INDUCED ALGEBRAS

1. MAIN THEOREM

Assumption: All topological spaces are locally compact Hausdorff and all groups are locally compact unimodular, unless specified otherwise.

Definition 1.1. Let H act freely and properly on a space P, and let α be an action of H on a C^* -algebra A. The *induced* C^* -algebra is defined by

 $Ind_{H}^{P}(A) = \{ f \in C_{b}(P, A) : f(h \cdot p) = \alpha_{h}(f(p)), \text{ and } pH \mapsto ||f(p)|| \text{ is in } C_{0}(P/H) \}.$

<u>Comments</u>: The map $Hp \mapsto ||f(p)||$ is well-defined. One can check that this is a closed *-subalgebra of $C_b(P, A)$, and therefore it is a C^* -algebra.

Remark 1.2. To get the ordinary induced C^* -algebra, we take P = G and H to be a subgroup of G acting by right translation. Then

$$Ind_{H}^{G}(A) = \{ f \in C_{b}(G, A) : f(gh) = \alpha_{h}^{-1}(f(g)), \text{ and } Hg \mapsto ||f(g)|| \text{ is in } C_{0}(G/H) \}$$

We have a well defined action of G on $\operatorname{Ind}_{H}^{G}A$, called the *induced action*, and given by $\operatorname{Ind}_{\alpha_{g}}(f)(s) = f(g^{-1}s)$. We remark that $\operatorname{Ind}_{H}^{G}: (A, H, \alpha) \mapsto (\operatorname{Ind}_{H}^{G}(A), G, \operatorname{Ind}_{\alpha})$ is a fanctor between the correspondence categories.

Notice that if (A, G, β) is a C^* -dynamical system s.t. $\beta|_H = \alpha$, then the map $\varphi : C_b(G, A) \to C_b(G, A)$ given by $\varphi(f)(s) = \beta_s(f(s))$ defines an isomorphism of $\operatorname{Ind}_H^G(A)$ onto $C_0(G/H, A)$ mapping $\operatorname{Ind}\alpha$ to $lt \otimes \beta$.

Remark 1.3. $\operatorname{Ind}_{H}^{G}(A)$ is the C^* -analogue of the usual construction of the induced G-space $G \times_{H} Y$ of a topological H-space Y. $G \times_{H} Y$ is defined as the quotient of $G \times Y$ by the H-action $h \cdot (g, y) = (gh^{-1}, hy)$, and which is equipped with the G-action $k \cdot (g, y) = (kg, y)$. Indeed, if Y is locally compact, one checks that $\operatorname{Ind}_{H}^{G}(C_{0}(Y)) \cong C_{0}(G \times_{H} Y)$, with the induced action mapped to the mentioned G-action.

Proposition 1.4. Let (A, G, α) be a C^* -dynamical system and H be a closed subgroup of G acting by right translation. Equip $G \times Prim(A)$ with the right H action $(g, P)h \mapsto (gh, h^{-1} \cdot P)$. Then

$$\operatorname{Prim}(\operatorname{Ind}_{H}^{G}(A)) \cong (G \times \operatorname{Prim}(A))/H$$

Proof. We sketch the argument. Let $s \in G$ and $\pi \in \hat{A}$ be given. Then one can show that $M(s,\pi)(f) = \pi(f(s))$ gives an irreducible representation of $\operatorname{Ind}_{H}^{G}(A)$. The idea is showing that $\operatorname{Ind}_{H}^{G}(A)$ is non-trivial, namely for any $a \in A$ and $s \in G$, there exists $f \in \operatorname{Ind}_{H}^{G}(A)$ s.t. f(s) = a. Therefore, $M(s,\pi)$ is irreducible if π is. The map $(s,\pi) \mapsto \ker M(s,\pi)$ gives the desired isomorphism. \Box

Date: November 26, 2019.

Theorem 1.5. Let (B, G, β) be a system and let H be a closed subgroup of G. Then (B, G, β) is isomorphic to an induced system $(\operatorname{Ind}_{H}^{G}(A), G, \operatorname{Ind}\alpha)$ if and only if there exsists a continuous G-equivariant map $\varphi : \operatorname{Prim}(B) \to G/H$, where G acts on $\operatorname{Prim}(B)$ via $s \cdot P = \beta_{s}(P)$.

Proof. (\Rightarrow) : It is easy to see that the action $\operatorname{Ind}\alpha$ of G on $\operatorname{Prim}(\operatorname{Ind}_{H}^{G}(A))$ maps via the isomorphism in Proposition 1.4 to the action $g \cdot [s, P] = [gs, P]$. Therefore $[s, p] \mapsto sH$ is a continuous G-equivariant map of $\operatorname{Prim}(\operatorname{Ind}_{H}^{G}(A))$ onto G/H. (\Leftarrow) : If φ : $\operatorname{Prim}(B) \to G/H$ is given, define A = B/I, where

$$I = \cap \{P \in \operatorname{Prim}(B) : \varphi(P) = eH\}.$$

Since I is H-invariant, $\beta|_H$ induces an action α of H on A and (B, G, β) is isomorphic to $(\operatorname{Ind}_H^G(A), G, \operatorname{Ind}(\alpha))$ via $b \mapsto f_b$, where $f_b(s) = \beta_{s^{-1}}(b) + I$.

Corollary 1.6. Let X be a locally compact G-space and let H be a closed subgroup of G. Then X is G-homeomorphic to $G \times_H Y$ for some H-space Y if and only if there exists a G-equivariant continuous map $\varphi : X \to G/H$. If such a map is given, then Y can be chosen as $\varphi^{-1}(eH)$ and the homeomorphism $G \times_H Y \cong X$ is given by $[g, y] \mapsto gy$.

Remark 1.7. If $G \curvearrowright P$ is proper and free, then the orbit space P/G is Hausdorff. Moreover, Ind(A) is a $C_0(P/G)$ -algebra with fibers all isomorphic to A.

Theorem 1.8. Let H, K be groups, A be a C^* -algebra and P be a topological space. Assume that $\sigma : K \to \operatorname{Aut}(A)$ and $\tau : H \to \operatorname{Aut}(A)$ are two commuting actions and moreover, K and H admit commuting, free, proper actions on a topological space P. We define actions

 $\alpha := \operatorname{Ind} \tau : K \to \operatorname{Aut}(\operatorname{Ind}_{H}^{P}(A_{\tau})) \text{ and } \beta := \operatorname{Ind} \sigma : H \to \operatorname{Aut}(\operatorname{Ind}_{K}^{P}(A_{\sigma}))$

by

$$\alpha_k(f)(p) = \sigma_k(f(k^{-1} \cdot p))$$
 and $\beta_h(f)(p) = \tau_h(f(h^{-1} \cdot p)).$

Then

$$\operatorname{Ind}A_{\tau}\rtimes_{\alpha}K\sim_{M}\operatorname{Ind}A_{\sigma}\rtimes_{\beta}H$$

The result also holds for the reduced crossed products.

Proof. One has to check that α, β are well-defined strongly continuous actions. For example,

$$\alpha_k(f)(hp) = \sigma_k(f(k^{-1}hp)) = \sigma_k(f(hk^{-1}p)) = \sigma_k(\tau_h(f(k^{-1}p))) = \tau_h(\alpha_k(f(p))),$$

so $\alpha_k(f) \in \text{Ind}A_{\tau}$. Notice that α, β are the diagonal actions on $C_b(P, A)$, restricted to the induced algebras. For the Morita equivalence, our imprimitivity bimodule will be a completion of an $B = C_c(K, \text{Ind}A_{\tau}) - C = C_c(H, \text{Ind}A_{\sigma})$ module $X_0 = C_c(P, A)$ w.r.t. the following actions and inner products:

 $\begin{array}{l} (1) \quad b \cdot x(p) = \int_{K} b(t,p) \sigma_{t}(x(t^{-1}p)) dt; \\ (2) \quad x \cdot c(p) = \int_{H} \tau_{s}^{-1}(x(sp)c(s,sp)) ds; \\ (3) \quad {}_{B}\langle x,y \rangle (k,p) = \int_{H} \tau_{s}(x(s^{-1}p)\sigma_{k}(y(k^{-1}s^{-1}p)^{*})) ds; \\ (4) \quad \langle x,y \rangle_{C}(h,p) = \int_{K} \sigma_{t}(x(t^{-1}p)^{*}\tau_{h}(y(t^{-1}h^{-1}p))) dt. \end{array}$

We skip the technical checking.

2. Applications

Theorem 2.1. (Diagonal Actions). Let H be a group acting properly and freely on a space P, and τ be an action of H on a C^* -algebra A. Then

$$\operatorname{Ind}A_{\tau} \sim_M C_0(P, A) \rtimes_{lt \otimes \tau} H.$$

Proof. Theorem 1.8 with $K = \{e\}$. Then $\operatorname{Ind} A_{\sigma} = C_0(P, A)$ and we are done. \Box

Theorem 2.2. (Green's Symmetric Impremitivity Theorem). Let H, K act freely and properly on a space P. If the actions commute, then

$$C_0(P/H) \rtimes_{lt} K \sim_M C_0(P/K) \rtimes_{lt} H.$$

Proof. Theorem 1.8 with $A = \mathbb{C}$, as $\operatorname{Ind} A_{\tau} = C_0(P/H)$ and $\operatorname{Ind} A_{\sigma} = C_0(P/K)$. \Box

- **Examples 2.3.** (1) Take $H = \{e\}$ in Theorem 2.2. We get that if K is acting freely and properly on a space P, then the crossed product $C_0(P) \rtimes_{lt} K$ is Morita equivalent to the commutative C^* -algebra $C_0(P/K)$.
 - (2) Let K and H be closed subgroups of a group G. Let K act by left multiplication on G and H act by right multiplication. Then the actions commute, so immediately from Theorem 2.2 we get

$$C_0(G/H) \rtimes_{lt} K \sim_M C_0(K \setminus G) \rtimes_{rt} H.$$

(3) Let $G = \mathbb{R}$ and $K = \mathbb{Z}$, $H = \alpha \mathbb{Z}$, for some $\alpha \in \mathbb{R}$. By the previous example

$$C_0(\mathbb{R}/\mathbb{Z}) \rtimes \alpha \mathbb{Z} \sim_M C_0(\mathbb{R}/\alpha \mathbb{Z}) \rtimes \mathbb{Z}.$$

That is,

$$A_{\alpha} \sim_M A_{\alpha^{-1}}$$

Theorem 2.4. (Crossed Products of Ordinary Induced C^* -Algebras). Let H a closed subgroup of K acting by right translation. Let $\tau : H \to \operatorname{Aut}(A)$ be an action of H on a C^* -algebra A. Then $\operatorname{Ind}_{\tau}_{\tau}$ is the ordinary induced C^* -algebra, $\operatorname{Ind}_{H}^{K}(A)$, with induced action $\alpha : K \to \operatorname{Aut}(\operatorname{Ind}_{\tau})$ given by $\alpha_k(f)(k') = f(k^{-1}k')$ ($\alpha = \operatorname{Ind}(\tau)$). Then

$$\operatorname{Ind}A_{\tau}\rtimes_{\alpha}K\sim_{M}A\rtimes_{\tau}H.$$

Proof. Apply Theorem 1.8 with P = K acting on itself by left translation, and $\sigma: K \to \operatorname{Aut}(A)$ the trivial action. It is left to show that in this case $\operatorname{Ind} A_{\sigma} \cong A$ and the isomorphism carries the action $\beta: H \to \operatorname{Aut}(\operatorname{Ind} A_{\sigma}), \beta_h(f)(k) = \tau_h(f(kh))$, to the action τ . Indeed, $f \mapsto f(e)$ defines an isomorphism of $\operatorname{Ind} A_{\sigma}$ onto A. Indeed, for a = f(e),

$$\beta_h(a) = \beta_h(f(e)) = \tau_h(f(h)) = \tau_h(f(e)) = \tau_h(a).$$

Remark 2.5. Let K be a scond countable group and H a closed subgroup of K acting on a C^* -algebra A. Phil Green's theorem gives the following decomposition

$$\operatorname{Ind}_{H}^{K}A\rtimes_{\operatorname{Ind}_{\tau}}K\cong (A\rtimes_{\tau}H)\otimes K(L^{2}(K/H)),$$

where the L^2 space is taken with respect to some quasi-invariant measure on K/H.

Corollary 2.6. (Green's Imminitivity Theorem). Suppose H is a closed subgroup of K acting by right translation. Let $\sigma : K \to \operatorname{Aut}(A)$ be an action of K on a C^* -algebra A. Then

$$C_0(K/H, A) \rtimes_{lt\otimes\sigma} K \sim_M A \rtimes_{\sigma|_H} H.$$

Proof. Apply Theorem 2.4 with $\tau = \sigma|_H$. Then $\operatorname{Ind}(A_{\tau})$ is the ordinary induced C^* -algebra equipped with the action α of K by left translation. However, since σ extends to an action of K, the discussion in Remark 1.2 implies that

$$C_0(K/H, A) \rtimes_{lt \otimes \sigma} K \cong \operatorname{Ind}(A_\tau) \rtimes_{\alpha} K \sim_M A \rtimes_{\sigma|_H} H.$$

Remark 2.7. Let $\alpha : G \to Aut(A)$ be an action of G on a C^{*}-algebra A. By taking $H = \{e\}$ in Corollary 2.6, we get

$$C_0(G, A) \rtimes_{lt \otimes \alpha} G \sim_M A.$$

However, actually more than that is true:

$$C_0(G,A)\rtimes_{lt\otimes\alpha}G\cong A\otimes K$$

Indeed, in this case we obtain a unitary isomorphism between Green's bimodule X and the Hilbert-A-module $L^2(G, A)$ via the transformation

$$U: X \to L^2(G, A)$$
 given by $U(x)(s) = x(s)$

Thus

$$C_0(G,A)\rtimes_{lt\otimes\alpha}G\cong K_A(X)=K_A(L^2(G,A))\cong A\otimes K(L^2(G)).$$

In particular, it follows that $C_0(G) \rtimes_{lt} G \cong K(L^2(G))$.

Corollary 2.8. Let *H* be a closed subgroup of *K*, (A, K, α) be a C^* -dynamical system, and $\varphi : \operatorname{Prim}(A) \to K/H$ be a *K*-equivariant continuous map. Then

$$I = \cap \{P \in \operatorname{Prim}(A) : \varphi(P) = eH\}$$

is an H invariant ideal, and

$$A \rtimes_{\alpha} K \sim_M A/I \rtimes_{\alpha^I} H$$

Proof. By Theorem 1.5 $(A, K, \alpha) \cong (\text{Ind}(A/I), K, \text{Ind}(\alpha^I))$, therefore

$$A \rtimes_{\alpha} K \cong \operatorname{Ind}(A/I) \rtimes_{\alpha^{I}} K$$

and the last is Morita equivalent to $A/I \rtimes_{\alpha^I} H$ by Theorem 2.4.

- **Examples 2.9.** (1) Let P be a locally compact G space and H a closed subgroup of G. Suppose that $\varphi: P \to G/H$ is a G-equivariant continuous map. Let $Y = \varphi^{-1}(eH)$. Then Y is a H-space, and $C_0(P) \rtimes_{lt} G \sim_M C_0(Y) \rtimes_{lt} H$.
 - (2) Let H be a closed subgroup of G acting on a space Y. Then

$$C_0(G \times_H Y) \rtimes_{lt} G \sim_M C_0(Y) \rtimes_{lt} H.$$

(3) Let \mathbb{R} act on the two-torus \mathbb{T}^2 by an irrational flow, i.e. there exists an irrational number $\theta \in (0,1)$ s.t. $t \cdot (z_1, z_2) = (e^{2\pi i t} z_1, e^{2\pi i \theta t} z_2)$. Then $\mathbb{T}^2 \cong \mathbb{R} \times_{\mathbb{Z}} \mathbb{T}$ equivariantly, where \mathbb{Z} acts on \mathbb{T} by irrational rotation given by θ . Thus

$$C(\mathbb{T}^2) \rtimes_{\theta} \mathbb{R} \sim_M A_{\theta}$$