Group representations on L^{p} -spaces

Eusebio Gardella

University of Oregon

Great Plains Operator Theory Symposium, Purdue University, May 2015

Joint work with Hannes Thiel from the University of Münster

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$. Groups G will be locally compact and second countable (endowed with Haar measure).

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$. Groups G will be locally compact and second countable (endowed with Haar measure).

Definition (Phillips)

An *(isometric) representation* of G on $L^{p}(X, \mu)$ is a group homomorphism $\rho: G \to \mathcal{B}(L^{p}(X, \mu))$ satisfying:

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$. Groups G will be locally compact and second countable (endowed with Haar measure).

Definition (Phillips)

An *(isometric) representation* of G on $L^{p}(X, \mu)$ is a group homomorphism $\rho: G \to \mathcal{B}(L^{p}(X, \mu))$ satisfying:

• ρ_g is invertible and $\|\rho_g(\xi)\| = \|\xi\|$ for all $\xi \in L^p(X,\mu)$;

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$. Groups G will be locally compact and second countable (endowed with Haar measure).

Definition (Phillips)

An *(isometric)* representation of G on $L^{p}(X, \mu)$ is a group homomorphism $\rho: G \to \mathcal{B}(L^{p}(X, \mu))$ satisfying:

- ρ_g is invertible and $\|\rho_g(\xi)\| = \|\xi\|$ for all $\xi \in L^p(X, \mu)$;
- **2** For $\xi \in L^p(X, \mu)$, the map $g \mapsto \rho_g(\xi)$ is continuous.

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$. Groups G will be locally compact and second countable (endowed with Haar measure).

Definition (Phillips)

An *(isometric) representation* of G on $L^{p}(X, \mu)$ is a group homomorphism $\rho: G \to \mathcal{B}(L^{p}(X, \mu))$ satisfying:

- ρ_g is invertible and $\|\rho_g(\xi)\| = \|\xi\|$ for all $\xi \in L^p(X, \mu)$;
- **2** For $\xi \in L^p(X, \mu)$, the map $g \mapsto \rho_g(\xi)$ is continuous.

A representation of G on $L^2(X, \mu)$ is just a unitary representation.

Throughout, (X, μ) will be a σ -finite measure space, $p \in [1, \infty)$. Groups G will be locally compact and second countable (endowed with Haar measure).

Definition (Phillips)

An *(isometric) representation* of G on $L^{p}(X, \mu)$ is a group homomorphism $\rho: G \to \mathcal{B}(L^{p}(X, \mu))$ satisfying:

- ρ_g is invertible and $\|\rho_g(\xi)\| = \|\xi\|$ for all $\xi \in L^p(X, \mu)$;
- **2** For $\xi \in L^p(X, \mu)$, the map $g \mapsto \rho_g(\xi)$ is continuous.

A representation of G on $L^2(X, \mu)$ is just a unitary representation.

Example

Let
$$\lambda_p \colon G \to \mathcal{B}(L^p(G))$$
 be given by

$$(\lambda_p)_g(\xi)(h) = \xi(g^{-1}h) \quad \forall g, h \in G, \ \forall \xi \in L^p(X,\mu).$$

There is a one-to-one correspondence between representations $\rho \colon \mathcal{G} \to \mathcal{B}(L^p(X, \mu))$ and

There is a one-to-one correspondence between representations $\rho: G \to \mathcal{B}(L^p(X, \mu))$ and non-degenerated contractive homomorphisms $\pi_{\rho}: L^1(G) \to \mathcal{B}(L^p(X, \mu))$,

There is a one-to-one correspondence between representations $\rho \colon G \to \mathcal{B}(L^p(X,\mu))$ and non-degenerated contractive homomorphisms $\pi_{\rho} \colon L^1(G) \to \mathcal{B}(L^p(X,\mu))$, given by

$$\pi_
ho(f)(\xi) = \int_G
ho_g(\xi) f(g) \, dg.$$

There is a one-to-one correspondence between representations $\rho \colon G \to \mathcal{B}(L^p(X,\mu))$ and non-degenerated contractive homomorphisms $\pi_{\rho} \colon L^1(G) \to \mathcal{B}(L^p(X,\mu))$, given by

$$\pi_
ho(f)(\xi) = \int_G
ho_g(\xi) f(g) \, dg.$$

Example

The integrated form of λ_p is

There is a one-to-one correspondence between representations $\rho \colon G \to \mathcal{B}(L^p(X,\mu))$ and non-degenerated contractive homomorphisms $\pi_{\rho} \colon L^1(G) \to \mathcal{B}(L^p(X,\mu))$, given by

$$\pi_
ho(f)(\xi) = \int_G
ho_g(\xi) f(g) \, dg.$$

Example

The integrated form of λ_p is

 $\lambda_p(f)(\xi) = f * \xi$

for $f \in L^1(G)$ and $\xi \in L^p(X, \mu)$.

Let $\lambda_p \colon L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda_p(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$.

Definition (Group L^p-operator algebras)

Let $\lambda_p \colon L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda_p(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$. The *reduced group algebra* of G is

$$\mathcal{F}^{\mathcal{P}}_{\lambda}(\mathcal{G}) = \overline{\lambda_{\mathcal{P}}(L^1(\mathcal{G}))} \subseteq \mathcal{B}(L^{\mathcal{P}}(\mathcal{G})).$$

Let $\lambda_p: L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda_p(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$. The *reduced group algebra* of G is

$$F^p_{\lambda}(G) = \overline{\lambda_p(L^1(G))} \subseteq \mathcal{B}(L^p(G)).$$

The full group algebra $F^{p}(G)$ is the completion of $L^{1}(G)$ in

 $\|f\|_{\mu} = \sup\{\|\varphi(f)\| : \varphi \colon L^{1}(G) \to \mathcal{B}(L^{p}(X,\mu)) \text{ contractive}\}.$

Let $\lambda_p: L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda_p(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$. The *reduced group algebra* of G is

$$F^p_{\lambda}(G) = \overline{\lambda_p(L^1(G))} \subseteq \mathcal{B}(L^p(G)).$$

The full group algebra $F^{p}(G)$ is the completion of $L^{1}(G)$ in

 $\|f\|_{\mu} = \sup\{\|\varphi(f)\| : \varphi \colon L^{1}(G) \to \mathcal{B}(L^{p}(X,\mu)) \text{ contractive}\}.$

Write p' for the conjugate of p.

Let $\lambda_p: L^1(G) \to \mathcal{B}(L^p(G))$ be the integrated form of the left regular representation: $\lambda_p(f)\xi = f * \xi$ for $f \in L^1(G), \xi \in L^p(G)$. The *reduced group algebra* of G is

$$F^p_{\lambda}(G) = \overline{\lambda_p(L^1(G))} \subseteq \mathcal{B}(L^p(G)).$$

The full group algebra $F^{p}(G)$ is the completion of $L^{1}(G)$ in

 $\|f\|_{\mu} = \sup\{\|\varphi(f)\| : \varphi \colon L^{1}(G) \to \mathcal{B}(L^{p}(X,\mu)) \text{ contractive}\}.$

Write p' for the conjugate of p.

Duality

For p > 1, there are canonical isometric isomorphisms

$$F^p(G)\cong F^{p'}(G)$$
 and $F^p_\lambda(G)\cong F^{p'}_\lambda(G).$

Group L^{p} -operator algebras

For p = 2, one gets $F_{\lambda}^2(G) = C_{\lambda}^*(G)$ and $F^p(G) = C^*(G)$.

Group L^p-operator algebras

For p = 2, one gets $F_{\lambda}^{2}(G) = C_{\lambda}^{*}(G)$ and $F^{p}(G) = C^{*}(G)$. For the other values of p, studying these algebras sometimes becomes technically difficult:

L^p-operator norms are not unique;

Group L^p-operator algebras

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;

Group L^p-operator algebras

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;
- No abstract characterization and no GNS construction, at least so far;

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;
- No abstract characterization and no GNS construction, at least so far;
- No continuous functional calculus;

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;
- No abstract characterization and no GNS construction, at least so far;
- No continuous functional calculus;
- Quotients of an algebra acting on an L^p-space doesn't necessarily act on an L^p-space.

- L^p-operator norms are not unique;
- Homomorphisms are not necessarily contractive and they don't have closed range;
- No abstract characterization and no GNS construction, at least so far;
- No continuous functional calculus;
- Quotients of an algebra acting on an L^p-space doesn't necessarily act on an L^p-space.

For example, we don't know whether the canonical map $F^{p}(G) \rightarrow F^{p}_{\lambda}(G)$ is surjective!

When p = 1, we have

$$L^1(G) = F^1_{\lambda}(G) = F^1(G).$$

When p = 1, we have

$$L^1(G) = F^1_{\lambda}(G) = F^1(G).$$

Proof: $L^1(G)$ has a contractive approximate identity.

When p = 1, we have

$$L^1(G) = F^1_{\lambda}(G) = F^1(G).$$

Proof: $L^1(G)$ has a contractive approximate identity.

Theorem (G.-Thiel, independently by Phillips)

For p > 1, the following are equivalent:

When p = 1, we have

$$L^1(G) = F^1_{\lambda}(G) = F^1(G).$$

Proof: $L^1(G)$ has a contractive approximate identity.

Theorem (G.-Thiel, independently by Phillips)

For p > 1, the following are equivalent:

G is amenable;

When p = 1, we have

$$L^1(G) = F^1_{\lambda}(G) = F^1(G).$$

Proof: $L^1(G)$ has a contractive approximate identity.

Theorem (G.-Thiel, independently by Phillips)

For p > 1, the following are equivalent:

- G is amenable;
- **2** The map $F^{p}(G) \to F^{p}_{\lambda}(G)$ is an (isometric) isomorphism.

When p = 1, we have

$$L^1(G) = F^1_{\lambda}(G) = F^1(G).$$

Proof: $L^1(G)$ has a contractive approximate identity.

Theorem (G.-Thiel, independently by Phillips)

For p > 1, the following are equivalent:

- G is amenable;
- **2** The map $F^{p}(G) \to F^{p}_{\lambda}(G)$ is an (isometric) isomorphism.

(Not true for p = 1 by the proposition above.)

Theorem (G.-Thiel)

For $1 \leq p < q \leq 2$ or $2 \leq q ,$

Theorem (G.-Thiel)

For $1 \leq p < q \leq 2$ or $2 \leq q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range.

Theorem (G.-Thiel)

For $1 \le p < q \le 2$ or $2 \le q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. Moreover, $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Theorem (G.-Thiel)

For $1 \le p < q \le 2$ or $2 \le q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. Moreover, $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Theorem (G.-Thiel)

For $1 \le p < q \le 2$ or $2 \le q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. Moreover, $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Corollary

If G is discrete, then $F^p(G)$ amenable $\Leftrightarrow G$ amenable.

Group and Banach algebra amenability

Theorem (G.-Thiel)

For $1 \le p < q \le 2$ or $2 \le q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. Moreover, $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Corollary

If G is discrete, then $F^p(G)$ amenable $\Leftrightarrow G$ amenable.

Well known for p = 1 (B. Johnson), and doesn't need G discrete.

Group and Banach algebra amenability

Theorem (G.-Thiel)

For $1 \leq p < q \leq 2$ or $2 \leq q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. Moreover, $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Corollary

If G is discrete, then $F^p(G)$ amenable $\Leftrightarrow G$ amenable.

Well known for p = 1 (B. Johnson), and doesn't need G discrete. For the rest: $L^1(G) \to F^p(G) \to C^*(G)$.

Group and Banach algebra amenability

Theorem (G.-Thiel)

For $1 \le p < q \le 2$ or $2 \le q , there is a canonical contractive homomorphism$

$$\gamma_{p,q} \colon F^p(G) \to F^q(G)$$

with dense range. Moreover, $\gamma_{p,q}$ is always injective, and it is surjective only when G is finite.

Uses very crucially the geometry of L^p -spaces for different p.

Corollary

If G is discrete, then $F^p(G)$ amenable \Leftrightarrow G amenable.

Well known for p = 1 (B. Johnson), and doesn't need G discrete. For the rest: $L^1(G) \rightarrow F^p(G) \rightarrow C^*(G)$. (Probably true for arbitrary G when $p \neq 2$.)

Let G and H be discrete groups.

Let G and H be discrete groups.

Theorem (G.-Thiel)

Suppose $p \in [1, \infty) \setminus \{2\}$. Let $\varphi \colon F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ be a contractive, unital homomorphism.

Let G and H be discrete groups.

Theorem (G.-Thiel)

Suppose $p \in [1, \infty) \setminus \{2\}$. Let $\varphi \colon F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ be a contractive, unital homomorphism. Then there are a group homomorphism $\theta \colon G \to H$ and a group homomorphism $\gamma \colon G \to S^{1}$ satisfying

イロン イロン イヨン イヨン 三日

Let G and H be discrete groups.

Theorem (G.-Thiel)

Suppose $p \in [1, \infty) \setminus \{2\}$. Let $\varphi \colon F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ be a contractive, unital homomorphism. Then there are a group homomorphism $\theta \colon G \to H$ and a group homomorphism $\gamma \colon G \to S^{1}$ satisfying

$$\varphi(u_g) = \gamma(g)u_{\varphi(g)} \quad \forall \ g \in G.$$

Let G and H be discrete groups.

Theorem (G.-Thiel)

Suppose $p \in [1, \infty) \setminus \{2\}$. Let $\varphi \colon F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ be a contractive, unital homomorphism. Then there are a group homomorphism $\theta \colon G \to H$ and a group homomorphism $\gamma \colon G \to S^{1}$ satisfying

$$\varphi(u_g) = \gamma(g)u_{\varphi(g)} \quad \forall \ g \in G.$$

Moreover,

• ker(θ) is amenable.

Let G and H be discrete groups.

Theorem (G.-Thiel)

Suppose $p \in [1, \infty) \setminus \{2\}$. Let $\varphi \colon F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ be a contractive, unital homomorphism. Then there are a group homomorphism $\theta \colon G \to H$ and a group homomorphism $\gamma \colon G \to S^{1}$ satisfying

$$\varphi(u_g) = \gamma(g)u_{\varphi(g)} \quad \forall \ g \in G.$$

Moreover,

- ker(θ) is amenable.
- **2** θ is injective (surjective) iff φ is injective (surjective).

Let G and H be discrete groups.

Theorem (G.-Thiel)

Suppose $p \in [1, \infty) \setminus \{2\}$. Let $\varphi \colon F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ be a contractive, unital homomorphism. Then there are a group homomorphism $\theta \colon G \to H$ and a group homomorphism $\gamma \colon G \to S^{1}$ satisfying

$$\varphi(u_g) = \gamma(g)u_{\varphi(g)} \quad \forall \ g \in G.$$

Moreover,

- ker(θ) is amenable.
- **2** θ is injective (surjective) iff φ is injective (surjective).
- **③** If φ is injective, then it is isometric. (This is unexpected.)

Let G and H be discrete groups.

Theorem (G.-Thiel)

Suppose $p \in [1, \infty) \setminus \{2\}$. Let $\varphi \colon F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ be a contractive, unital homomorphism. Then there are a group homomorphism $\theta \colon G \to H$ and a group homomorphism $\gamma \colon G \to S^{1}$ satisfying

$$\varphi(u_g) = \gamma(g)u_{\varphi(g)} \quad \forall \ g \in G.$$

Moreover,

- ker(θ) is amenable.
- **2** θ is injective (surjective) iff φ is injective (surjective).
- **3** If φ is injective, then it is isometric. (This is unexpected.)

In other words, homomorphism $F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ come from homomorphisms $G \to H$.

Recall: homomorphism $F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ come from homomorphisms $G \to H$, for $p \neq 2$.

Recall: homomorphism $F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ come from homomorphisms $G \to H$, for $p \neq 2$.

Theorem

Let G and H be discrete groups, and let $p, q \in [1, \infty) \setminus \{2\}$. If $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively,

Recall: homomorphism $F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ come from homomorphisms $G \to H$, for $p \neq 2$.

Theorem

Let G and H be discrete groups, and let $p, q \in [1, \infty) \setminus \{2\}$. If $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively, then $G \cong H$ and either p = q or $\frac{1}{p} + \frac{1}{q} = 1$.

Recall: homomorphism $F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ come from homomorphisms $G \to H$, for $p \neq 2$.

Theorem

Let G and H be discrete groups, and let $p, q \in [1, \infty) \setminus \{2\}$. If $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively, then $G \cong H$ and either p = q or $\frac{1}{p} + \frac{1}{q} = 1$.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Recall: homomorphism $F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ come from homomorphisms $G \to H$, for $p \neq 2$.

Theorem

Let G and H be discrete groups, and let $p, q \in [1, \infty) \setminus \{2\}$. If $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively, then $G \cong H$ and either p = q or $\frac{1}{p} + \frac{1}{q} = 1$.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let $p \in [1, \infty) \setminus \{2\}$.

Recall: homomorphism $F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ come from homomorphisms $G \to H$, for $p \neq 2$.

Theorem

Let G and H be discrete groups, and let $p, q \in [1, \infty) \setminus \{2\}$. If $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively, then $G \cong H$ and either p = q or $\frac{1}{p} + \frac{1}{q} = 1$.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let $p \in [1, \infty) \setminus \{2\}$. Then $F_{\lambda}^{p}(G)$ does not contain a bicontractive idempotent.

Recall: homomorphism $F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ come from homomorphisms $G \to H$, for $p \neq 2$.

Theorem

Let G and H be discrete groups, and let $p, q \in [1, \infty) \setminus \{2\}$. If $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively, then $G \cong H$ and either p = q or $\frac{1}{p} + \frac{1}{q} = 1$.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let $p \in [1, \infty) \setminus \{2\}$. Then $F_{\lambda}^{p}(G)$ does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital homomorphisms from $F^{p}(\mathbb{Z}_{2})$.

Recall: homomorphism $F_{\lambda}^{p}(G) \to F_{\lambda}^{p}(H)$ come from homomorphisms $G \to H$, for $p \neq 2$.

Theorem

Let G and H be discrete groups, and let $p, q \in [1, \infty) \setminus \{2\}$. If $F_{\lambda}^{p}(G) \cong F_{\lambda}^{q}(H)$ contractively, then $G \cong H$ and either p = q or $\frac{1}{p} + \frac{1}{q} = 1$.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let $p \in [1, \infty) \setminus \{2\}$. Then $F_{\lambda}^{p}(G)$ does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital homomorphisms from $F^p(\mathbb{Z}_2)$. Whether this is true for p = 2 is the content of the Kadison-Kaplansky conjecture. Thank you.