
of attention. Amenable group actions on the hyperfinite II1-factor were com-

pletely classified by Ocneanu, extending earlier results of Connes and Jones.

In their work, showing that outer actions have the so-called Rokhlin prop-
erty was fundamental, as this property allows one to prove classification. For

C∗-algebras, the picture is more complicated. For once, it is no longer true

that (strong) outerness implies the Rokhlin property, and there is little hope
to classify general group actions unless they have the Rokhlin property. On

the other hand, the Rokhlin property is very restrictive, and there are many

C*-algebras that do not admit any action with this property. Several weak-
enings of the Rokhlin property have been introduced to address this problem.

Among them, the weak tracial Rokhlin property and Rokhlin dimension (for
which Rokhlin dimension zero is equivalent to the Rokhlin property) have been

successfully used to prove structure results for crossed products. Furthermore,

actions with these properties seem to be very common.
In this lecture series, we will focus on actions of groups that are either

compact or discrete and amenable. We will introduce the Rokhlin property,

provide many examples, and show that Rokhlin actions can be classified. We
will also see that there are natural obstructions to the Rokhlin property, and

will present some weaker variants of it: the (weak) tracial Rokhlin property

and Rokhlin dimension (with and without commuting towers). These prop-
erties are flexible enough to cover many relevant examples, and are strong

enough to yield interesting structural properties for their crossed products.

Finally, and inspired by the work of Liao, we will prove a recent analog of
Ocneanu’s theorem for amenable group actions on C∗-algebras, namely, that

for actions on classifiable algebras (which are, in particular, Jiang-Su stable),
strong outerness is equivalent to the weak tracial Rokhlin property, and also

equivalent to finite Rokhlin dimension (in fact, dimension at most one).

These are notes from a course I gave at the IPM in Tehran on January 2nd and
3rd of 2017 (5 one-hour lectures, plus a problem session).
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1. Introduction

By the groundbreaking work of Murray and von Neumann, separably acting
von Neumann factors can be divided into three types: type I factors have nonzero
minimal projections, type II are those that have no minimal projections but contain
a finite projection, and type III factors have only infinite projections. Type II
factors are further divided into type II1, when there is a (normalized) finite trace,
and type II∞ if there is a semifinite trace. (The other types also have subdivisions,
but we will not go into that here.) Since factors of type II∞ are all tensor products
of type II1-factors with B(`2), the study of II1-factors is in some sense equivalent
to the study of type II factors. A remarkable result of Connes asserts that for
a II1-factor, hyperfiniteness is equivalent to injectivity, and moreover there exists
a unique such II1-factor, usually denoted by R. This factor has been extensively
studied by a number of authors. A common “regularity” property that a factorM
may satisfy is absorbing R tensorially (usually known as being McDuff ). McDuff
II1-factors are much better understood than general II1-factors. Moreover, if M is
any factor, then M⊗R is a McDuff factor (of type II1 if so is M).

Once the classification of von Neumann factors was completed, the attention
quickly shifted to the study of their automorphisms, and, more generally, the study
of group actions on them. Automorphisms of the hyperfinite II1-factor R which
have finite order (that is, actions of a finite cyclic group) were studied by Connes
[Con77]. His work was considerably extended by Jones [Jon80], who studied and
classified finite group actions on R. These advances culminated in the remarkable
work of Ocneanu [Ocn85], who classified general amenable group actions on McDuff
factors. In particular, it follows from his work that there exists a unique, up to
cocycle equivalence, outer action of any given amenable group on R. We will say
more about these results in Section 5.

The study of the structure and classification of C∗-algebras developed, for quite
some time, rather independently from the advances on the side of von Neumann
algebras. Matui and Sato [MS14] were the first ones to import techniques from von
Neumann algebras in a systematic way, obtaining groundbreaking results. These
methods were further developed by a number of authors, and these contributions
are particularly relevant in the verifications of (3) ⇒ (2) and (2) ⇒ (1) in the
Toms-Winter conjecture:

Conjecture 1.1. (Toms-Winter; see, for example, [ET08]). Let A be a unital,
separable, simple, nuclear, infinite dimensional C∗-algebra. Then the following are
equivalent:

(1) A has finite nuclear dimension.
(2) A is Z-stable.
(3) A has strict comparison of positive elements.

The implications (1)⇒ (2) and (2)⇒ (3) were shown to hold by Winter [Win12]
and Rørdam [Rør04], respectively. As of (3) ⇒ (2), the result is known in the case
that T (A) is a Bauer simplex and its extreme boundary is finite dimensional, thanks
to the independent works of Matui-Sato [MS12a], Kirchberg-Rørdam [KR12], and
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Toms-White-Winter [TWW15]. Finally, the implication (2)⇒ (1) is true whenever
T (A) is a Bauer simplex, and this was recently shown by Bosa-Brown-Sato-Tikuisis-
White-Winter [BBS+15].

Now that the Elliott programme to classify simple, nuclear C∗-algebras is almost
completed [EGLN15], it is natural to shift our attention to the study of their auto-
morphisms, and, more generally, group actions on them. By comparison, this area is
considerably underdeveloped, and there were, until recently, no systematic efforts
to study their structure and make attempts at their classification. Until around
10 years ago, only rather restricted classes of group actions have been studied at
a time. Izumi’s study and classification of finite group actions with the Rokhlin
property [Izu04] can be described as the first instance of a systematic study, where
the actions under consideration are not described by the way in which they are
constructed (namely, as direct limit actions of very special form), but rather char-
acterized by an abstract property. Roughly speaking, for a finite group action, the
Rokhlin property says that there exists a partition of unity, indexed by the elements
of the group, consisting of approximately central projections which are cyclically
translated by the group action (more details are given in Section 2). Izumi’s work
was extended by the author and Santiago [GS15] to the non-unital case, and also
to actions of compact groups [GS17]. The structure of crossed products by ac-
tions with the Rokhlin property has also been the object of a number of works by
Osaka-Phillips [OP12], Hirshberg-Winter [HW07], Pasnicu-Phillips [PP14], Santi-
ago [San12], the author [Gar16], and Forough [For16].

Actions with the Rokhlin property are rare, and many algebras o not have any.
One obstruction is that the Rokhlin property, at least for finite groups, implies
certain divisibility properties on K-theory. Attempts to circumvent obstructions
of this sort led Phillips to introduce the tracial Rokhlin property [Phi11], where
the projections are now assumed to have a left over which is small in the tracial
sense (more details are given in Section 3). Among other applications, the tracial
Rokhlin property has been used by Echterhoff-Lück-Phillips-Walters [ELPW10] to
study fixed point algebras of the irrational rotation algebra Aθ under certain finite
group actions, and it was also used by Phillips to show that any simple higher-
dimensional noncommutative tori is an AT-algebra [Phi06]. The main result used
in these works is a theorem of Phillips, asserting that the crossed product of a
C∗-algebra with tracial rank zero by a finite group action with the tracial Rokhlin
property again has tracial rank zero.

Even the tracial Rokhlin property does not solve what is arguably the strongest
restriction that a C∗-algebra can have in order to admit Rokhlin actions: the
existence of projections. For example, the Jiang-Su algebra does not admit any
action with the tracial Rokhlin property. The need to study weaker versions of
these properties was quickly recognized, leading to two further notions. The weak
tracial Rokhlin property, in which one replaces the projections in the definition of
the tracial Rokhlin property with positive elements, has been considered (sometimes
under different names) by Archey [Arc08], Hirshberg-Orovitz [HO13], Sato [Sat],
Matui-Sato [MS12b], and Wang [Wan13], among others. The main application
of this notion has been showing that Jiang-Su absorption is preserved by taking
crossed products by actions with the weak tracial Rokhlin property. We say more
about this property in Sections 3 and 5.
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A different approach was taken by Hirshberg-Winter-Zacharias [HWZ], who in-
troduced the notion of Rokhlin dimension for automorphisms and actions of finite
groups. In this formulation, the partition of unity appearing in the Rokhlin prop-
erty is replaced by a multi-tower partition of unity consisting of positive elements,
each of which is indexed by the group elements and permuted by the group ac-
tion (see Section 4 for more details). It is built into the definition that the lowest
value of the Rokhlin dimension (which is zero), is equivalent to the Rokhlin prop-
erty discussed above. Not requiring the existence of projections, actions with finite
Rokhlin dimension are more abundant: for actions on the Jiang-Su algebra, Rokhlin
dimension equal to one is in fact generic. Despite it being so seemingly commong,
finite Rokhlin dimension is a powerful tool to prove bounds of the nuclear dimen-
sion of crossed products. An advantage of this approach is that the definition of
Rokhlin dimension does not require the C∗-algebra to be simple; in particular,
the theory can be applied to actions on compact Hausdorff spaces. The works of
Hirshberg-Winter-Zacharias for Z-actions, and of Szabo [Sza13] for Zd-actions, il-
lustrate this fact nicely. Rokhlin dimension has been defined for actions of much
more general groups: for residually finite groups by Szabo-Wu-Zacharias [SWZ14],
for compact groups by the author [Gar14c] and [Gar15b], and further by the author,
Hirshberg and Santiago [GHS14], and for the reals by Hirshberg-Szabo-Winter-Wu
[HSWW16].

With all these seemingly different Rokhlin-type properties, a natural question
arises: when does one of these properties imply another one? Except for the ob-
vious implications, it is not clear what the relationship between them is. This is
explored in Section 5, where we show that for a large class of simple C∗-algebras,
the weak tracial Rokhlin property and having Rokhlin dimension at most one are
equivalent. The goal of this series of lectures is to familiarize the audience with all
these Rokhlin-type properties, as well as giving a sample of the techniques that are
used to work with each of them.

Throughout, we will work mostly with separable, unital C∗-algebras and finite
groups. Removing the unitality and separability assumptions assumption is, for
the most part, not difficult, and we omit this issue completely here. (The results
in Section 5 have really only been proved for separable, unital algebras.) Moving
away from finite groups involves more complications. Some results hold in general
for compact groups, while others hold for discrete amenable groups, and those
concerning Rokhlin dimension require the group to be moreover residually finite.
While definitions and proofs will be given for finite groups mostly, we will mention,
when appropriate, what generalizations have been obtained in the literature.

2. The Rokhlin property

The Rokhlin property has its origins in Ergodic Theory. In this area, the Rokhlin
Lemma asserts, roughly speaking, that an aperiodic measure preserving transfor-
mation of a probability space has an approximate decomposition as cyclic shifts.
In operator algebras, the Rokhlin property appears as a technical device in the
classification of amenable group actions on R. Indeed, in the works of Connes,
Jones and Ocneanu, it is shown that outer actions automatically have the Rokhlin
property, and this is a key ingredient in showing that any two of them are cocy-
cle conjugate. In C∗-algebras, Herman and Jones [HJ83] studied specific instances
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of the Rokhlin property, and it was Izumi who introduced the modern definition,
which we reproduce below.

Definition 2.1. (Definition 3.2 in [Izu04]). Let α : G→ Aut(A) be an action of a
finite group G on a unital C∗-algebra A. We say that α has the Rokhlin property
if for every ε > 0 and for every finite subset F ⊆ A, there exist projections eg ∈ A,
for g ∈ G, satisfying

(1) ‖αg(eh)− egh‖ < ε for all g, h ∈ G;
(2) ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F ;
(3)

∑
g∈G

eg = 1.

The definition was extended to actions of compact groups by Hirshberg and
Winter in [HW07]. With the purpose of introducing notation that will be used
later, we also present their definition.

Write `∞(A) for the set of norm-bounded sequences on A, and c0(A) for the
ideal of sequences whose elements converge to zero. We set A∞ = `∞(A)/c0(A),
and write κA : `∞(A) → A∞ for the quotient map. There is a canonical map
A→ A∞ given by sending a ∈ A to the class of the constant sequence with value a.
In this way, we regard A naturally as a subalgebra of A∞, and we write A∞∩A′ for
its relative commutant. If α : G→ Aut(A) is an action of a locally compact group
G, then the induced action of G on A∞ may fail to be continuous. We define Aα,∞
to be the subalgebra of A∞ of those elements where G acts continuously, and write
α∞ : G→ Aut(Aα,∞) for the induced action. One easily checks that A ⊆ Aα,∞.

Definition 2.2. (Definition 3.2 in [HW07]). Let α : G→ Aut(A) be an action of a
compact group G on a unital C∗-algebra A. We say that α has the Rokhlin property
if there exists a unital, equivariant homomorphism ϕ : (G, Lt)→ (Aα,∞ ∩A′, α∞).

Example 2.3. For trivial reasons, Lt : G→ Aut(C(G)) has the Rokhlin property.

Example 2.4. Let G be a finite group, and let λ : G → U(`2(G)) be the left
regular representation. Define an action α : G→ Aut(M|G|∞) by αg =

⊗
n∈N

Ad(λg)

for g ∈ G. Then α has the Rokhlin property.

Example 2.5. By taking tensor products with the action in Example 2.4, we obtain
actions with the Rokhlin property on any M|G|∞-absorbing unital C∗-algebra.

To get a feeling of how strong the Rokhlin property is, we look at actions on
commutative C∗-algebras. In the following result, the action on X/G × G is a
diagonal action: trivial on X/G and left translation on G.

Theorem 2.6. Let X be a compact Hausdorff space and let α : G → Aut(C(X))
be an action of a compact group G. Then α has the Rokhlin property if and only
if X is equivariantly homeomorphic to X/G×G.

Proof. We take ε = 1 and F = ∅. Let eg ∈ C(X), for g ∈ G, be projections adding
up to 1 and satisfying ‖αg(eh)−egh‖ < 1 for all g, h ∈ G. Then αg(eh) = egh for all
g, h ∈ G, since in commutative C∗-algebras, two projections that are less than one
unit apart are actually equal. First observe that G y X is free. Indeed, suppose
that g ∈ G and x ∈ X satisfy g · x = x. Let h ∈ G be the unique group elements
such that eh(x) = 1. Then egh(x) = αg−1(eh(x)) = eh(x), and thus gh = h, so
g = 1 and the action is free.
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The support Y of e1, is a clopen subset of X which satisfies g · Y ∩ Y = ∅ for all
g ∈ G, and

⋃
g∈G

g ·Y = X. Define a continuous map f : Y ×G→ X by f(y, g) = g ·y

for y ∈ Y and g ∈ G. Observe that f is surjective, and it is injective because Gy X
is free. Endow Y with the trivial action and G with its translation action. Then
f is equivariant, and is hence an equivariant homeomorphism. It follows that Y is
homeomorphic to X/G, and the proof is finished. �

In particular, the action Z2 y S1 given by z 7→ −z, does not have the Rokhlin
property (also, C(S1) does not have any nontrivial projections). We present other
non-examples.

Example 2.7. There is no action of Z2 on M3∞ with the Rokhlin property. Indeed,
suppose that α : Z3 → Aut(M3∞) were one. Then there exist two projections e0
and e1 satisfying ‖α1(e0) − e1‖ < 1 and e0 + e1 = 1. The first condition implies
that α1(e0) is unitarily equivalent to e1. Since α1 is approximately inner (as any
automorphism of a UHF-algebra), we deduce that e0 and e1 are unitarily equivalent.
It follows that the class of the unit of M3∞ is divisible by two in K-theory, which
is a contradiction.

Exercise 2.8. Let G be a finite group. Determine for which n ∈ N ∪ {∞} there
exists an action of G on On with the Rokhlin property.

Example 2.9. Let θ ∈ R \ Q. Then there is no action of any finite group G on
the rotation algebra Aθ with the Rokhlin property. Indeed, suppose that α : G →
Aut(Aθ) were one. Then there exist projections eg ∈ Aθ, for g ∈ G, satisfying
‖αg(e1) − eg‖ < 1 and

∑
g∈G

eg = 1. The first condition implies that αg(e1) is

unitarily equivalent to eg, and in particular have the same trace. Since Aθ has a
unique trace τ , we must have τ ◦ αg = τ , and thus τ(eg) = τ(e1) for all g ∈ G.
Thus τ(1) = |G|τ(e1). However, τ(1) = 1 is not divisible by |G| within the image
under τ of the projections of Aθ, and this is a contradiction.

2.1. Crossed products. The Rokhlin property has had two main uses in the
literature: the study of crossed products, and classification. We review both this
aspects in this section. Below, we summarize the results that can be found in
the literature, and then give proofs of some of them in the case of finite groups.
The following statement is essentially Theorem 1.1 in [Gar16] (although many were
already known for finite groups), except item (15), which was recently proved by
Forough (see [For16]).

Theorem 2.10. The following classes of unital C∗-algebras are closed under forma-
tion of crossed products and passage to fixed point algebras by actions of compact
groups with the Rokhlin property:

(1) Simple C∗-algebras. More generally, the ideal structure can be completely
determined;

(2) C∗-algebras that are direct limits of certain weakly semiprojective C∗-
algebras. This includes UHF-algebras, AF-algebras, AI-algebras, AT-al-
gebras, countable inductive limits of one-dimensional NCCW-complexes,
and several other classes;

(3) Kirchberg algebras;
(4) Simple C∗-algebras with tracial rank at most one;
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(5) Simple, separable, nuclear C∗-algebras satisfying the Universal Coefficient
Theorem;

(6) C∗-algebras with nuclear dimension at most n, for n ∈ N;
(7) C∗-algebras with decomposition rank at most n, for n ∈ N;
(8) C∗-algebras with real rank zero or stable rank one;
(9) C∗-algebras with strict comparison of positive elements;

(10) C∗-algebras whose order on projections is determined by traces;
(11) (Not necessarily simple) purely infinite C∗-algebras;
(12) SeparableD-absorbing C∗-algebras, for a strongly self-absorbing C∗-algebra

D;
(13) C∗-algebras whose K-groups are either: trivial, free, torsion-free, torsion,

or finitely generated;
(14) Weakly semiprojective C∗-algebras.
(15) C∗-algebras all of whose traces are quasidiagonal.

Many of the above results can be deduced from the following technical proposi-
tion.

Proposition 2.11. (see Theorem 3.2 in [OP12]). Let α : G→ Aut(A) be an action
of a finite group G on a unital C∗-algebra A. Assume that α has the Rokhlin
property. Let ε > 0 and let S ⊆ A oα G be a finite subset. Then there exist a
projection p ∈ A and a unital, injective homomorphism ϕ : M|G|(pAp) → A oα G
such that dist(Im(ϕ), S) < ε.

Proof. Without loss of generality, we can assume that S has there exists a finite
subset F ⊆ A such that S = {ug : g ∈ G} ∪ F . Choose ε0 such that whenever
{tg,h : g, h ∈ G} are elements in a Aoα G satisfying

• ‖tg,htk,` − δh,ktg,`‖ < 3ε0;
• ‖t∗g,h − th,g‖ < 3ε0; and

• tg,g is a projection for all g ∈ G and
∑
g∈G

tg,g = 1

for all g, h, k, ` ∈ G, then there exists a unital homomorphism ψ : M|G| → Aoα G
satisfying ‖ψ(fg,h)− tg,h‖ < ε and ψ(fg,g) = tg,g for all g, h ∈ G.

Let eg ∈ A, for g ∈ G, be projections satisfying the conditions in Definition 2.1
for ε0 and F . For g, h ∈ G, define sg,h = ugh−1eh. One checks that these elements
form an 3ε0-approximate system of matrix units. By the choice of ε0, there exists
a unital homomorphism ψ : M|G| → A oα G satisfying ‖ψ(fg,h) − tg,h‖ < ε for all
g, h ∈ G. Define a map ϕ : M|G|(e1Ae1)→ Aoα G by

ϕ(fg,h ⊗ a) = ψ(fg,1)aψ(fh,1)

for g, h ∈ G and a ∈ e1Ae1. One checks that ϕ is a injective unital homomorphism.
Moreover, one easily checks that every element of S is within ε (or a constant times
ε) of an element in the image of ϕ. We omit the details. �

The proposition above is very useful, and it is the main tool to study crossed
products by finite group actions with the Rokhlin property. (Nothing like this
works for compact groups, and the tools in this context are rather different.) The
general principle is that any property that passes to corners and matrices over the
algebras, and is “stable” under small perturbations, will be preserved by actions
with the Rokhlin property. (The results on compact groups allows one to get rid
of the condition on corners; this is crucial in proving part (14) of Theorem 2.10.)
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We give proofs for two of the properties in Theorem 2.10. For finite groups, the
first one is due to Phillips, and the second one is due to Osaka-Phillips. Recall
that a separable C∗-algebra B is an AF-algebra if and only if for every finite subset
S ⊆ B and every ε > 0, there exist a finite dimensional C∗-algebra D and a
homomorphism ψ : D → B such that dist(S, Im(ψ)) < ε.

Proposition 2.12. (Theorem 2.2 in [Phi11]). Let α : G → Aut(A) be an action
of a finite group G on a unital AF-algebra A. If α has the Rokhlin property, then
Aoα G is also AF.

Proof. Let S ⊆ A oα G be a finite subset and let ε > 0. Use Proposition 2.11
to find a projection p ∈ A and a unital embedding ϕ : M|G|(pAp) → A oα G
such that dist(S, Im(ϕ)) < ε/2. Let T ⊆ M|G|(pAp) be a finite subset such that
dist(S, ϕ(T )) < ε/2. Since M|G|(pAp) is also an AF-algebra, there exist a finite
dimensional C∗-algebra D and a homomorphism ψ0 : D → M|G|(pAp) such that
dist(T, Im(ψ0)) < ε/2. The result now follows by taking ψ = ϕ ◦ ψ0. �

Recall that a unital C∗-algebra is said to have stable rank one if the set of
invertible elements is dense.

Proposition 2.13. Let α : G→ Aut(A) be an action of a finite group G on a unital
C∗-algebra A with stable rank one. If α has the Rokhlin property, then A oα G
also has stable rank one.

Proof. It is known that if A has stable rank one, then so does Mn(pAp) for any
projection p ∈ A and any n ∈ N. Let x ∈ AoαG and let ε > 0. We want to find an
invertible element y ∈ Aoα G such that ‖x− y‖ < ε. Use Proposition 2.11 to find
a projection p ∈ A, a unital embedding ϕ : M|G|(pAp) → A oα G, and an element
y0 ∈ M|G|(pAp) such that ‖ϕ(y0) − x‖ < ε/2. By stable rank one, there exists an
invertible element y ∈M|G|(pAp) such that ‖y−y0‖ < ε/2. Then ϕ(y) is invertible
and is within ε of x. �

2.2. Classification and model actions. We now turn to classification of Rokhlin
actions. For finite groups on unital C∗-algebras, this was done by Izumi. The
nonunital case was obtained by the author and Santiago, and the general case of
compact group actions on separable C∗-algebras was obtained by the author and
Santiago in subsequent work. The following formulation is accurate only for finite
groups. The proof is not particularly difficult, but it is lengthy, and we omit it.

Theorem 2.14. (Theorem 3.5 in [Izu04] and Theorem 3.11 in [GS15]). Let α
and β be actions of a finite group G on a unital C∗-algebra A with the Rokhlin
property. Then there exists an approximately inner automorphism θ ∈ Aut(A)
satisfying αg ◦ θ = θ ◦ βg for all g ∈ G if and only if αg is approximately unitarily
equivalent to βg for all g ∈ G.

Here is an immediate consequence.

Corollary 2.15. Let A be a unital C∗-algebra with the property that any auto-
morphism is approximately inner. (For instance, a UHF-algebra, a Cuntz algebra,
etc.) Then any two Rokhlin actions on A are conjugate. In particular, there exists
a “unique” Rokhlin action of G on M|G|∞ and on O2.

In some sense, a converse to Example 2.5 holds. The proof of (1) ⇒ (2) is
Example 2.5, while the proof of (2) ⇒ (3), which we omit, combines elementary
computations with standard facts about UHF-algebras and UHF-absorption.
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Theorem 2.16. LetG be a finite group and let A be a separable, unital C∗-algebra.
Then the following are equivalent:

(1) A⊗M|G| ∼= A;
(2) There exists an action of G on A with the Rokhlin property which is point-

wise approximately inner.

If the conditions above hold, then every action of G on A with the Rokhlin
property absorbs the model action constructed in Example 2.4. In particular, all
Rokhlin actions on A are as in Example 2.5.

Model actions satisfying the conclusion of Theorem 2.16 only exist for totally
disconnected compact groups, but their construction is rather involved and will not
be presented here.

3. The tracial Rokhlin property

The tracial Rokhlin property was defined by Phillips in order to study certain
finite group actions which failed to have the Rokhlin property. Here is the definition.

Definition 3.1. (Definition 1.2 in [Phi11]). Let α : G→ Aut(A) be a finite group
action on a simple, unital C∗-algebra A. We say that α has the tracial Rokhlin
property if for every ε > 0, for every finite subset F ⊆ A, and every positive
contraction x ∈ A with ‖x‖ = 1, there exist orthogonal projections eg ∈ A, for
g ∈ G, satisfying

(1) ‖αg(eh)− egh‖ < ε for all g, h ∈ G;
(2) ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F ;
(3) With e =

∑
g∈G

eg, the projection 1 − e is Murray-von Neumann equivalent

to a projection in xAx;
(4) With e as in (3), we have ‖exe‖ > 1− ε.

The definition above makes sense even if the algebra is not simple. However, in
general, it may be equivalent to the Rokhlin property. For instance, suppose that
A = B ⊕ C, and that there are actions β and γ of G on B and C, respectively,
such that α = (β, γ). The projections eg ∈ A from Definition 3.1 will have the
form (pg, qg) for projections pg ∈ B and qg ∈ C. By choosing x = (0, 1C), we see
that

∑
g∈G

pg = 1B , so the action β has the Rokhlin property. Similarly, γ has the

Rokhlin property, and hence so does α.
Quite possibly, a ‘good’ definition of the tracial Rokhlin property must require

the element x in Definition 3.1 to be full in A.

Remark 3.2. When A has strict comparison (of positive elements by traces), then
condition (3) can be replaced by

(3’) τ(1− e) < ε for every (extreme) trace τ ∈ T (A).

Remark 3.3. Condition (4) is automatic if A is finite; see Lemma 1.16 in [Phi11].
The proof, which we omit, is not difficult, but uses a fair amount of Cuntz compar-
ison, which we will not review here.

Remark 3.4. In condition (3), we may moreover require that αg(e) = e for all g ∈
G. The reason is that e is almost fixed, so it is unitarily equivalent to a projection
ẽ in Aα. Use this unitary to perturb the projections eg, to obtain projections
satisfying all conditions in the definition, and such that their sum is ẽ.
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Of course every action with the Rokhlin property has the tracial Rokhlin prop-
erty. The converse does not hold, as the following example shows.

Example 3.5. For n ∈ N, set

un = diag( 1, . . . , 1︸ ︷︷ ︸
3n−1

2 times

,−1, . . . ,−1︸ ︷︷ ︸
3n−1

2 times

, 1),

which is a unitary in M3n of order two. Let the nontrivial element in Z2 act on
M3∞ as

⊗
n∈N

Ad(un). We claim that the resulting action α : Z2 → Aut(M3∞) has

the tracial Rokhlin property but not the Rokhlin property.
Let n ∈ N, and denote by τn the unique trace on M3n . We first observe that

there exist projections p
(n)
0 , p

(n)
1 ∈M3 such that

Ad(un)(p
(n)
0 ) = p

(n)
1 and τn(1− p(n)0 − p(n)1 ) =

1

3n
.

The easiest way to see this is probably the following. With m = 3n−1
2 , observe that

un is unitarily equivalent to

vn =

 0 1Mm
0

1Mn
0 0

0 0 1

 ,

so that it is enough to find projections q
(n)
0 and q

(n)
1 for vn. We may take q

(n)
0 =

diag(1Mm
, 0, 0) and q

(n)
1 = diag(0, 1Mm

, 0).
Now let F ⊆ M3∞ be a finite subset and let ε > 0. We think of M3∞ as

the infinite tensor product
⊗

n∈NM3n . Find n ∈ N and a finite subset F ′ ⊆
M3⊗· · ·⊗M3n−1 such that every element of F is within ε of an element of F ′, and
such that 1

3n < ε. Set

e0 = 1M3
⊗ · · · ⊗ 1M3n−1 ⊗ p

(n)
0 and e1 = 1M3

⊗ · · · ⊗ 1M3n−1 ⊗ p
(n)
1 .

It is an exercise to check that these projections satisfy conditions (1) and (2) in Def-
inition 3.1 as well as condition (3’) in Remark 3.2. Since condition (4) is automatic
by Remark 3.3, the claim follows.

Finally, α does not have the Rokhlin property by Example 2.7.

It is easy to see that an action with the tracial Rokhlin property is (pointwise)
outer, and the converse is false in general. However, the converse does hold for
actions on Kirchberg algebras:

Theorem 3.6. (Theorem 2.10 in [GHS14]). Let α : G→ Aut(A) be a finite group
action on a Kirchberg algebra A. Then α has the tracial Rokhlin property if and
only if αg is outer for every g ∈ G.

The proof is similar in spirit to Example 3.5, using a structure result for point-
wise outer actions on Kirchberg algebras of Goldstein-Izumi [GI11]. (The result
basically says that it is some kind of product type action.) The projections are
constructed using a result of Kishimoto, in combination with the fact that a Kirch-
berg algebra has real rank zero. Condition (4) does have to be checked in this case,
since Kirchberg algebras are not finite.

The tracial Rokhlin property is a far weaker assumption than the Rokhlin prop-
erty, and therefore it is to be expected that one cannot prove a result as strong as
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Theorem 2.10. Indeed, at least in a general form, most of the items there fail: most
importantly, (2), (6), (7), (12) (except for D = Z in some special cases), and (13)
all fail. (1) is guaranteed by a result of Kishimoto, as well as (3). (15) holds under
the additional assumption that A be exact, by a result of Forough [For16].

Algebras with tracial rank zero, also known as tracially AF-algebras, are pre-
served by actions with the tracial Rokhlin property, by a result of Phillips. This
is indeed the main application that motivated the study of the tracial Rokhlin
property.

Definition 3.7. Let A be a separable, unital, simple C∗-algebra. We say that α
has tracial rank zero if for every ε > 0, for every finite set F ⊆ A and every positive
contraction x ∈ A with ‖x‖ = 1, there exist a projection p ∈ A, a finite dimensional
C∗-algebra D and a unital homomorphism ϕ : D → pAp such that

(1) ‖pa− ap‖ < ε for every a ∈ F ;
(2) dist(Im(ϕ), F ) < ε;
(3) 1− p is Murray-von Neumann equivalent to a projection in xAx.

One of the main technical steps in proving preservation of tracial rank zero is the
following tracial approximation of the crossed product, which should be compared
with Proposition 2.11.

Proposition 3.8. Let α : G→ Aut(A) be an action of a finite group G on a unital
C∗-algebra A. Assume that α has the tracial Rokhlin property. Let ε > 0 and let
S ⊆ Aoα G be a finite subset, and let x ∈ A be a positive contraction with ‖x‖ =
1. Then there exist projections p, e ∈ A and a unital, injective homomorphism
ϕ : M|G|(pAp)→ e(Aoα G)e such that

(1) e⊥ = 1− e is Murray-von Neumann equivalent to a projection in xAx;
(2) for every s ∈ S there is b ∈M|G|(pAp) such that ‖ϕ(b) + e⊥se⊥ − s‖ < ε.

In other words, S is approximated by elements in the image of ϕ up to elements
living in a very small corner of A.

Proof. Without loss of generality, we can assume that S has there exists a finite
subset F ⊆ A such that S = {ug : g ∈ G} ∪ F . Choose ε0 sufficiently small. Let
eg ∈ A, for g ∈ G, be projections satisfying the conditions in Definition 2.1 for ε0, F ,
and x. By Remark 3.4, we may assume that a ∈ Aα. Denote by β : G→ Aut(eAe)
the induced action. Then (eAe)oβ G = e(AoαG)e. The argument in the proof of
Proposition 2.11 gives us a unital homomorphism

ϕ : M|G| ⊗ e1Ae1 → (eAe) oβ G = e(Aoα G)e

satisfying dist(eSe,=(ϕ)) < ε/2.
One checks that

‖s−
(
ese+ e⊥se⊥

)
‖ < ε

2

for all s ∈ S. Let s ∈ S, and find b ∈ M|G|(pAp) such that ‖ϕ(b) − ese‖ < ε/2.
Using this and the above estimate at the second step, we conclude that

‖ϕ(b) + e⊥se⊥ − s‖ ≤ ‖ϕ(b)− ese‖+ ‖ese+ e⊥se⊥ − s‖ < ε

2
+
ε

2
= ε,

as desired. �



12 EUSEBIO GARDELLA

If one tries to use an argument similar to the one in Proposition 2.12 to prove,
for example, that crossed products of tracially AF-algebras by actions with the tra-
cial Rokhlin property are again tracially AF, one runs into the following problem.
The error projection in the definition of tracially AF that one gets by using Propo-
sition 3.8, which should be Murray-von Neumann equivalent to a projection in a
prescribed hereditary subalgebra of the crossed product, comes out to be Murray-
von Neumann equivalent to a projection in a prescribed hereditary subalgebra of A.
To bridge this discrepancy, the following of Kishimoto is crucial. His result holds
much more generally, but we state it here exactly the way we need it.

Theorem 3.9. (Kishimoto). Let A be a tracially AF-algebra, and let α : G →
Aut(A) be a finite group action with the Rokhlin property. Let B ⊆ A oα G be
a hereditary subalgebra. Then there exists a nonzero projection p ∈ B which is
Murray-von Neumann equivalent to a projection in A.

These results can be combined to prove, in a way similar to Proposition 2.12,
the following:

Theorem 3.10. (Theorem 2.6 in [Phi11]). Let α : G → Aut(A) be an action of a
finite group G on a simple, separable, unital tracially AF C∗-algebra. If α has the
tracial Rokhlin property, then Aoα G is also tracially AF.

3.1. The weak tracial Rokhlin property. The weak tracial Rokhlin property
is the weakening of the tracial Rokhlin property in which projections are replaced
by positive contractions, as follows.

Definition 3.11. Let α : G→ Aut(A) be a finite group action on a simple, unital
C∗-algebra A. We say that α has the weak tracial Rokhlin property if for every
ε > 0, for every finite subset F ⊆ A, and every positive contraction x ∈ A, there
exist orthogonal positive contractions fg ∈ A, for g ∈ G, satisfying

(1) ‖αg(fh)− fgh‖ < ε for all g, h ∈ G;
(2) ‖fga− afg‖ < ε for all g ∈ G and all a ∈ F ;
(3) With f =

∑
g∈G

fg, we have 1− f - x;

(4) With f as in (3), we have ‖fxf‖ > 1− ε.

As in Remark 3.2 and Remark 3.3, in special cases, conditions (3) and (4) above
can be replaced by simpler ones that allow one to forget about x.

Remark 3.12. Definition 3.11 has been extended to all amenable groups by Wang
[Wan13], and independently by the author and Hirshberg [GH17]. Wang’s definition
is formally stronger, but it is equivalent to ours in a fairly general setting; see
Section 5.

As one could expect, in the presence of sufficiently many projections, the weak
tracial Rokhlin property is in fact equivalent to the tracial Rokhlin property.

Proposition 3.13. (Phillips). Let α : G → Aut(A) be a finite group action on a
tracially AF-algebra A. Then α has the tracial Rokhlin property if and only if it
has the weak tracial Rokhlin property.

Question 3.14. Can we relax the condition on A in the proposition above? How
about tracial rank at most one? And how about real rank zero?

Here we give an application of Proposition 3.13.
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Example 3.15. For θ ∈ R \ Q, let α : Z2 → Aut(Aθ) be the action determined
by u 7→ u and v 7→ −v. We claim that α has the tracial Rokhlin property. By
Proposition 3.13, it suffices to verify the weak tracial Rokhlin property.

Let (nk)k∈N be a sequence of integers satisfying dist(nkθ,Z) → 0 as k → ∞.
Then (unk)k∈N is asymptotically central. Moreover, α1(unk) = −unk . Thus,
we get an asymptotically central sequence of equivariant unital homomorphisms
ϕ : C(S1) → Aθ, where the action on C(S1) is z 7→ −z. Hence, it suffices to find
the positive contractions in C(S1). The restriction of the (unique) trace of Aθ to
the image of ϕ induces a Borel probability measure µ on S1 which is invariant under
z 7→ −z. One can check that there exist disjoint open sets U0 and U1 which satisfy
−U0 = U1 and µ

(
S1 \ (U0 ∪ U1)

)
< ε. By taking appropriate positive contractions

supported on these sets, we conclude that α has the weak tracial Rokhlin property,
and hence the tracial Rokhlin property.

The main use of the weak tracial Rokhlin property so far has been the following
result of Hirshberg-Orovitz [HO13] (for finite groups and Z), and of the author and
Hirshberg [GH17] (in the general amenable case):

Theorem 3.16. Let α : G→ Aut(A) be an action of a finite group G on a unital,
separable, nuclear, Z-stable C∗-algebra. If A has the weak tracial Rokhlin property,
then Aoα G is Z-stable.

Before closing this section, we wish to rephrase the tracial Rokhlin property and
weak tracial Rokhlin property in terms of central sequence algebras. We need to
introduce some notation.

Definition 3.17. Let A be a unital C∗-algebra. Denote by `∞(A) the unital C∗-
algebra of bounded sequences on A, and let c0(A) denote the ideal of `∞(A) of
those sequences that converge to zero in norm. Write A∞ = `∞(A)/c0(A) for the
quotient. There is a natural inclusion A → A∞ by constant sequences, so we may
take the relative commutant of A in A∞; concretely:
(1)

A∞ ∩A′ =

{
[(xn)n∈N] : sup

n∈N
‖xn‖ <∞ and lim

n→∞
‖xna− axn‖ = 0 for all a ∈ A

}
.

If α : G→ Aut(A) is an action of a discrete group G on A, then there are induced
actions α∞ : G→ Aut(A∞) and α∞ : G→ Aut(A∞ ∩A′).

The construction can be carried out for a free ultrafilter ω ∈ βN \ N, with the
objects being denoted Aω, Aω∩A′, and αω. The advantage of using free ultrafilters
is that a trace τ on A naturally induces a trace τω on Aω given by

τω ([(xn)n∈N]) = lim
n→ω

τ(xn).

We denote by JA the ideal in Aω given by

JA = {x ∈ Aω : τω(x∗x) = 0 for all τ ∈ T (A)}.

Recall that a completely positive map ϕ : A→ B between C∗-algebras A and B
is said to be of order zero if ϕ(a)ϕ(b) = 0 whenever a, b ∈ A+ satisfy ab = 0. We
can rephrase the tracial Rokhlin property and the weak tracial Rokhlin property
as follows (without strict comparison, a similar characterization holds, but it is not
as neat to write down):
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Proposition 3.18. Let α : G → Aut(A) be an action of a finite group G on a
separable, unital, simple C∗-algebra A, and assume that A has strict comparison.
Let ω ∈ βN \ N.

(1) α has the tracial Rokhlin property if and only if there exists an equivariant
homomorphism ϕ : C(G)→ Aω ∩A′ satisfying ϕ(1) ∈ JA.

(2) α has the weak tracial Rokhlin property if and only if there exists an equi-
variant completely positive contractive order zero map ϕ : C(G)→ Aω ∩A′
satisfying ϕ(1) ∈ JA.

The difference between the two statements is that in (2), we have the weak tracial
Rokhlin property, and ϕ is assumed to be order zero, not a homomorphism.

4. Rokhlin dimension

In this section, we introduce a different weakening of the Rokhlin property, in
a spirit similar to how the weak tracial Rokhlin property was obtained as a weak-
ening of the tracial Rokhlin property; see Proposition 3.18. Simply replacing the
projections in Definition 2.1 with orthogonal positive elements and still requiring
that they add up to one would not yield a different notion. Indeed, if a1, . . . , an

are orthogonal positive contractions in a unital C∗-algebra A satisfying
n∑
j=1

aj = 1,

then each aj is necessarily a projection. The alternative then is to introduce more
“towers”, leading to a dimensional notion:

Definition 4.1. Let α : G → Aut(A) be an action of a finite group G on a unital
C∗-algebra A. Given d ∈ N, we say that α has Rokhlin dimension at most d, and
write dimRok(α) ≤ d, if the following holds: for every ε > 0 and for every finite

subset F ⊆ A, there exist positive contractions f
(j)
g ∈ A, for g ∈ G and j = 0, . . . , d,

satisfying

(1)
∥∥∥αg(f (j)h )− f (j)gh

∥∥∥ < ε for all g, h ∈ G and all j = 0, . . . , d;

(2) f
(j)
g f

(j)
h = 0 whenever g 6= h, for all j = 0, . . . , d;

(3)
∥∥∥f (j)g a− af (j)g

∥∥∥ < ε for all g ∈ G, all j = 0, . . . , d and all a ∈ F ;

(4)
d∑
j=0

∑
g∈G

f
(j)
g = 1.

We write dimRok(α) for the smallest d ∈ N such that dimRok(α) ≤ d.
Similarly, we say that α has Rokhlin dimension with commuting towers at most

d, and write dimc
Rok(α) ≤ d, if the following holds: for every ε > 0 and for every

finite subset F ⊆ A, there exist positive contractions f
(j)
g ∈ A, for g ∈ G and

j = 0, . . . , d, satisfying conditions (1) through (4) above, in addition to

(5)
∥∥∥f (j)g f

(k)
h − f (k)h f

(j)
g

∥∥∥ < ε for all g, h ∈ G and all j, k = 0, . . . , d.

We write dimc
Rok(α) for the smallest d ∈ N such that dimc

Rok(α) ≤ d.

One way of thinking of the above definition is as a “colored” version of the
Rokhlin property. “Coloring” is really just a meta-mathematical term, but in this
context it usually means replacing homomorphisms or projections with a finite
number (usually bounded, the bound essentially being the value of the relevant
“dimension”) of order zero maps or positive elements. Here is an equivalent formu-
lation of Rokhlin dimension:
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Proposition 4.2. Let α : G→ Aut(A) be an action of a finite group G on aunital
C∗-algebra A, and let d ∈ N.

(1) We have dimRok(α) ≤ d if and only if there exist an equivariant completely
positive conractive order zero maps ϕ0, . . . , ϕd : C(G)→ A∞∩A′ satisfying
d∑
j=0

ϕj(1) = 1.

(2) We have dimc
Rok(α) ≤ d if and only if there exist an equivariant completely

positive conractive order zero maps ϕ0, . . . , ϕd : C(G) → A∞ ∩ A′ with

commuting ranges satisfying
d∑
j=0

ϕj(1) = 1

Remark 4.3. The inequality dimRok(α) ≤ dimc
Rok(α) always holds and can be

strict. In fact, there are actions with dimRok(α) = 1 and dimc
Rok(α) = ∞. Even

worse, there are actions with dimRok(α) = 1 and dimc
Rok(α) = 2, even on classifiable

C∗-algebras.

Remark 4.4. We have dimRok(α) = 0 if and only if dimc
Rok(α) = 0, and if and

only if α has the Rokhlin property.

To see how much more general the notion of finite Rokhlin dimension is with
respect to the Rokhlin property, we look at the case of commutative C∗-algebras.

Theorem 4.5. (Theorem 4.4 of [Gar14c]; see also Lemma 1.7 of [HP15]). Let
α : G→ Aut(C(X)) be an action of a finite group G on a unital commutative C∗-
algebra C(X). Then dimRok(α) < ∞ if and only if the induced action of G on X
is free.

While the Rokhlin property corresponds to (global) triviality of the fiber bundle
X → X/G (Theorem 2.6), finite Rokhlin dimension corresponds to local triviality,
which for compact Lie groups is equivalent to freeness.

On purely infinite C∗-algebras, finite Rokhlin dimension is also very common:

Theorem 4.6. (Theorem 4.20 in [Gar14c]). Let α : G → Aut(A) be an action of
a finite group G on a unital Kirchberg algebra A. Then α is pointwise outer if and
only if dimRok(α) ≤ 1.

The definition of Rokhlin dimension was extended to compact groups [Gar14c],
residually finite groups [SWZ14], and reals [HSWW16]. The main application in all
of these works is showing that finiteness of the nuclear dimension is preserved (by
taking crossed products). We recall the definition of the nuclear dimension of a C∗-
algebra, which can also be thought as a “colored” version of being an AF-algebra
(also, as a colored version of hyperfiniteness for von Neumann algebras).

Definition 4.7. Let A be a C∗-algebra, and let r ∈ N. We say that A has nuclear
dimension at most r, and write dimnuc(A) ≤ r, if for every ε > 0 and every finite
subset F ⊆ A, there exist finite dimensional C∗-algebras E0, . . . , Er, a completely

positive contractive map ϕ : A→
r⊕

k=0

Ek, and completely positive contractive order
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zero maps ψk : Ek → A, for k = 0, . . . , r, such that the diagram

A
idA //

θ $$

A

⊕r
k=0Ek.

r∑
k=0

ψk

::

In other words,

∥∥∥∥( d∑
k=0

ψk ◦ ϕ
)

(a)− a
∥∥∥∥ < ε for every a ∈ F .

Here is the main application of finite Rokhlin dimension:

Theorem 4.8. (Theorem 1.4 in [HWZ] and Theorem 3.4 in [Gar15b]). Let α : G→
Aut(A) be an action of a finite group G on a unital C∗-algebra A. Then

dimnuc(A
α) + 1 = dimnuc(Aoα G) + 1 ≤ (dimnuc(A) + 1)(dimRok(α) + 1).

Proof. We sketch an idea of the proof. Set dimRok(α) = d and dimnuc(A) = r. Let
S ⊆ A oα G be a finite subset. Without loss of generality, we assume that S has
the form F ∪ {ug : g ∈ G} for some finite subset F ⊆ A. Let ϕ0, . . . , ϕd : C(G) →
A∞ ∩A′ be equivariant completely positive contractive maps as in Proposition 4.2.
Denote by ι : A → C(G) ⊗ A the map ι(a) = 1 ⊗ a for all a ∈ A. By tensoring
with A and the identity on it, we obtain the following commutative diagram of
equivariant maps:

A //

ι
$$

A∞

C(G)⊗A.
d∑

j=0
ϕ̃j

99

By taking crossed products, and using that C(G,A) oLt⊗α G ∼= A⊗K(L2(G)), we
obtain the following commutative diagram:

Aoα G //

ι
''

(Aoα G)∞

A⊗K(L2(G)).

d∑
j=0

ϕ̂j

66

Let E0, . . . , Er, ϕ and ψ0, . . . , ψr determine an r-colored approximation of F up
to ε as in Definition 4.7. For k = 0, . . . , r and j = 0, . . . , d, set

E
(j)
k = Ek and ψ

(j)
k = ϕ̂j ◦ ψk : E

(j)
k → (Aoα G)∞.
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Then the following diagram, which commutes on S up to ε, shows that dimnuc(Aoα) ≤
(d+ 1)(r + 1)− 1, as desired (details omitted):

Aoα G //

ι
''

(Aoα G)∞

A⊗K(L2(G))

θ ((
d⊕
j=0

(E0 ⊕ · · · ⊕ Er) .

r∑
k=0

d∑
j=0

ψ
(j)
k

::

�

For more general groups, one sometimes has to include a multiplicative constant
(depending only in G) on the right-hand side of the inequality in Theorem 4.8; see
[SWZ14] and [HSWW16]. A similar statement holds for the decomposition rank in
the case of compact groups, but fails for infinite discrete groups (in fact, already
for Z).

4.1. Rokhlin dimension with commuting towers. Let α : G→ Aut(A) be an
action of a finite group G on a unital C∗-algebra A with dimc

Rok(α) ≤ d. We will
derive some general facts first, and then explain how they can be used to prove
results about crossed products.

By Proposition 4.2, there exist completely positive contractive order zero maps

ϕ0, . . . , ϕd : C(G)→ A∞ ∩A′ with commuting images and such that
d∑
j=0

ϕj(1) = 1.

Denote by C the unital C∗-algebra generated by the image of all these maps. Then
this algebra is commutative, so it has the form C(X) for some compact Hausdorff
space X. One can check that X must have covering dimension at most d. On the
other hand, since G acts on the image of each of the maps ϕj , it also acts on C, and
this induces an action on X. This action is also easily checked to be free. The result
is then a unital equivariant homomorphism C(X)→ A∞∩A′ from the free G-space
X into the central sequence algebra of A. Since the fiber bundle X → X/G has
local cross-sections (that is, it is locally trivial), the dimension of the orbit space
X/G is also at most d.

Arguing similar to the proof of Theorem 4.8, there is a commutative diagram of
equivariant unital homomorphisms as follows:

A //

ι
$$

A∞

C(X)⊗A.

99
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By taking crossed products we arrive at a local approximation of A oα G by
C(X,A) oG as follows:

Aoα G //

ι
''

(Aoα G)∞

C(X,A) oG.

77

We would like to transfer properties from A to AoαG. Using the approach above,
an intermediate step would be to first transfer properties from A to C(X,A)oG, and
then use the above diagram to transfer them to AoαG. Unfortunately, C(X,A)oG
is not even Morita equivalent to (C(X) o G) ⊗ A. However, it is a continuous
C(X/G)-alebra with fibers Morita equivalent to A:

Theorem 4.9. (Corollary 3.6 in [GHS14]). Let G be a finite group, and let X be
a free G-space with finite covering dimension. Let α : G → Aut(A) be any action
of G on a unital C∗-algebra A. Then C(X,A) o G is a locally trivial continuous
C(X/G)-algebra with fibers canonically isomorphic to A⊗K(L2(G)).

The next ingredient is a family of results in the literature, that assert that if Y is
a compact Hausdorff space of finite covering dimension, and B is a (locally trivial)
continuous C(Y )-algebra, then certain properties pass from the fibers of B to all of
B. Examples of such properties are D-stability ([HRW07]), the UCT in the nuclear
case ([Dad03]), and many others.

In the following theorem, we summarize some of the properties that are preserved
by actions with finite Rokhlin dimension with commuting towers (the list is not
exhaustive).

Theorem 4.10. (Theorem 3.14 in [GHS14]). The following classes of unital C∗-
algebras are closed under formation of crossed products and passage to fixed point
algebras by actions of compact groups with the Rokhlin property:

(1) Simple C∗-algebras. More generally, the ideal structure can be completely
determined;

(2) Kirchberg algebras;
(3) Simple C∗-algebras with tracial rank zero;
(4) Separable, nuclear C∗-algebras satisfying the Universal Coefficient Theo-

rem;
(5) C∗-algebras with finite nuclear dimension or decomposition rank;
(6) C∗-algebras with finite real rank zero or stable rank;
(7) SeparableD-absorbing C∗-algebras, for a strongly self-absorbing C∗-algebra
D;

(8) C∗-algebras whose K-groups are either: trivial, free, torsion-free, torsion,
or finitely generated;

In the next result, we relate finite Rokhlin dimension with commuting towers
with the weak tracial Rokhlin property, which gives a proof of item (3) in the
theorem above. The proof uses the free G-space X constructed before, and is in
fact very similar to the argument given in Example 3.15 to show that the gauge
action of Z2 on Aθ has the tracial Rokhlin property.

Theorem 4.11. (Theorem 2.3 in [GHS14]). Let α : G → Aut(A) be an action of
a finite group G on a separable, unital C∗-algebra A with strict comparison and
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countably many extreme traces. If dimc
Rok(α) < ∞, then α has the weak tracial

Rokhlin property.

Finally, we state another result from [GHS14], which allows us to conclude that
an action has the Rokhlin property, just by knowing that it has finite Rokhlin
dimension with commuting towers.

Theorem 4.12. (Theorem 3.34 in [GHS14]). Let α : G→ Aut(A) be an action of
a finite group G on a unital C∗-algebra A, and suppose that A ⊗M|G|∞ ∼= A. If
dimc

Rok(α) <∞, then α has the Rokhlin property.

5. Equivalence between the weak tracial Rokhlin property and
finite Rokhlin dimension

We begin by summarizing the so-far discussed relations between the Rokhlin-
type properties mentioned in these lectures. A full arrow represents a (trivial)
implication, while a dotted arrow means that in some circumstances, an additional
implication exists, and a reference is given:

tRp +3 wtRp

Theorem 3.6

u}

Proposition 3.13

ai KS

Theorem 3.6 and Theorem 4.6

��

Rp

6>

 (
dimc

Rok(α) <∞ +3
Theorem 4.12

QY

dimRok(α) <∞

There are two other easy implications: the tracial Rokhlin property implies the
Rokhlin property for actions on algebras without property (SP), and (obviously)
dimRok(α) <∞ implies dimc

Rok(α) <∞ for actions on commutative algebras.
The goal of this section is to show that the weak tracial Rokhlin property and

finite Rokhlin dimension are equivalent for finite group actions on classifiable C∗-
algebras. (The result holds more generally for amenable groups.) To motivate the
result, we revisit a celebrated result of Ocneanu [Ocn85] (what he showed is much
more general). The case of G = Zn forM = R was first proved by Connes [Con77],
while the case of finite G and M = R was obtained by Jones [Jon80].

We need a definition first (we give it for finite groups, but it can be given for
amenable groups). We denote the unique trace of a II1-factor M by τ , and write
‖ · ‖2,τ for the associated 2-norm: ‖x‖2,τ = τ(x∗x)1/2 for x ∈M.

Definition 5.1. Let γ : G → Aut(M) be a finite group action on a II1-factor M.
We say that γ has the (von Neumann) Rokhlin property if for every ε > 0 and every
finite subset F ⊆M, there exist projections eg ∈M, for g ∈ G, satisfying



20 EUSEBIO GARDELLA

(1) ‖γg(eh)− egh‖2,τ < ε for all g, h ∈ G;
(2) ‖ega− aeg‖2,τ < ε for all g ∈ G and all a ∈ F ;
(3)

∑
g∈G

eg = 1.

For a free ultrafilter ω, we denote by Mω ∩M′ the tracial central sequence of
a II1-factor M, and if γ : G → Aut(M) is a group action, we denote by γω : G →
Aut(Mω ∩M′) the induced action.

Theorem 5.2. (See [Ocn85]). Let G be a countable amenable group, let M be a
separably acting McDuff II1-factor, and let γ : G → Aut(M) be an action. Then
the following are equivalent:

(1) γω is (pointwise) outer;
(2) γ has the Rokhlin property.

Moreover, if the above conditions hold, then γ⊗idR is cocycle conjugate to γ.

We wish to obtain a C*-analog of the above result, and for this we need to find
substitutes for M, ponintwise outerness, the von Neumann Rokhlin property, and
for idR. The following are natural choices:

• Instead of a separably acting McDuff II1-factorM, we consider a separable,
stably finite, exact, simple unital C∗-algebra A, which is Z-stable.
• Instead of pointwise outerness in the central sequence algebra, we ask for

outerness on every factor representation.
• Instead of the von Neumann Rokhlin property we ask for the weak tracial

Rokhlin property, or, equivalently, finite Rokhlin dimension.
• Instead of absorbing idR, we ask for absorption of idZ .

At the moment, we need to adopt an additional assumption on A, which we hope
to remove in the future. Namely, we only work with algebras A as above for which
T (A) is a Bauer simplex and ∂eT (A) is finite dimensional. Our main result is then:

Theorem 5.3. (See [GH17]). Let G be a finite group, let A be a C∗-algebra as
above, and let α : G→ Aut(A) be an action. Then the following are equivalent:

(1) α is strongly outer;
(2) α has the weak tracial Rokhlin property;
(3) dimRok(α) ≤ 1.

Moreover, if the above conditions hold, then α⊗ idZ is (cocycle) conjugate to α.

There’s also a version for arbitrary amenable groups, which we omit. Observe
that any A as in the theorem is in particular finite and has strict comparison (so
that the definition of the weak tracial Rokhlin property does not require to take
the positive contraction x ∈ A.) A version of this theorem for G = Z was proved
first by Liao; see [Lia16]. Our methods are, however, different.

Proof. The proof that (3) implies (1) is not difficult, and we omit it. We will show
that (1) implies (2), and that (2) implies (3). We will sketch the proof in the case
in which A has a unique trace τ . (The result is new even in this case.)

We show that (1) implies (2). The assumptions imply that the weak closure M
of A in the GNS representation associated to τ is a McDuff factor, and that the
action γ : G→ Aut(M) induced by α satisfies the assumptions of Theorem 5.2. Let
ε > 0 and F ⊆ A be a finite set. Find projections eg ∈M, for g ∈ G, satisfying the
conditions in Definition 5.1. Since the unit ball of M is the completion of the unit
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ball of A with respect to the norm ‖ · ‖2,τ , and by working in the central sequence
algebra Aω ∩ A′, we can find orthogonal positive contractions fg ∈ Aω ∩ A′, with
g ∈ G, satisfying

• (αω)g(fh)− fgh ∈ JA, for all g, h ∈ G;
• fga− afg ∈ JA for all g ∈ G and all a ∈ F ;
• 1−

∑
g∈G

fg ∈ JA.

Let C denote the (separable) C∗-algebra generated by A and {(αω)g(fh) : g, h ∈
G}. One can show that there exists x ∈ (JA∩C ′)αω such that xc = c for all JA∩C.

It is then easy to check that the elements f̃g = (1−x)fg(1−x) satisfy the conditions
in the definition of the weak tracial Rokhlin property.

Before proving that (2) implies (3), we need to establish equivariant Z-stability.
By Theorem 5.2, the weak extension γ of α absorbs idR, so there exists a unital
embedding of R into (Mω ∩M′)γω

. Since M2 is a unital subalgebra of R, and
(Mω ∩M′)γω

is the quotient of (Aω ∩A′)αω (by JA), we get the following diagram:

(Aω ∩A′)αω

����
M2

ρ
55

// R // (Mω ∩M′)γω

.

Since M2 is finite dimensional, there exists a completely positive contractive
order zero map ρ making the diagram commute. Since A is Z-stable and α has
the weak tracial Rokhlin property, one can show that (A,α) satisfies an equivariant
version of property (SI) which allows one to extend ρ to a unital homomorphism
ψ : I2,3 → (Aω ∩ A′)αω from the dimension drop algebra I2,3. This is known to
imply that α⊗ idZ is (cocycle) conjugate to α.

Finally, we show that (2) implies (3). The idea is to “break” the tower coming
from the weak tracial Rokhlin property, as well as the left over, into two Rokhlin
dimension towers. The extra copy of Z is crucial in this step. Indeed, earlier
methods to obtain results like ours, not relying on equivariant Z-stability, had the
disadvantage of breaking down for finite groups or infinitely generated groups like
Z∞.

Concretely, we do the following. Let fg ∈ A, for g ∈ G, be positive contractions
as in the definition of the weak tracial Rokhlin property, and set f =

∑
g∈G

fg. Then

τ(f) = τ(1) = 1. Find a positive contraction h0 ∈ Z with sp(h0) = [0, 1], and set
h1 = 1−h0. Classifications results for positive contractions of full trace imply that
there exist unitaries u0, u1 ∈ U((Aα ⊗ Z)ω) such that uj(f ⊗ hj)u∗j = 1 ⊗ hj for

j = 0, 1. Finally, for j = 0, 1 and g ∈ G, we define f
(j)
g = ujfgu

∗
j . One checks that

these elements witness the fact that dimRok(α) ≤ 1, finishing the proof. �

6. Problems

Here, we list some open problems and questions whose solution should be of
interest. They are listed roughly in increasing order of (expected!) difficulty.

(1) We have seen that the weak tracial Rokhlin property implies the tracial
Rokhlin property in some cases (for actions on Kirchberg algebras, and for
actions on TAF algebras). Does this result hold in a more general context?
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How about tracial rank at most one? How about real rank zero and Z-
stability?

(2) Develop a theory of the Rokhlin property (and maybe Rokhlin dimension)
for actions of more general objects, such as groupoids, semigroups, or partial
actions.

(3) There are by now some projectionless versions of being TAF.Are these
preserved by the weak tracial Rokhlin property?

(4) Prove that for simple unital AF-algebras, the weak tracial Rokhlin property
and Rokhlin dimension at most one are equivalent, and equivalent to strong
outerness. (The point of this problem is not to assume that T (A) is a Bauer
simplex and that its boundary has finite covering dimension. One could
assume that the action of G on T (A) is trivial to begin with.)

(5) Alternatively, for (non-simple) unital AF-algebras, study whether strong
outerness implies finite Rokhlin dimension. (There may be things to figure
out here, for example what traces one should use: does one have to allow
for unbounded traces?)

(6) Does finite Rokhlin dimension preserve tracial Z-stability? In the case of
commuting towers, this seems to be true (S. Jamali).

(7) Classify finite group actions with finite Rokhlin dimension with commuting
towers on Kirchberg algebras. Is it enough to have αg approximately uni-
tarily equivalent to βg for all g ∈ G? I don’t know of any counterexamples,
but they may exist.
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