
Crossed Products Malte Höltershinken

Crossed products with amenable groups and functo-

riality properties

In the last lecture we de�ned, given a C*-dynamical System (A,G, α), a C*-
Algebra A oα G, called the crossed product of the dynamical System. The
construction of this algebra was similar to the construction of the group-C*-
Algebra C∗(G) of a locally compact group G. Especially we were also able to
construct a reduced crossed product Aoα,r G similar to the reduced group-
C*-Algebra C∗r (G). Considering this one would expect that some properties
of group-C*-Algebras are also valid for the full and reduced crossed product.
For example, if the group G is amenable we know that C∗(G) and C∗r (G)
are the same and that C∗(G) = C∗r (G) is nuclear. One of the main objec-
tives of this lecture is to show that these two facts remain true for crossed
products.

Furthermore, it turns out that the full and reduced crossed product are
in many ways comparable to maximal and minimal tensor products of C*-
Algebras. Speci�cally we want to see that the full and reduced crossed pro-
duct de�ne functors on suitable categories and just like in the tensor product
case the functor for the full crossed product turns out to be exact, while the
functor in the reduced case is not always exact.

These notes are based on the book [Wil07] by Dana P. Williams and the
lecture notes [Phi] by N. Christopher Phillips.

We start by a short recap of the last lecture.

Preliminaries. Let (A,G, α) be a dynamical system. A covariant repre-

sentation on a Hilbert space H is a pair (π, u), where π : A → B(H) is a
*-homomorphism and u : G→ U(H) is a unitary representation of G so that
for each s ∈ G, a ∈ A we have

π(αs(a)) = Usπ(a)U∗s .

Given a covariant representation (π, u) we can de�ne it's integrated form to
be

π o u : Cc(G,A)→ B(H); f 7→
∫
G
π(f(s))Us ds.

This gives a *-homomorphism if we equip Cc(G,A) with the multiplication

f ∗ g(s) =

∫
G
f(r)αr(g(r−1s)) dr

and involution
f∗(s) = ∆(s−1)αs(f(s−1)∗).

For f ∈ Cc(G,A) we can now set

‖f‖ = sup{‖π o u(f)‖ | (π, u) covariant repr. of (A,G, α)}.
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This de�nes a C*-Norm on Cc(G,A), called the universal norm. The univer-
sal norm remains unchanged if we restrict the de�nition to nondegenerate
representations (π, u), where nondegenerate means that the representation
π is nondegenerate.

The completion with respect to this norm is a C*-Algebra A oα G, called
the crossed product of (A,G, α).

Now let π : A → B(H) be an arbitrary representation of A. Then we can
de�ne a representation

π̃ : A→ B(L2(G,H)),

so that for a ∈ A, ξ ∈ Cc(G,H) and s ∈ G we have π̃(a)ξ(r) = π(α−1r (a))(ξ(r)).
Further we de�ne a unitary representation V π : G → U(B(L2(G,H))) by
V π
s ξ(r) = ξ(s−1r). The pair (π̃, V π) is then a covariant representation of

(A,G, α) and the integrated form π̃oV π is called the regular representation
associated to π and will be denoted by Ind(π). If we de�ne for f ∈ Cc(G,A)

‖f‖r = sup{‖ Ind(π)(f)‖ |π repr. of A}

we get another norm on Cc(G,A) called the reduced norm. The completion
with respect to this norm will be called the reduced crossed product and will
be denoted by Aoα,r G.

If π is a faithful representation of A then Ind(π) is a faithful representation
of Aoα,r G.

By de�nition, we have for all f ∈ Cc(G,A) that ‖f‖r ≤ ‖f‖. Thus, we get a
canonical surjection

κ : Aoα G→ Aoα,r G

extending the identity.

Our �rst objective is to show that this map κ is an isomorphism if G is
amenable. To show this we �rst need to see that given a covariant repre-
sentation (π, u) the representation Ind(π) is equivalent to a representation
derived from (π, u). We �rst �x some notation.

Let H,K be Hilbert spaces. If T ∈ B(H) and S ∈ B(K) we can de�ne an
operator T ⊗S ∈ B(H⊗K) by T ⊗S(x⊗y) = T (x)⊗S(y). If π : A→ B(H)
is a representation of A we can thus de�ne a representation

1⊗ π : A→ B(K ⊗H); a 7→ idK ⊗π(a).

If u : G→ U(K) and v : G→ U(H) are unitary representations then

u⊗ v : G→ U(K ⊗H); s 7→ us ⊗ vs

is a well de�ned unitary representation as well.
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If f ∈ Cc(G) and h ∈ H then we can de�ne an element f⊗̃v in Cc(G,H)
by f⊗̃v(s) = f(s)v. This gives a unitary map Φ : L2(G) ⊗ H 7→ L2(G,H)
which maps f ⊗ h to f⊗̃h for f ∈ Cc(G), h ∈ H.

Lemma 1. Let (A,G, α) be a dynamical system and (π, u) a covariant re-
presentation. Let Φ be as above and let λ be the left regular representation of
G. Then the pair (1⊗π, λ⊗u) is a covariant representation that is unitarily
equivalent to (π̃, V π).

Proof. We �rst show that (1 ⊗ π, λ ⊗ u) is covariant. Let a ∈ A, s ∈ G, f ∈
Cc(G), v ∈ H. Then we have

1⊗ π(αs(a))(f ⊗ v) = f ⊗ π(αs(a))v = f ⊗ (usπ(a)u∗s)v

= λs ⊗ us1⊗ π(a)λs−1 ⊗ us−1(f ⊗ v).

This proves the covariance.

We now de�ne the unitary map that implements the equivalence. Let

z : Cc(G,H) 7→ Cc(G,H); ξ 7→ z(ξ),

where z(ξ)(r) = u−1r (ξ(r)). Then z(ξ) is continuous since if rλ → r we have

z(ξ)(rλ)− z(ξ)(r) = ur−1
λ

(ξ(rλ))− ur−1
λ

(ξ(r))︸ ︷︷ ︸
→0 since urλ is unitary

+ur−1
λ

(ξ(r))− ur−1(ξ(r))︸ ︷︷ ︸
→0

→ 0.

Since supp(z(ξ)) = supp(ξ) the map z is well de�ned. An easy calculation
shows that z is linear. For z ∈ Cc(G,H) we have

‖z(ξ)‖22 =

∫
G
〈z(ξ)(s), z(ξ)(s)〉 ds =

∫
G
〈u−1s (ξ(s))), u−1s (ξ(s)))〉 ds

=

∫
G
〈ξ(s), ξ(s)〉 = ‖ξ‖22.

Thus z extends to an isometric linear map L2(G,H)→ L2(G,H). If we set

w : Cc(G,H)→ Cc(G,H); ξ 7→ w(ξ),

where w(ξ)(r) = ur(ξ(r)), then by the same argument as aboze w extends
to an isometric linear map L2(G,H) → L2(G,H). By de�nition w is the
inverse of z on Cc(G,H). By density if follows that w is the inverse of z on
L2(G,H). It follows that z is a unitary map. Let Φ : L2(G)⊗H → L2(G,H)
be the unitary map de�ned above. The equivalence is then implemented by
the unitary map zΦ.

To see this let r ∈ G, f ∈ Cc(G), v ∈ H. Then we have

zΦλr ⊗ urΦ−1(f⊗̃v) = z(λr(f)⊗̃ur(v)).
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So for s ∈ G we have

zΦλr ⊗ urΦ−1(f⊗̃v)(s) = u−1s (λr(f)⊗̃ur(v)(s)) = u−1s (f(r−1s)ur(v))

= u(r−1s)−1(f(r−1s)v) = u(r−1s)−1((f⊗̃v)(r−1s))

= z(f⊗̃v)(r−1s) = V π
r (z(f⊗̃v))(s).

This gives
zΦλr ⊗ urΦ−1z−1 = V π

r .

For a ∈ A we further have

zΦ1⊗ π(a)Φ−1(f⊗̃v)(s) = z(f⊗̃π(a)v)(s) = u−1s (f(s)π(a)v)

= us−1π(a)f(s)v = π(αs−1(a))(u−1s f(s)v) = π̃(a)(z(f⊗̃v))(s).

This gives
zΦ1⊗ π(a)Φ−1z−1 = π̃.

This proves the claim.

We now give a short reminder on amenability.

De�nition 2. Let G be a locally compact group. Then G is called amenable

if given a compact subset C of G and ε > 0, there exists a nonnegative
function f ∈ Cc(G) with ‖f‖2 = 1 such that for every s ∈ C we have

‖λs(f)− f‖2 < ε,

where λ is the left regular representation of G.

Remark 3. This is only one of the many possible ways of de�ning amena-
bility. We could for example replace the 2-norm in the above formulation
by any p-norm for 1 ≤ p < ∞ and would get an equivalent de�nition of
amenability.

There are many amenable groups. For example all abelian groups and all
compact groups are amenable.

A good reference regarding amenability is [Pat88]. The equivalence of De-
�nition 2 with more standard de�nitions of amenability is proved there, as
are the facts mentioned above.

Theorem 4. Let (A,G, α) be a dynamical system and let G be amenable.
Then the canonical map

κ : Aoα G→ Aoα,r G

is an isomorphism.
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Proof. If su�ces to show that κ is isometric on Cc(G,A). So let f ∈ Cc(G,A).
Since ‖f‖r ≤ ‖f‖ it su�ces to show that ‖f‖ ≤ ‖f‖r. For this it su�ces
to show that given a covariant representation (π, u) of (A,G, α) we have
‖π o u(f)‖ ≤ ‖f‖r.

So let (π, u) be a covariant representation of (A,G, α). We will show that
‖π o u(f)‖ ≤ ‖ Ind(π)(f)‖, which implies the claim. By Lemma 1 the co-
variant representation (1⊗ π, λ⊗ u) is unitarily equivalent to the covariant
representation (π̃, V π). But then the integrated forms are equivalent as well.
So we have ‖ Ind(π)(f)‖ = ‖(1⊗π)o (λ⊗u)(f)‖ and it su�ces to show that

‖π o u(f)‖ ≤ ‖(1⊗ π)o (λ⊗ u)(f)‖.

This is trivial if ‖πou(f)‖ = 0. So let ‖πou(f)‖ > 0. Let 0 < ε < ‖πou(f)‖.
Then there exists ξ0 ∈ H with ‖ξ0‖ = 1 and

‖π o u(f)‖ − ε

2
< ‖π o u(f)(ξ0)‖.

Let S = supp(f), let C > 0 be a constant so that ‖f(s)‖ ≤ C for alle s ∈ G
and let L > 0 be a constant so that µ(S) < L. Since S is compact and G is
amenable we get a nonnegative function g ∈ Cc(G) with ‖g‖2 = 1, such that
for every s ∈ S we have

‖λs(g)− g‖2 <
ε

2CL
.

Now consider g ⊗ ξ0 ∈ L2(G)⊗H. We have

‖g ⊗ ξ0‖ = ‖g‖2‖ξ0‖ = 1.

We further have

(1⊗ π)o (λ⊗ u)(f)(g ⊗ ξ0) =

∫
G

idL2(G)⊗π(f(s))λs ⊗ us(g ⊗ ξ0) ds

=

∫
G
λs(g)⊗ π(f(s))us(ξ0) ds

=

∫
G

(λs(g)− g)⊗ π(f(s))us(ξ0) ds+

∫
G
g ⊗ π(f(s))us(ξ0) ds.

We now have

‖
∫
G

(λs(g)− g)⊗ π(f(s))us(ξ0) ds‖ ≤
∫
G
‖(λs(g)− g)⊗ π(f(s))us(ξ0)‖ ds

=

∫
S
‖(λs(g)− g)⊗ π(f(s))us(ξ0)‖ ds =

∫
S
‖(λs(g)− g)‖‖π(f(s))us(ξ0)‖ ds

≤
∫
S

ε

2CL
C ds = µ(S)

ε

2L
≤ ε

2
.
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But this gives

‖(1⊗ π)o (λ⊗ u)(f)(g ⊗ ξ0)‖

≥ ‖
∫
G
g ⊗ π(f(s))us(ξ0) ds‖ − ‖

∫
G

(λs(g)− g)⊗ π(f(s))us(ξ0) ds‖

≥ ‖
∫
G
g ⊗ π(f(s))us(ξ0) ds‖ −

ε

2
= ‖g ⊗

∫
G
π(f(s))us(ξ0) ds‖ −

ε

2

= ‖g ⊗ (π o u(f)(ξ0))‖ −
ε

2
= ‖g‖2‖π o u(f)(ξ0)‖ −

ε

2

= ‖π o u(f)(ξ0)‖ −
ε

2
> ‖π o u(f)‖ − ε.

We thus have

‖(1⊗ π)o (λ⊗ u)(f)‖ ≥ ‖(1⊗ π)o (λ⊗ u)(f)(g ⊗ ξ0)‖ > ‖π o u(f)‖ − ε.

Since 0 < ε < ‖π o u(f)‖ was arbitrary we �nally have

‖π o u(f)‖ ≤ ‖(1⊗ π)o (λ⊗ u)(f)‖.

This proves the claim.

Remark 5. Let G be a locally compact group. It can be shown that if the
natural map

C∗(G)→ C∗r (G)

is an isomorphism, then G amenable. Thus, the natural map is an isomor-
phism if and only if the group is amenable, and we get yet another equivalent
de�nition of amenability. A proof can be found in [Wil07, Theorem A.18].

This property of group-C∗-algebras does not generalize to arbitrary dynami-
cal systems. To see this consider an arbitrary locally compact group G and
the dynamical system (C0(G), G, lt) given by the action of G on itself by left
translation. Using imprimitivity theorems it can be show that the natural
map

C0(G)olt G→ C0(G)olt,r G

is always an isomorphism. See for example [Wil07, Theorem 4.23], where it
is shown that C0(G)olt G is simple. This gives the claim.

We now turn to studying the functoriality properties of the crossed pro-
duct.

De�nition 6. Let (A,G, α) and (B,G, β) be dynamical systems. A homo-
morphism ϕ : A→ B is called equivariant if for all a ∈ A, s ∈ G we have

ϕ(αs(a)) = βs(ϕ(a)).
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We now show that every equivariant homomorphism induces a homomor-
phism between the corresponding crossed products.

Theorem 7. Suppose that (A,G, α) and (B,G, β) are dynamical systems
and that ϕ : A→ B is equivariant. Then the map

Φ : Cc(G,A)→ Cc(G,B); f 7→ ϕ ◦ f

is a ∗-homomorphism. It extends to ∗-homomorphisms

ϕo id : Aoα G→ B oβ G

and
ϕor id : Aoα,r → B oβ,r G.

Proof. We �rst show that Φ is a ∗-homomorphism. It is obvious that Φ is
linear. Let f, g ∈ Cc(G,A). For s ∈ G we then have

Φ(f)Φ(g)(s) =

∫
G

Φ(f)(r)βr(Φ(g)(r−1s)) dr =

∫
G
ϕ(f(r))βr(ϕ(g(r−1s))) dr

=

∫
G
ϕ(f(r)αr(g(r−1s))) dr = ϕ(

∫
G
f(r)αr(g(r−1s)) dr) = ϕ(fg(s)).

This gives Φ(f)Φ(g) = ϕ ◦ (fg) = Φ(fg). We further have

Φ(f)∗(s) = ∆(s−1)βs(Φ(f)(s−1)∗) = ∆(s−1)βs(ϕ(f(s−1)∗))

= ϕ(∆(s−1)αs(f(s−1)∗)) = ϕ(f∗(s)).

Thus, we have Φ(f)∗ = Φ(f∗) and Φ is a ∗-homomorphism.

We now show that Φ is bounded with respect to the universal norms. For
this let f ∈ Cc(G,A) and let (π, u) be a covariant representation of (B,G, β).
Then (π◦ϕ, u) is a covariant representation of (A,G, α) since for a ∈ A, s ∈ G
we have

π ◦ ϕ(αs(a)) = π(βs(ϕ(a))) = usπ(ϕ(a))u∗s.

This gives

‖π o u(Φ(f))‖ = ‖
∫
π(Φ(f)(s))us ds‖ = ‖

∫
G
π ◦ ϕ(f(s))us ds‖

= ‖(π ◦ ϕ)o u(f)‖ ≤ ‖f‖.

Since (π, u) was an arbitrary covariant representation we get ‖Φ(f)‖ ≤ ‖f‖.
Thus Φ extends to a ∗-homomorphism ϕo id : Aoα G→ B oβ G.

We now show that Φ is bounded with respect to the reduced norms. For
this let π be a representation of B on a Hilbert space H. Then we get a
covariant representation (π̃, V π) of (B,G, β). But π ◦ ϕ is a representation
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of A on H and we get a covariant representation (π̃ ◦ ϕ, V π◦ϕ) of (A,G, α)
on B(L2(G,H)). Since V π depends only on the underlying Hilbert space of
π we get V π◦ϕ = V π.

For a ∈ A, ξ ∈ Cc(G,H) and s ∈ G we have

π̃(ϕ(a))(ξ)(s) = π(β−1s (ϕ(a)))(ξ(s)) = π(ϕ(α−1s (a)))(ξ(s))

= π̃ ◦ ϕ(a)(ξ)(s).

This gives π̃ ◦ ϕ = π̃ ◦ ϕ. We get

Ind(π)(Φ(f)) = π̃ o V π(Φ(f)) = (π̃ ◦ ϕ)o V π(f)

= π̃ ◦ ϕo V π◦ϕ(f) = Ind(π ◦ ϕ)(f),

where the second equality follows from the calculation for the universal norm.
Thus, we have

‖ Ind(π)(Φ(f))‖ = ‖ Ind(π ◦ ϕ)(f)‖ ≤ ‖f‖r.

This π was arbitrary it follows that ‖Φ‖r ≤ ‖f‖r. Thus, Φ extends to a
∗-homomorphism ϕor id : Aoα,r G→ B oβ,r G.

De�nition 8. Let G be a locally compact group. A dynamical system
(A,G, α) is called a G-algebra. The G-algebras form a category with equiva-
riant homomorphisms as morphisms. The assignments

(A,G, α) 7→ Aoα G, ϕ 7→ ϕo id

and
(A,G, α) 7→ Aoα,r G, ϕ 7→ ϕor id

de�ne covariant functors from the category of G-algebras to the category of
C∗-algebras.

Proof. Let (A,G, α), (B,G, β) and (C,G, γ) be dynamical systems and ϕ :
A→ B, ψ : B → C equivariant. Then for a ∈ A and s ∈ G we have

ψ ◦ ϕ(αs(a)) = ψ(βs(ϕ(a)) = γs(ψ ◦ ϕ(a)),

so ψ ◦ ϕ is covariant as well. Since

idA(αs(a)) = αs(a) = αs(idA(a))

the identity is covariant as well. Thus, the G-algebras form a category.

For f ∈ Cc(G,A) one has

(ψ o id) ◦ (ϕo id)(f) = ψ o id(ϕ ◦ f) = ψ ◦ ϕ ◦ f = (ψ ◦ ϕ)o id(f).
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By density one thus has (ψ o id) ◦ (ϕo id) = (ψ ◦ ϕ)o id . We further have

idAo id(f) = idA ◦f = f = idAoαG(f).

We thus have idAo id = idAoαG. Thus, the crossed product de�nes a func-
tor. The same calculations show that the reduced crossed product de�nes a
functor as well.

Corollary 9. Let (A,G, α) and (B,G, β) be dynamical systems and let
ϕ : A→ B be an equivariant isomorphism. Then we have

Aoα G
∼=−→

ϕoid
B oβ G

and
Aoα,r G

∼=−→
ϕorid

B oβ,r G.

Proof. If ϕ is equivariant, then we have for b ∈ B and s ∈ G

ϕ−1(βs(b)) = ϕ−1(βs(ϕ(ϕ−1(a)))) = αs(ϕ
−1(a)),

so ϕ−1 is equivariant as well. By the functoriality properties we thus have
the equalities (ϕ o id)−1 = ϕ−1 o id and (ϕ or id)−1 = ϕ−1 or id, which
proves the claim.

Our next objective is to investigate the maps ϕo id and ϕor id. For this we
need a fact from set theoretic topology. The proof of the following theorem
is based on [Echb, Satz 8.9].

Theorem 10 (Partitions of unity). Let X be a locally compact space and
let K ⊂ X be compact. Let U1, ..., Un ⊂ X be open sets with K ⊂ ∪ni=1Ui.
Then there exist continuous functions ϕ1, ..., ϕn : X → [0, 1] such that

• supp(ϕi) is compact and contained in Ui for 1 ≤ i ≤ n

•
∑n

i=1 ϕi(x) = 1 for x ∈ K and
∑n

i=1 ϕ(x) ≤ 1 for all x ∈ X

Proof. We �rst show that we can �nd V1, ..., Vn open with Vi compact, Vi ⊂
Ui for 1 ≤ i ≤ n and K ⊂ ∪ni=1Vi. For this consider x ∈ K. Let Ux be
the intersection of all the Ui, 1 ≤ i ≤ n, that contain x. This is an open
neighborhood of x, and since X is locally compact there is an open set Vx
with Vx compact, Vx ⊂ Ux and x ∈ Vx. Then (Vx)x∈K is an open cover of the
compact set K, and we can �nd a �nite subcover Vx1 , ..., Vxl . For 1 ≤ i ≤ n
let Vi be the union over all the Vxj with xj ∈ Ui. Then Vi is an open set,
and since Vi is the union of �nitely many sets whose closures are contained
in Ui, we also have that Vi is compact with Vi ⊂ Ui. If we have x ∈ K then x
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is contained in some Vxj . Now xj is contained in some Ui. But then we have
x ∈ Vxj ⊂ Vi. Thus, we have K ⊂ ∪ni=1Vj .

By Urysohn's lemma we can now �nd functions ψi : X → [0, 1] with ψi|Vi = 1
and supp(ψi) ⊂ Ui. Then for all x ∈ ∪ni=1Vi we have

∑n
i=1 ψi(x) ≥ 1. Now

again by Urysohn's lemma there is a function g : X → [0, 1] with g|K = 1
and supp(g) ⊂ ∪ni=1Vi. Now set for 1 ≤ i ≤ n

ϕi : X → [0, 1];x 7→

{
g(x)ψi(x)∑n
k=1 ψk(x)

if x ∈ ∪nk=1Vk

0 if x 6∈ supp(g)
.

Since supp(g) ⊂ ∪nk=1Vk the function is de�ned for all x ∈ X. If we have
x ∈ (X \ supp(g)) ∩ ∪nk=1Vk it follows that

g(x)ψi(x)∑n
k=1 ψk(x)

= 0

and thus ϕi is well de�ned. Since X \ supp(g) and ∪nk=1Vk are open and
the restriction of ϕi to these open sets is continuous it follows that ϕi is
continuous as well. Since supp(ϕi) ⊂ supp(g) ⊂ ∪nk=1Vi the support of ϕi
is compact and since supp(ϕi) ⊂ supp(ψi) ⊂ Ui the �rst part of the claim
follows.

For x ∈ K we further have
∑n

i=1 ϕi(x) = g(x) = 1 and for x ∈ X arbitrary
we have

∑n
i=1 ϕi(x) ≤ 1. This proves the theorem.

Lemma 11. Let A,B be C∗-algebras and let ϕ : A → B be a surjective
∗-homomorphism. Let X be a locally compact space. Then the maps

C0(X,A)→ C0(X,B); f 7→ ϕ ◦ f

and
Cc(X,A)→ Cc(X,B); f 7→ ϕ ◦ f

are surjective.

Proof. The map C0(X,A) → C0(X,B); f 7→ ϕ ◦ f is a ∗-homomorphism
between C∗-algebras and hence has closed range. To prove the �rst claim it
thus su�ces to show that this homomorphism has dense range.

By Urysohn's lemma we have that Cc(X,B) ⊂ C0(X,B) is dense. We now
show that span{f⊗̃b|f ∈ Cc(X), b ∈ B} is dense in Cc(X,B) and thus in
C0(X,B).

For this let g ∈ Cc(X,B) and ε > 0. Let K = supp(g). Now since g is
continuous there exists for every x ∈ K an open neighborhood Vx of x so
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that for y ∈ Vx we have ‖g(x)− g(y)‖ < ε. Then (Vx)x∈K is an open cover of
K, and we can �nd a �nite subcover Vx1 , ..., Vxn . By Theorem 10 we can �nd
ϕ1, ..., ϕn : X → [0, 1] with supp(ϕi) ⊂ Vxi , supp(ϕi) compact,

∑n
i=1 ϕ ≤ 1

and for x ∈ K we have
∑n

i=1 ϕi(x) = 1. Now set f =
∑n

i=1 ϕi⊗̃g(xi).

Now we have for x ∈ X that g(x) =
∑n

i=1 ϕi(x)g(x). Furthermore, we have
for 1 ≤ i ≤ n

ϕi(x)‖g(xi)− g(x)‖ ≤ ϕi(x)ε.

We thus have for x ∈ X

‖f(x)− g(x)‖ = ‖
n∑
i=1

ϕi(x)(g(xi)− g(x))‖ ≤
n∑
i=1

ϕi(x)‖g(xi)− g(x)‖

≤
n∑
i=1

ϕi(x)ε = ε.

We thus have ‖f −g‖∞ ≤ ε. This proves the density. To prove the �rst claim
it thus su�ces to show that for f ∈ Cc(X) and b ∈ B we have that f⊗̃b
is in the range of the above map. Since ϕ is surjective there is a ∈ A with
b = ϕ(a). Then f⊗̃a ∈ Cc(G,A) and we have for x ∈ X

ϕ ◦ f⊗̃a(x) = ϕ(f(x)a) = f(x)ϕ(a) = f(x)b = f⊗̃b(x).

This proves the �rst claim.

To prove the second claim let g ∈ Cc(X,B). Let K = supp(g). Let U be an
open set with compact closure and K ⊂ U . Then g|U ∈ C0(U,B). By the
�rst part of the proof there is f0 ∈ C0(U,A) so that ϕ ◦ f0 = g|U . Then let

f =

{
f0(x) if x ∈ U
0 else

.

Then f ∈ Cc(X,A) and ϕ ◦ f = g.

Theorem 12. Let (A,G, α) and (B,G, β) be dynamical systems and let
ϕ : A→ B be equivariant.

(1) If ϕ is injective, then so is ϕor id

(2) If ϕ is surjective, then so are ϕor id and ϕo id

(3) If ϕ(A) ⊂ B is an ideal, then ϕ or id(A oα,r G) ⊂ B oβ,r G and
ϕo id(Aoα G) ⊂ B oβ G are ideals as well.

Proof. (1): Let π : B → B(H) be a faithful representation of B. Then
Ind(π) : B oβ,r G → B(L2(G,H)) is faithful as well. Furthermore, π ◦ ϕ is

11
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a faithful representation of A, so that Ind(π ◦ ϕ) : Aoα,r G→ B(L2(G,H))
is also faithful. The calculation in Theorem 7 shows that

Ind(π)(ϕor id(f)) = Ind(π)(ϕ ◦ f) = Ind(π ◦ ϕ)(f)

which gives

‖ϕor id(f)‖r = ‖ Ind(π)(ϕor id(f))‖ = ‖ Ind(π ◦ ϕ)(f)‖ = ‖f‖r.

Thus ϕ or id is isometric on the dense subspace Cc(G,A) and hence is an
isometric map.

(2): Let ϕ be surjective. It su�ces to show that ϕor id and ϕo id have dense
range. But if g ∈ Cc(G,B), then by Theorem 11 there is a f ∈ Cc(G,A) with

g = ϕ ◦ f = ϕor id(f) = ϕo id(f).

(3): Since ϕ o id(A oα G) = ϕo id(Cc(G,A))
‖·‖

and ϕ or id(A oα,r G) =

ϕor id(Cc(G,A))
‖·‖r

, it su�ces to show that for f ∈ Cc(G,A) and g ∈
Cc(G,B) there are h1, h2 ∈ Cc(G,A) with g(ϕ ◦ f) = ϕ ◦ h1 and (ϕ ◦ f)g =
ϕ ◦ h2.

For s ∈ G we have

g(ϕ◦f)(s) =

∫
G
g(r)βr(ϕ(f(r−1s))) dr =

∫
G
g(r)ϕ(αr(f(r−1s)))︸ ︷︷ ︸

∈ϕ(A)

dr ∈ ϕ(A).

Thus we have g(ϕ ◦ f) ∈ Cc(G,ϕ(A)). But since ϕ : A→ ϕ(A) is surjective
there exists h1 ∈ Cc(G,A) with g(ϕ ◦ f) = ϕ ◦ h1 by Theorem 11.

Similarly, we have

(ϕ ◦ f)g(s) =

∫
G
ϕ(f(r))βr(g(r−1s)) dr ∈ ϕ(A).

This gives (ϕ ◦ f)g ∈ Cc(G,ϕ(A)), so again there is h2 ∈ Cc(G,A) with
(ϕ ◦ f)g = ϕ ◦ h2. This proves the claim.

Now let (A,G, α) be a dynamical system and let I ⊂ A be an ideal. We call
I α-invariant if for every a ∈ I and s ∈ G we have αs(I) ⊂ I. It then follows
that αs(I) = I, since for a ∈ I we have a = αs(αs−1(a)︸ ︷︷ ︸

∈I

) ∈ αs(I). It follows

that αs|I ∈ Aut(I) and we get a dynamical system (I,G, α) by restricting
the automorphisms from the action α. If I is an α-invariant ideal we can
further set for s ∈ G

αIs : A�I −→
A�I; a+ I 7→ αs(a) + I.

12
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This is well de�ned since if a, b ∈ A with a − b ∈ I, we have αs(a) −
αs(b) = αs(a − b) ∈ I. Furthermore, αIs is a ∗-homomorphism with inverse

αIs−1 , so α
I
s ∈ Aut(A�I). The map s 7→ αIs is a strongly continuous group

homomorphism, so we get a dynamical system (A�I,G, α
I).

The maps ι : I → A; a 7→ a and q : A→ A�I; a 7→ a+ I are equivariant since
for s ∈ G, a ∈ I and b ∈ A we have

ι(αs(a)) = αs(a) = αs(ι(a))

and
q(αs(b)) = αs(b) + I = αIs(a+ I) = αIs(q(a)).

Thus we get maps

I oα G
ιoid−→ Aoα G

qoid−→ A�I oαI G

and
I oα,r G

ιorid−→ Aoα,r G
qorid−→ A�I oαI ,r G.

We now want to investigate whether these maps give short exact sequences
of C∗-algebras. For this we need a lemma.

Lemma 13. Let G be a locally compact group. Then there is an bounded
self-adjoint approximate unit for C∗(G) in Cc(G).

Proof. The set of neighborhoods of the neutral element e of G becomes a
directed set if we set U ≤ V ⇐⇒ V ⊂ U .

If V is a neighborhood of the neutral element there is a symmetric neigh-
borhood U of the identity with U ⊂ V . By Urysohn's lemma there is a
nonnegative function f ∈ Cc(G) with f(e) = 1 and supp(f) ⊂ U . By scaling
if necessary we can assume that

∫
G f(s) ds = 1. Set uV = f+f∗

2 . This gives a
net (uV )V in Cc(G) with uV nonnegative, integral one, supp(uV ) ⊂ V and
u∗V = uV . Since (uV )V is bounded in the L1-norm the net is also bounded
in the universal norm on C∗(G) by 1.

Now let g ∈ Cc(G) be arbitrary. We show that uV ∗ g converges to g in the
inductive limit topology.

Let ε > 0. Now g is uniformly continuous and thus there exists a neigh-
borhood W of the neutral element so that for s, g ∈ G with sg−1 ∈ W
we have |g(s) − g(r)| < ε. We can assume W to be compact. Now for all
neighborhoods of the identity V ⊂W we have for s 6∈W supp(g)

uV ∗ g(s) =

∫
G
uV (r)g(r−1s) dr =

∫
V
uV (r) g(r−1s)︸ ︷︷ ︸

=0

dr = 0.

13
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We thus have supp(uV ∗ g) ⊂ W supp(g). Thus, the support of uV ∗ g is
eventually contained in the compact set W supp(g). We further have for
s ∈ G

|uV ∗ g(s)− g(s)| = |
∫
G
uV (r)g(r−1s)− g(s) dr| ≤

∫
G
uV (r)|g(r−1s)− g(s)| dr

=

∫
W
uV (r)|g(r−1s)− g(s)| dr ≤ ε

∫
W
uV (r) dr = ε.

Thus, for all neighborhoods V of the identity with V ≥ W we have that
‖uV ∗ g − g‖∞ ≤ ε. Thus, (uV ∗ g)V converges to g in the inductive limit
topology and then also in the norm on C∗(G).

If x ∈ C∗(G) and ε > 0 there is an g ∈ Cc(G) with ‖x− g‖ ≤ ε
3 and we get

‖uV x− x‖ ≤ ‖uV x− uV g‖︸ ︷︷ ︸
≤‖x−g‖

+ ‖uV g − g‖︸ ︷︷ ︸
→0

+‖g − x‖ ≤ ε

eventually. Thus, we have uV x→ x. Since (uV )V is self-adjoint we also have
xuV → x. So (uV )V is an approximate unit for C∗(G).

Theorem 14. Let (A,G, α) be a dynamical system and let I ⊂ A be an

α-invariant ideal. Let ι : I → A be the inclusion and let q : A→ A�I be the
quotient map. Then

0 −→ I oα G
ιoid−→ Aoα G

qoid−→ A�I oαI G −→ 0

is a short exact sequence of C∗-algebras.

Proof. By Theorem 12(2) the map q o id is surjective. We now show that
ι o id is injective. To see this it su�ces to show that ι o id is isometric
on Cc(G, I). Let f ∈ Cc(G, I). Since ι o id is continuous we know that
‖ι o id(f)‖A = ‖f‖A ≤ ‖f‖I . Now let (π, u) be a nondegenerate covariant
representation of (I,G, α) on a Hilbert space H. Then π can be uniquely
extended to a representation π : A→ B(H) so that π|I = π. Then (π, u) is a
covariant representation of (A,G, α), since for a ∈ A, s ∈ G and b ∈ I, ξ ∈ H
we have

π(αs(a))π(b)ξ = π(αs(a)b)ξ = π(αs(aαs−1(b)))ξ = usπ(aαs−1(b))u∗sξ

= usπ(a)us−1π(b)u∗s−1u
∗
sξ = usπ(a)u∗sπ(b)ξ.

Since π is nondegenerate this implies that π(αs(a)) = usπ(a)u∗s, which shows
that (π, u) is covariant. This gives

‖π o u(f)‖ = ‖
∫
G
π(f(s))us ds‖ = ‖

∫
G
π(f(s))us ds‖ = ‖π o u(f)‖ ≤ ‖f‖A.

14
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Since (π, u) was an arbitrary covariant representation of (I,G, α) it follows
that ‖f‖I ≤ ‖f‖A. Thus, we get ‖ιo id(f)‖A = ‖f‖A = ‖f‖I , which shows
that ιo id is isometric on Cc(G, I) and is thus an injective map.

It remains to show that ker(q o id) = im(ιo id). If f ∈ Cc(G, I) we have

q o id(ιo id(f)) = q ◦ ι ◦ f = 0.

By density this gives im(ιo id) ⊂ ker(q o id).

By Theorem 12(3) it follows that im(ι o id) ⊂ A oα G is an ideal. Thus,
there is a nondegenerate representation ρ : AoαG→ B(H) so that ker(ρ) =
im(ιo id). But then there is a nondegenerate covariant representation (π, u)
of (A,G, α) on H so that π o u = ρ. Let J = ker(π). Then we have I ⊂ J .
Assume otherwise. Then there is a a ∈ I with π(a) 6= 0. Let (fi)i be an
approximate unit for C∗(G) ∈ Cc(G). Then (fi⊗̃a)i is a net in Cc(G, I) and
we have

π o u(fi⊗̃a) =

∫
G
π(fi(s)a)us ds = π(a)

∫
G
fi(s)us ds = π(a)u(fi).

Now the ∗-representation u : C∗(G) → B(H) is nondegenerate. Thus, we
have u(fi) → idH in the strong operator topology. Now let ξ ∈ H with
π(a)ξ 6= 0. We then have

0 6= π(a)ξ = lim
i
π(a)u(fi)ξ = lim

i
π o u(fi⊗̃a)ξ

Thus there exists i0 with πou(fi0⊗̃a) 6= 0, which gives fi0⊗̃a 6∈ ker(πou) =
ker(ρ) = im(ι o id). But fi0⊗̃a = ι o id(fi0⊗̃a) ∈ im(ι o id), which gives a
contradiction. Thus we have I ⊂ J .

Since I ⊂ J = ker(π) there is a ∗-homomorphism π′ : A�I → B(H) so that

A B(H)

A�I

π

q

π′

commutes. But then (π′, u) is a covariant representation for (A�I,G, α
I),

since for a+ I ∈ A�I and s ∈ G we have

π′(αIs(a+ I)) = π′(αs(a) + I) = π(αs(a)) = usπ(a)u∗s = usπ
′(a+ I)u∗s.

For f ∈ Cc(G,A) we then have

π′ o u(q o id(f)) = π′ o (q ◦ f) =

∫
G
π′(q ◦ f(s))us ds

=

∫
G
π(f(s))us ds = π o u(f).

15
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We thus have (π′ o u) ◦ (q o id) = π o u. But this gives

ker(q o id) ⊂ ker(π o u) = im(ιo id).

This shows im(ι o id) = ker(q o id). We thus have exactness in the middle
term and have proven the exactness of the sequence.

Given Theorem 14 it is natural to ask whether a similar statement also holds
for the reduced crossed product. We have the following.

Theorem 15. Let (A,G, α) be a dynamical system and I ⊂ A an α-invariant

ideal. Let ι : I → A be the inclusion and let q : A → A�I be the quotient
map. Then we get a sequence

0 −→ I oα,r G
ιorid−→ Aoα,r G

qorid−→ A�I oαI ,r G −→ 0

where ι or id is injective, q or id is surjective, and we have the inclusion
im(ιor id) ⊂ ker(q or id).

Proof. The injectivity of ιor id follows from Theorem 12(1), the surjectivity
of qor id follows from Theorem 12(2) and the inclusion follows exactly as in
the proof of Theorem 14.

Remark 16. It can be shown that there is a C∗-dynamical system (A,G, α)
with an α-invariant ideal I ⊂ A so that the sequence of Theorem 15 is not
exact. A locally compact group so that this sequence is always exact is called
an exact group. A concrete example of a non exact group can be found in
[Osa18].

If G is an amenable group we have AoαG ∼= Aoα,rG by Theorem 4 and the
induced maps from an equivariant homomorphism also agree. By Theorem
14 is follows that every amenable group is exact.

Our �nal objective for this talk is to show that the crossed product of a
nuclear C∗-algebra with an amenable group is again nuclear. For this we
need to consider tensor products of dynamical systems.

Remark 17. Let (A,G, α) and (B,G, β) be dynamical systems.If ϕ ∈
Aut(A) and ψ ∈ Aut(B) we get automorphisms

ϕ⊗max ψ : A⊗max B → A⊗max B

and
ϕ⊗min ψ : A⊗min B → A⊗min B

de�ned by a⊗ b 7→ ϕ(a)⊗ ψ(b) with (ϕ⊗ ψ)−1 = ϕ−1 ⊗ ψ−1. Then we get
strongly continuous group homomorphisms

α⊗max β : G→ Aut(A⊗max B); s 7→ αs ⊗max βs
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and
α⊗min β : G→ Aut(A⊗min B); s 7→ αs ⊗min βs.

This gives C∗-dynamical systems (A ⊗max B,G, α ⊗max β) and (A ⊗min

B,G, α ⊗min β). If it is clear whether we are talking about the maximal or
minimal tensor product or if it does not make a di�erence we will sometimes
drop the subscripts from the notation.

The key step in proving the nuclearity of the crossed product of a nuclear
C∗-algebra with an amenable group is calculating two particular crossed
products involving tensor products. We give a short reminder on the needed
properties of maximal and minimal tensor products. Proofs of these facts
can be found in [RW98, Appendix B].

Let A,B be C∗-algebras. We can describe the norm on the minimal tensor
product in the following way. If ρA : A→ B(HA) and ρB : B → B(HB) are
faithful representations of A and B respectively, we get a faithful represen-
tation

ρA ⊗ ρB : A⊗min B → B(HA ⊗HB)

given by ρA ⊗ ρB(a⊗ b)(ξA ⊗ ξB) = ρA(a)ξA ⊗ ρB(b)ξB.

The maximal crossed product on the other hand enjoys the following univer-
sal property.

Theorem 18. Let A,B be C∗-algebras.

(1) If πA : A→ B(H) and πB : B → B(H) are nondegenerate representa-
tions with commuting ranges, there exists a nondegenerate representa-
tion πA ⊗max πB : A⊗max B → B(H) so that

πA ⊗max πB(a⊗ b) = πA(a)πB(b) = πB(b)πA(a).

(2) If π : A⊗maxB → B(H) is a nondegenerate representation, there exists
nondegenerate representations πA : A → B(H) and πB : B → B(H)
with commuting ranges so that

π(a⊗ b) = πA(a)πB(b) = πB(b)πA(a).

If B is an arbitrary C∗-algebra and G is a locally compact group we always
have a trivial dynamical system id : G→ Aut(B); s 7→ idB.

Theorem 19. Let (A,G, α) be a dynamical system and let B be a C∗-
algebra. Then there is a ∗-homomorphism

Φ : Cc(G,A)�B → Cc(G,A�B)

f ⊗ b 7→ (s 7→ f(s)⊗ b).

17
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This map extends to isomorphisms

(Aoα G)⊗max B → (A⊗max B)oα⊗id G

and
(Aoα,r G)⊗min B → (A⊗min B)oα⊗id,r G.

Especially for f ∈ Cc(G), a ∈ A, b ∈ B we have (f⊗̃a)⊗ b 7→ f⊗̃(a⊗ b).

Remark 20. When writing Cc(G,A�B) we take either the minimal norm
or the maximal norm on A�B. Thus, we take Cc(G,A�B) as a subspace
of either Cc(G,A⊗min B) or Cc(G,A⊗max B).

The following argument is an elaboration of [Echa, Lemma 4.1].

Proof. We �rst show that Φ is a ∗-homomorphism. Since the map (f, b) 7→
(s 7→ f(s) ⊗ b) is a bilinear map of Cc(G,A) × B to Cc(G,A � B) because
every C∗-norm on A�B is subcross, it follows that Φ is a well de�ned linear
map.

If f, g ∈ Cc(G,A) and b, c ∈ B we have for s ∈ G

Φ(f ⊗ b)Φ(g ⊗ c)(s) =

∫
G

Φ(f ⊗ b)(r)(α⊗ id)r(Φ(g ⊗ c)(r−1s)) dr

=

∫
G
f(r)⊗ b · αr(g(r−1s))⊗ c dr =

∫
G
f(r)αr(g(r−1s))⊗ bc dr

=

∫
G
f(r)αr(g(r−1s)) dr ⊗ bc = fg(s)⊗ bc = Φ(fg ⊗ bc)(s).

This gives Φ(f ⊗ b)Φ(g ⊗ c) = Φ((f ⊗ b)(g ⊗ c)). Since every element of
Cc(G,A)�B is a �nite linear combination of elements of the form f⊗b with
f ∈ Cc(G,A), b ∈ B, this shows that Φ is multiplicative on Cc(G,A)�B.

We further have

Φ(f ⊗ b)∗(s) = ∆(s−1)(α⊗ id)s(Φ(f ⊗ b)(s−1)∗)
= ∆(s−1)αs ⊗ idB(f(s−1)∗ ⊗ b∗) = (∆(s−1)αs(f(s−1)∗))⊗ b∗

= f∗(s)⊗ b∗ = Φ(f∗ ⊗ b∗)(s) = Φ((f ⊗ b)∗)(s).

This shows Φ(f ⊗ b)∗ = Φ((f ⊗ b)∗). It again follows that for every x ∈
Cc(G,A)�B we have Φ(x)∗ = Φ(x∗). This shows that Φ is a ∗-homomorphism.

We show that Φ is isometric with respect to the norm of (A⊗maxB)oα⊗idG
on Cc(G,A�B) and the norm of (Aoα G)⊗max B on Cc(G,A)�B.

Let x ∈ Cc(G,A) � B. Let (π, u) be an arbitrary nondegenerate covariant
representation of (A⊗maxB,G, α⊗id) on a Hilbert space H. By the universal
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property of the maximal tensor product there are nondegenerate represen-
tation πA, πB of A and B so that π(a⊗ b) = πA(a)πB(b) = πB(b)πA(a).

We now proof that (πA, u) is a covariant representation of (A,G, α). Firstly
for c ∈ A, d ∈ B we have

πA(a)π(c⊗ d) = πA(a)πA(c)πB(d) = πA(ac)πB(d) = π(ac⊗ d)

and similarly πB(b)π(c⊗ d) = π(c⊗ bd). This gives for s ∈ G

usπA(a)π(c⊗ d) = usπ(ac⊗ d) = π(αs(ac)⊗ d)us

= πA(αs(a))π(αs(c)⊗ d)us = πA(αs(a))usπ(c⊗ d).

Since π is nondegenerate this gives usπA(a)u∗s = πA(αs(a)). Thus, (πA, u) is
covariant and thus gives a representation πA o u : Aoα G→ B(H).

We now show that πA o u and πB have commuting ranges. For this, let
a ∈ A, b ∈ B, f ∈ Cc(G) and c ∈ A, d ∈ B. We then have

πA o u(f⊗̃a) =

∫
G
πA(f(s)a)us ds = πA(a)

∫
G
f(s)us ds = πA(a)u(f).

and thus

πA o u(f⊗̃a)πB(b)π(c⊗ d) = πA(a)

∫
G
f(s)usπ(c⊗ bd) ds

= πA(a)

∫
G
f(s)π(αs(c)⊗ bd)us ds

= πA(a)πB(b)

∫
G
f(s)π(αs(c)⊗ d)us ds

= πB(b)πA(a)

∫
G
f(s)usπ(c⊗ d) ds = πB(b)πA o u(f⊗̃a)π(c⊗ d).

By the nondegenerary of π it again follows that

πA o u(f⊗̃a)πB(b) = πB(b)πA o u(f⊗̃a).

Since span{f⊗̃a|f ∈ Cc(G), a ∈ A} is dense in AoαG it follows that πAou
and πB have commuting ranges. Thus, we get a representation

(πA o u)⊗max πB : (Aoα G)⊗max B → B(H).

If f ∈ Cc(G,A) and b ∈ B we now have

π o u(Φ(f ⊗ b)) =

∫
G
π(f(s)⊗ b)us ds = πB(b)

∫
G
πA(f(s))us ds

= πB(b)πA o u(f) = (πA o u)⊗max πB(f ⊗ b).
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Thus we get for x ∈ Cc(G,A) � B that π o u(Φ(x)) = (πA o u) ⊗max

πB(x). This gives ‖π o u(Φ(x))‖ ≤ ‖x‖max. Since (π, u) was an arbitrary
nondegenerate covariant representation we get ‖Φ(x)‖ ≤ ‖x‖.

Now let π : (AoαG)⊗maxB → B(H) be a faithful nondegenerate represen-
tation. By the universal property of the maximal tensor product there are
nondegenerate representations πo of AoαG on H and πB of B on H so that
for z ∈ A oα G and b ∈ B we have π(z ⊗ b) = πo(z)πB(b) = πB(b)πo(z).
Then by the construction of the crossed product there is a nondegenerate
covariant representation (πA, u) of (A,G, α) so that πA o u = πo.

Now πB and πo are nondegenerate representations. Thus, they extend uni-
quely to representations πB and πo of the associated multiplier algebras. We
show that the extended representations still have commuting ranges.

For this let v ∈M(AoG), y ∈M(B). Then we have for z ∈ Aoα G, b ∈ B
and η ∈ H

πo(v)πB(y)πB(b)πo(z)η = πo(v)πB(yb)πo(z)η = πo(v))πo(z)πB(yb)η

= πo(vz)πB(yb)η = πB(yb)πo(vz)η = πB(y)πB(b)πo(vz)η

= πB(y)πo(vz)πB(b)η = πB(y)πo(v)πB(b)πo(z)η.

Since πo and πB are nondegenerate it follows that πo and πB have commu-
ting ranges.

Now let iA : A → M(A oα G) and iG : G → M(A oα G) be the canonical
maps. We know that πA = πo ◦ iA and u = πo ◦ iG. This shows that πB
and πA have commuting ranges. Thus, we get a representation πA⊗max πB :
A⊗maxB → B(H) given by πA(a)πB(b) = πA⊗max πB(a⊗ b). It also follows
that πB and u have commuting ranges.

We now show that (πA ⊗max πB, u) is a covariant representation of (A⊗max

B,G, α⊗ id). For a ∈ A, b ∈ B, s ∈ G we have

πA ⊗max πB((α⊗ id)s(a⊗ b)) = πA(αs(a))πB(b) = usπA(a)u∗sπB(b)

= usπA ⊗max πB(a⊗ b)u∗s.

This shows the covariance. Thus, we get a representation

(πA ⊗max πB)o u : (A⊗max B)oα⊗id G→ B(H).

For f ∈ Cc(G,A) and b ∈ B we then have

(πA ⊗max πB)o u(Φ(f ⊗ b)) =

∫
G
πA ⊗max πB(f(s)⊗ b)us ds

=

∫
G
πA(f(s))us ds πB(b) = πA o u(f)πB(b) = πo(f)πB(b) = π(f ⊗ b).
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Thus we have for x ∈ Cc(G,A) � B that (πA ⊗max πB) o u(Φ(x)) = π(x).
This gives

‖x‖ = ‖π(x)‖ = ‖(πA ⊗max πB)o u(Φ(x))‖ ≤ ‖Φ(x)‖.

This gives ‖Φ(x)‖ = ‖x‖. Thus, Φ : Cc(G,A) � B → Cc(G,A � B) is
isometric. Since Cc(G,A) � B ⊂ (A oα G) ⊗max B is dense it follows that
Φ extends to an isometric ∗-homomorphism (A oα G) ⊗max B → (A ⊗max

B) oα⊗id G. Since for f ∈ Cc(G), a ∈ A, b ∈ B we have that f⊗̃(a ⊗ b) =
Φ((f⊗̃a)⊗ b) is in its image this homomorphism has dense range and is thus
surjective.

Thus, we get an isomorphism

(Aoα G)⊗max B
∼=−→ (A⊗max B)oα⊗id G

that maps f ⊗ b to (s 7→ f(s)⊗ b) for f ∈ Cc(G,A) and b ∈ B.

We now show that Φ is isometric if we consider the norm from (A ⊗min

B) oα⊗id,r G on Cc(G,A � B) and the norm from (A oα,r G) ⊗min B on
Cc(G,A)�B.

To prove this we �rst need to show that for two Hilbert spaces H,K the map

U : Cc(G,H)�K → Cc(G,H ⊗K); f ⊗ ξ 7→ (s 7→ f(s)⊗ ξ)

extends to a unitary map L2(G,H)⊗K → L2(G,H ⊗K).

Since (f, ξ) 7→ (s 7→ f(s) ⊗ ξ) is a bilinear map from Cc(G,H) × K to
Cc(G,H ⊗K) the map U is well de�ned and linear. If x =

∑n
i=1 fi⊗ ξi, fi ∈

Cc(G,H), xi ∈ K, we have

‖U(x)‖22 =

∫
G
〈U(x)(s), U(x)(s)〉 ds =

n∑
i,j=1

∫
G
〈U(fi ⊗ ξi)(s), U(fj ⊗ ξj)(s)〉 ds

=
n∑

i,j=1

∫
G
〈fi(s), fj(s)〉〈ξi, ξj〉 ds =

n∑
i,j=1

〈fi, fj〉〈ξi, ξj〉

=

n∑
i,j=1

〈fi ⊗ ξi, fj ⊗ ξj〉 = ‖x‖2.

Thus U is an isometric linear map on Cc(G,H)�K. Since Cc(G,H)�K ⊂
L2(G,H)⊗K is dense it follows that U extends to an isometric linear map
L2(G,H) ⊗K → L2(G,H ⊗K). Since every element of the form f⊗̃(ξH ⊗
ξK) = U((f⊗̃ξH)⊗ ξK), ξH ∈ H, ξK ∈ K, is in the range of U it follows that
U has dense range and is thus surjective. We thus get a unitary map

U : L2(G,H)⊗K
∼=−→ L2(G,H ⊗K)
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so that for f ∈ Cc(G,H), ξ ∈ K we have U(f ⊗ ξ) = (s 7→ f(s)⊗ ξ).

Now let ρA : A → B(HA) and ρB : B → B(HB) be faithful nondegenerate
representations. Then ρA⊗ρB : A⊗minB → B(HA⊗HB) is faithful as well.
Thus,

Ind(ρA ⊗ ρB) : (A⊗min B)oα⊗id,r G→ B(L2(G,HA ⊗HB))

is faithful as well.

On the other hand Ind(ρA) : A oα,r G → B(L2(G,H)) is also faithful. But
then

Ind(ρA)⊗ ρB : (Aoα,r G)⊗min B → B(L2(G,H)⊗K)

is faithful as well. We now show that for x ∈ Cc(G,A)�B we have

U∗ Ind(ρA ⊗ ρB)(Φ(x))U = Ind(ρA)⊗ ρB(x).

For this let f ∈ Cc(G,A), b ∈ B. Then for g ∈ Cc(G), ξA ∈ HA, ξB ∈ HB

and r ∈ G we have

Ind(ρA ⊗ ρB)(Φ(f ⊗ b))(U((g⊗̃ξA)⊗ ξB))(r)

= ˜ρA ⊗ ρB o V ρA⊗ρB (Φ(f ⊗ b))(g⊗̃(ξA ⊗ ξB))(r)

=

∫
G

˜ρA ⊗ ρB(f(s)⊗ b)V ρA⊗ρB
s (g⊗̃(ξA ⊗ ξB))(r) ds

=

∫
G
ρA ⊗ ρB(αr ⊗ id(f(s)⊗ b))(V ρA⊗ρB

s (g⊗̃(ξA ⊗ ξB))(r)) ds

=

∫
G
ρA ⊗ ρB(αr(f(s))⊗ b)(g(s−1r)ξA ⊗ ξB) ds

=

∫
G
ρA(αr(f(s)))g(s−1r)ξA ⊗ ρB(b)ξB ds

=

∫
G
ρA(αr(f(s)))g(s−1r)ξA ds⊗ ρB(b)ξB

=

∫
G
ρA(αr(f(s)))(V ρA

s (g⊗̃ξA)(r)) ds⊗ ρB(b)ξB

=

∫
G
ρ̃A(f(s))V ρA

s (g⊗̃ξA)(r) ds⊗ ρB(b)ξB

= ρ̃A o V ρA(f)(g⊗̃ξA)(r)⊗ ρB(b)ξB

= Ind(ρA)(f)(g⊗̃ξA)(r)⊗ ρB(b)ξB

= U(Ind(ρA)(f)g⊗̃ξA ⊗ ρB(b)ξB)(r)

= U(Ind(ρA)⊗ ρB(f ⊗ b)((g⊗̃ξA)⊗ ξB))(r).

Thus we have proven

U∗ Ind(ρA⊗ρB)(Φ(f⊗b))U((g⊗̃ξA)⊗ξB) = Ind(ρA)⊗ρB(f⊗b)((g⊗̃ξA)⊗ξB).
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By density this gives

U∗ Ind(ρA ⊗ ρB)(Φ(f ⊗ b))U = Ind(ρA)⊗ ρB(f ⊗ b).

By linearity we thus get for all x ∈ Cc(G,A)�B

U∗ Ind(ρA ⊗ ρB)(Φ(x))U = Ind(ρA)⊗ ρB(x).

This gives

‖Φ(x)‖r = ‖ Ind(ρA ⊗ ρB)(Φ(x))‖ = ‖U Ind(ρA ⊗ ρB)(Φ(x))U∗‖
= ‖ Ind(ρA)⊗ ρB(x)‖ = ‖x‖min.

Thus Φ is isometric in the speci�ed norms. Since Cc(G,A) � B ⊂ (A oα,r
G) ⊗min B is a dense linear subspace we get an isometric extension of Φ to
a ∗-homomorphism (Aoα,r G)⊗min B → (A⊗min B)oα⊗id,r G. Since again
all elements of the form f⊗̃(a⊗ b), f ∈ Cc(G), a ∈ A, b ∈ B are in its range
this extension is also surjective since it has dense range.

Thus, we get an isomorphism

(Aoα,r G)⊗min B
∼=−→ (A⊗min B)oα⊗id,r G

which for f ∈ Cc(G,A), b ∈ B maps f ⊗ b to (s 7→ f(s)⊗ b).

Remark 21. Let (A,G, α) and (B,G, β) be dynamical systems. Then we
have A ⊗max B ∼= B ⊗max A and A ⊗min B ∼= B ⊗min A via a ⊗ b 7→ b ⊗ a.
Let ϕmax and ϕmin be these isomorphisms. These are equivariant since for
a ∈ A, b ∈ B, s ∈ G we have

ϕmax(αs ⊗ βs(a⊗ b)) = ϕmax(αs(a)⊗ βs(b)) = βs(b)⊗ αs(a)

= βs ⊗ αs(ϕmax(a⊗ b)).

By Corollary 9 we get isomorphisms

ϕmax o id : (A⊗max B)oα⊗β G
∼=−→ (B ⊗max A)oβ⊗α G.

and

ϕmax or id : (A⊗max B)oα⊗β,r G
∼=−→ (B ⊗max A)oβ⊗α,r G.

Similarly we get isomorphisms

ϕmin o id : (A⊗min B)oα⊗β G
∼=−→ (B ⊗min A)oβ⊗α G.

and

ϕmin or id : (A⊗min B)oα⊗β,r G
∼=−→ (B ⊗min A)oβ⊗α,r G.
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Especially for the trivial dynamical system (A,G, id) Theorem 19 gives

A⊗max (B oβ G) (B oβ G)⊗max A

(A⊗max B)oid⊗β G (B ⊗max A)oβ⊗id G

∼=

∼=
a⊗(f⊗̃b)7→

f⊗̃(a⊗b)
∼=

(f⊗̃b)⊗a7→

f⊗̃(b⊗a)∼=

and

A⊗min (B oβ,r G) (B oβ,r G)⊗min A

(A⊗min B)oid⊗β,r G (B ⊗min A)oβ⊗id,r G

∼=

∼=
a⊗(f⊗̃b)7→

f⊗̃(a⊗b)
∼=

(f⊗̃b)⊗a7→

f⊗̃(b⊗a)∼=

This enables us to calculate the crossed product of the trivial dynamical
system (A,G, id). We remind that for a locally compact group G we have
Coid G = C∗(G) and Coid,r G = C∗r (G).

Corollary 22. Let A be a C∗-algebra and let G be a locally compact group.
Then we have

(1) Aoid G ∼= A⊗max C
∗(G)

(2) Aoid,r G ∼= A⊗min C
∗
r (G)

These isomorphisms are given by f⊗̃a 7→ a⊗ f for f ∈ Cc(G), a ∈ A.

Proof. By Theorem 19 and Corollary 21 we have

Aoid G ∼= (Aoid G)⊗max C ∼= (A⊗max C)oid⊗ id G
∼= A⊗max (Coid G) = A⊗max C

∗(G)

and

Aoid,r G ∼= (Aoid,r G)⊗min C ∼= (A⊗min C)oid⊗ id,r G
∼= A⊗min (Coid,r G) = A⊗min C

∗
r (G).

Applying the individual isomorphisms given above shows that f⊗̃a maps to
a⊗ f for f ∈ Cc(G) and a ∈ A.

Theorem 23. Let (A,G, α) be a dynamical system with A nuclear and G
amenable. Then Aoα G is nuclear.

Proof. Let B be a C∗-algebra.

Since A is nuclear the natural map A⊗maxB → A⊗minB is an isomorphism.
It is trivial that this isomorphism is equivariant. Thus, we get an isomorphism

(A⊗max B)oα⊗id G
∼=−→ (A⊗min B)oα⊗id G
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such that for every f ∈ Cc(G), a ∈ A, b ∈ B the element f⊗̃(a⊗b) is mapped
to f⊗̃(a⊗ b).

Then by Theorem 19 and Theorem 4 we have a diagram

(Aoα G)⊗max B (A⊗max B)oα⊗id G

(A⊗min B)oα⊗id G

(A⊗min B)oα⊗id,r G

(Aoα G)⊗min B (Aoα,r G)⊗min B

∼=ϕ

∼=
Thm. 17

∼= A nuclear

∼= G amenable

∼= Thm. 17

∼=
G amenable

Thus we get an isometric ∗-isomorphism ϕ : (A oα G) ⊗max B → (A oα
G) ⊗min B. One easily checks that for f ∈ Cc(G), a ∈ A, b ∈ B we have
ϕ((f⊗̃a)⊗ b) = (f⊗̃a)⊗ b. By density this gives that ϕ|(AoαG)�B = id. But
since ϕ is isometric this gives that the maximal norm and the minimal norm
on (Aoα G)�B agree.

Since B was arbitrary it follows that Aoα G is nuclear.
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