Eusebio Gardella

University of Oregon

Workshop on C*-algebras: Structure and Classification University of Münster, May 2015

Joint work with Luis Santiago from the University of Aberdeen

The Cuntz semigroup

Definition (Cuntz comparison, Cuntz semigroup.)

Let A be a C*-algebra and let $a, b \in A_+$.

The Cuntz semigroup

Definition (Cuntz comparison, Cuntz semigroup.)

Let A be a C*-algebra and let $a, b \in A_+$. We write $a \preceq b$ if there is $(d_n)_{n \in \mathbb{N}}$ in A such that

$$\lim_{n\to\infty}\|d_nbd_n^*-a\|=0.$$

Write $a \sim b$ if $a \preceq b$ and $b \preceq a$.

Definition (Cuntz comparison, Cuntz semigroup.)

Let A be a C*-algebra and let $a, b \in A_+$. We write $a \preceq b$ if there is $(d_n)_{n \in \mathbb{N}}$ in A such that

$$\lim_{n\to\infty}\|d_nbd_n^*-a\|=0.$$

Write $a \sim b$ if $a \preceq b$ and $b \preceq a$.

The Cuntz semigroup of A, denoted by Cu(A), is defined as the set of Cuntz equivalence classes of positive elements of $A \otimes \mathcal{K}$.

Definition (Cuntz comparison, Cuntz semigroup.)

Let A be a C*-algebra and let $a, b \in A_+$. We write $a \preceq b$ if there is $(d_n)_{n \in \mathbb{N}}$ in A such that

$$\lim_{n\to\infty}\|d_nbd_n^*-a\|=0.$$

Write $a \sim b$ if $a \preceq b$ and $b \preceq a$. The Cuntz semigroup of A, denoted by Cu(A), is defined as the set of Cuntz equivalence classes of positive elements of $A \otimes \mathcal{K}$.

One shows that Cu(A) is a partially ordered abelian semigroup, and that $A \mapsto Cu(A)$ is a functor from the category of C^* -algebras to a certain category **Cu** of such semigroups.

イロン イロン イヨン イヨン 三日

We first present the construction when the algebra is \mathbb{C} . Groups will always be compact (and second countable).

We first present the construction when the algebra is \mathbb{C} . Groups will always be compact (and second countable).

Definition (Representation semiring)

The representation semiring Cu(G) of G is the set of all unitary equivalence classes of unitary representations of G on separable Hilbert spaces.

We first present the construction when the algebra is \mathbb{C} . Groups will always be compact (and second countable).

Definition (Representation semiring)

The representation semiring Cu(G) of G is the set of all unitary equivalence classes of unitary representations of G on separable Hilbert spaces.

 $\mathrm{Cu}({\it G})$ is a unital ${\it Cu}\mbox{-semiring}$ under direct sum and tensor product.

Recall: Cu(G) is the set of equivalence classes of separable unitary representations of G.

Definition

Let G be a compact group, let A be a C*-algebra and let $\alpha: G \to \operatorname{Aut}(A)$. The equivariant Cuntz semigroup $\operatorname{Cu}^{G}(A, \alpha)$ is defined using G-invariant positive elements in $A \otimes \mathcal{K}(\mathcal{H}_{\mu})$, where μ ranges over all unitary representations of G, and $A \otimes \mathcal{K}(\mathcal{H}_{\mu})$ has the diagonal action of G. Recall: Cu(G) is the set of equivalence classes of separable unitary representations of G.

Definition

Let G be a compact group, let A be a C*-algebra and let $\alpha: G \to \operatorname{Aut}(A)$. The equivariant Cuntz semigroup $\operatorname{Cu}^{G}(A, \alpha)$ is defined using G-invariant positive elements in $A \otimes \mathcal{K}(\mathcal{H}_{\mu})$, where μ ranges over all unitary representations of G, and $A \otimes \mathcal{K}(\mathcal{H}_{\mu})$ has the diagonal action of G.

 $Cu^{G}(A, \alpha)$ has a natural Cu(G)-action (tensor product) which makes it into a Cu(G)-semimodule.

Recall: Cu(G) is the set of equivalence classes of separable unitary representations of G.

Definition

Let G be a compact group, let A be a C*-algebra and let $\alpha: G \to \operatorname{Aut}(A)$. The equivariant Cuntz semigroup $\operatorname{Cu}^{G}(A, \alpha)$ is defined using G-invariant positive elements in $A \otimes \mathcal{K}(\mathcal{H}_{\mu})$, where μ ranges over all unitary representations of G, and $A \otimes \mathcal{K}(\mathcal{H}_{\mu})$ has the diagonal action of G.

 $Cu^{G}(A, \alpha)$ has a natural Cu(G)-action (tensor product) which makes it into a Cu(G)-semimodule.

 Cu^{G} resembles K_{*}^{G} .

Theorem

The equivariant Cuntz semigroup is a stable and continuous functor from the category of G- C^* -algebras, to the category \mathbf{Cu}^G of $\mathrm{Cu}(G)$ -semimodules,

Theorem

The equivariant Cuntz semigroup is a stable and continuous functor from the category of G- C^* -algebras, to the category \mathbf{Cu}^G of $\mathrm{Cu}(G)$ -semimodules, whose objects S belong to \mathbf{Cu} and satisfy

• if
$$x \in S$$
, then $1 \cdot s = s$;

② if $x, y \in S$ and $s, t \in Cu(G)$ satisfy $x \le y$ and $r \le s$, then $r \cdot x \le s \cdot y$;

Theorem

The equivariant Cuntz semigroup is a stable and continuous functor from the category of G- C^* -algebras, to the category \mathbf{Cu}^G of $\mathrm{Cu}(G)$ -semimodules, whose objects S belong to \mathbf{Cu} and satisfy

- if $x \in S$, then $1 \cdot s = s$;
- ② if $x, y \in S$ and $s, t \in Cu(G)$ satisfy $x \le y$ and $r \le s$, then r ⋅ x ≤ s ⋅ y;
- if $x, y \in S$ and $s, t \in Cu(G)$ satisfy $x \ll y$ and $r \ll s$, then $r \cdot x \ll s \cdot y$;

Theorem

The equivariant Cuntz semigroup is a stable and continuous functor from the category of G- C^* -algebras, to the category \mathbf{Cu}^G of $\mathrm{Cu}(G)$ -semimodules, whose objects S belong to \mathbf{Cu} and satisfy

- if $x \in S$, then $1 \cdot s = s$;
- ② if x, y ∈ S and s, t ∈ Cu(G) satisfy x ≤ y and r ≤ s, then r · x ≤ s · y;
- if $x, y \in S$ and $s, t \in Cu(G)$ satisfy $x \ll y$ and $r \ll s$, then $r \cdot x \ll s \cdot y$;
- if (x_n)_{n∈ℕ} is an increasing sequence in S, and (r_n)_{n∈ℕ} is an increasing sequence in Cu(G), then

$$\sup_{n\in\mathbb{N}}(r_n\cdot x_n)=\left(\sup_{n\in\mathbb{N}}r_n\right)\cdot\left(\sup_{n\in\mathbb{N}}x_n\right);$$

Theorem

The equivariant Cuntz semigroup is a stable and continuous functor from the category of G- C^* -algebras, to the category \mathbf{Cu}^G of $\mathrm{Cu}(G)$ -semimodules, whose objects S belong to \mathbf{Cu} and satisfy

- if $x \in S$, then $1 \cdot s = s$;
- ② if $x, y \in S$ and $s, t \in Cu(G)$ satisfy $x \le y$ and $r \le s$, then $r \cdot x \le s \cdot y$;
- if $x, y \in S$ and $s, t \in Cu(G)$ satisfy $x \ll y$ and $r \ll s$, then $r \cdot x \ll s \cdot y$;
- if (x_n)_{n∈N} is an increasing sequence in S, and (r_n)_{n∈N} is an increasing sequence in Cu(G), then

$$\sup_{n\in\mathbb{N}}(r_n\cdot x_n)=\left(\sup_{n\in\mathbb{N}}r_n\right)\cdot\left(\sup_{n\in\mathbb{N}}x_n\right);$$

and whose morphisms are the morphisms in Cu that respect the Cu(G)-semimodule structure.

クへで 5/13

Theorem

The equivariant Cuntz semigroup is a stable and continuous functor from the category of G- C^* -algebras, to the category \mathbf{Cu}^G of $\mathrm{Cu}(G)$ -semimodules, whose objects S belong to \mathbf{Cu} and satisfy

- if $x \in S$, then $1 \cdot s = s$;
- ② if $x, y \in S$ and $s, t \in Cu(G)$ satisfy $x \le y$ and $r \le s$, then $r \cdot x \le s \cdot y$;
- if $x, y \in S$ and $s, t \in Cu(G)$ satisfy $x \ll y$ and $r \ll s$, then $r \cdot x \ll s \cdot y$;
- if (x_n)_{n∈N} is an increasing sequence in S, and (r_n)_{n∈N} is an increasing sequence in Cu(G), then

$$\sup_{n\in\mathbb{N}}(r_n\cdot x_n)=\left(\sup_{n\in\mathbb{N}}r_n\right)\cdot\left(\sup_{n\in\mathbb{N}}x_n\right);$$

and whose morphisms are the morphisms in Cu that respect the Cu(G)-semimodule structure.

クへで 5/13

Alternative pictures

Theorem

 $\mathrm{Cu}^{{}^{{}_{\mathcal{G}}}}({}^{{}_{\mathcal{A}}},\alpha)$ is naturally isomorphic in ${}^{{}_{\mathbf{Cu}}{}^{{}_{\mathcal{G}}}}$ to the direct limit

$$\varinjlim_{[\mu]\in\operatorname{Cu}(\mathcal{G})}\operatorname{Cu}\left((A\otimes\mathcal{K}(\mathcal{H}_{\mu}))^{\mathcal{G}}\right).$$

Alternative pictures

Theorem

 $\mathrm{Cu}^{\mathcal{G}}(\mathcal{A},\alpha)$ is naturally isomorphic in $\mathbf{Cu}^{\mathcal{G}}$ to the direct limit

$$\varinjlim_{\mu]\in \mathrm{Cu}(\mathcal{G})} \mathrm{Cu}\left((A\otimes \mathcal{K}(\mathcal{H}_{\mu}))^{\mathcal{G}}\right).$$

Theorem

 $Cu^{G}(A, \alpha)$ has a description using countably generated equivariant Hilbert modules.

Alternative pictures

Theorem

 $\operatorname{Cu}^{\mathcal{G}}(\mathcal{A},\alpha)$ is naturally isomorphic in $\mathbf{Cu}^{\mathcal{G}}$ to the direct limit

$$\varinjlim_{\mu]\in \mathrm{Cu}(\mathcal{G})} \mathrm{Cu}\left((A\otimes \mathcal{K}(\mathcal{H}_{\mu}))^{\mathcal{G}} \right).$$

Theorem

 $Cu^{G}(A, \alpha)$ has a description using countably generated equivariant Hilbert modules.

Theorem

 $Cu^{\mathcal{G}}(\mathcal{A},\alpha)$ is naturally isomorphic in $Cu^{\mathcal{G}}$ to

 $\mathrm{Cu}\left((A\otimes\mathcal{K}(L^2(G))\otimes\mathcal{K})^G\right).$

Julg's Theorem for Cu^{G}

One can checks that $Cu(G) = \overline{\mathbb{N}}[\widehat{G}]$ (as semirings) when G is compact abelian.

Julg's Theorem for Cu^{G}

One can checks that $Cu(G) = \overline{\mathbb{N}}[\widehat{G}]$ (as semirings) when G is compact abelian.

Julg's Theorem for Cu^{G}

There is a natural **Cu**-isomorphism

$$\operatorname{Cu}^{\mathsf{G}}(\mathsf{A},\alpha)\cong\operatorname{Cu}(\mathsf{A}\rtimes_{\alpha}\mathsf{G}).$$

Julg's Theorem for Cu^{G}

One can checks that $Cu(G) = \overline{\mathbb{N}}[\widehat{G}]$ (as semirings) when G is compact abelian.

Julg's Theorem for Cu^{G}

There is a natural **Cu**-isomorphism

$$\mathrm{Cu}^{\mathsf{G}}(\mathsf{A},\alpha)\cong\mathrm{Cu}(\mathsf{A}\rtimes_{\alpha}\mathsf{G}).$$

When G is abelian, the Cu(G)-semimodule structure is easy to describe: an element $\chi \in \widehat{G}$ acts via

$$\chi \cdot \boldsymbol{s} = \operatorname{Cu}(\widehat{\alpha}_{\chi})(\boldsymbol{s})$$

for $s \in Cu(A \rtimes_{\alpha} G)$.

Example

Suppose that G acts trivially on A.

Example

Suppose that G acts trivially on A. Then

$$\operatorname{Cu}^{\mathcal{G}}(A, \operatorname{id}_{\mathcal{A}}) = \operatorname{Cu}(\mathcal{G}) \otimes \operatorname{Cu}(\mathcal{A}) = \{f : \widehat{\mathcal{G}} \to \operatorname{Cu}(\mathcal{A})\}$$

Example

Suppose that G acts trivially on A. Then

$$\mathrm{Cu}^{\mathcal{G}}(\mathcal{A},\mathrm{id}_{\mathcal{A}}) = \mathrm{Cu}(\mathcal{G})\otimes\mathrm{Cu}(\mathcal{A}) = \{f: \widehat{\mathcal{G}} \to \mathrm{Cu}(\mathcal{A})\}$$

Let G act on a locally compact space X.

Example

Suppose that G acts trivially on A. Then

$$\operatorname{Cu}^{\mathcal{G}}(\mathcal{A}, \operatorname{id}_{\mathcal{A}}) = \operatorname{Cu}(\mathcal{G}) \otimes \operatorname{Cu}(\mathcal{A}) = \{f \colon \widehat{\mathcal{G}} \to \operatorname{Cu}(\mathcal{A})\}$$

Let G act on a locally compact space X. Then $X \to X/G$ induces $\operatorname{Cu}^{G}(C_{0}(X/G)) \cong \operatorname{Cu}(G) \otimes \operatorname{Cu}(C_{0}(X/G)) \to \operatorname{Cu}^{G}(C_{0}(X)),$

Example

Suppose that G acts trivially on A. Then

$$\operatorname{Cu}^{\mathcal{G}}(A, \operatorname{id}_{\mathcal{A}}) = \operatorname{Cu}(\mathcal{G}) \otimes \operatorname{Cu}(\mathcal{A}) = \{f : \widehat{\mathcal{G}} \to \operatorname{Cu}(\mathcal{A})\}$$

Let G act on a locally compact space X. Then $X \to X/G$ induces $\operatorname{Cu}^{G}(C_{0}(X/G)) \cong \operatorname{Cu}(G) \otimes \operatorname{Cu}(C_{0}(X/G)) \to \operatorname{Cu}^{G}(C_{0}(X)),$

so we get a natural map $\varphi \colon \mathrm{Cu}(C_0(X/G)) \to \mathrm{Cu}^G(C_0(X)).$

Example

Suppose that G acts trivially on A. Then

$$\operatorname{Cu}^{\mathcal{G}}(A, \operatorname{id}_{\mathcal{A}}) = \operatorname{Cu}(\mathcal{G}) \otimes \operatorname{Cu}(\mathcal{A}) = \{f : \widehat{\mathcal{G}} \to \operatorname{Cu}(\mathcal{A})\}$$

Let G act on a locally compact space X. Then $X \to X/G$ induces $\operatorname{Cu}^{G}(C_{0}(X/G)) \cong \operatorname{Cu}(G) \otimes \operatorname{Cu}(C_{0}(X/G)) \to \operatorname{Cu}^{G}(C_{0}(X)),$

so we get a natural map $\varphi \colon \mathrm{Cu}(C_0(X/G)) \to \mathrm{Cu}^G(C_0(X)).$

Theorem

Let G act on X. Consider the statements

Example

Suppose that G acts trivially on A. Then

$$\operatorname{Cu}^{\mathcal{G}}(A, \operatorname{id}_{\mathcal{A}}) = \operatorname{Cu}(\mathcal{G}) \otimes \operatorname{Cu}(\mathcal{A}) = \{f : \widehat{\mathcal{G}} \to \operatorname{Cu}(\mathcal{A})\}$$

Let G act on a locally compact space X. Then $X \to X/G$ induces $\operatorname{Cu}^{G}(C_{0}(X/G)) \cong \operatorname{Cu}(G) \otimes \operatorname{Cu}(C_{0}(X/G)) \to \operatorname{Cu}^{G}(C_{0}(X)),$

so we get a natural map $\varphi \colon \mathrm{Cu}(\mathcal{C}_0(X/\mathcal{G})) \to \mathrm{Cu}^{\mathcal{G}}(\mathcal{C}_0(X)).$

Theorem

Let G act on X. Consider the statements

The action is free.

Example

Suppose that G acts trivially on A. Then

$$\operatorname{Cu}^{\mathcal{G}}(A, \operatorname{id}_{\mathcal{A}}) = \operatorname{Cu}(\mathcal{G}) \otimes \operatorname{Cu}(\mathcal{A}) = \{f : \widehat{\mathcal{G}} \to \operatorname{Cu}(\mathcal{A})\}$$

Let G act on a locally compact space X. Then $X \to X/G$ induces $\operatorname{Cu}^{G}(C_{0}(X/G)) \cong \operatorname{Cu}(G) \otimes \operatorname{Cu}(C_{0}(X/G)) \to \operatorname{Cu}^{G}(C_{0}(X)),$

so we get a natural map $\varphi \colon \mathrm{Cu}(C_0(X/G)) \to \mathrm{Cu}^G(C_0(X)).$

Theorem

Let G act on X. Consider the statements

- The action is free.
- Solution The natural map φ : Cu(C₀(X/G)) → Cu^G(C₀(X)) is a Cu-isomorphism.

Example

Suppose that G acts trivially on A. Then

$$\operatorname{Cu}^{\mathcal{G}}(\mathcal{A}, \operatorname{id}_{\mathcal{A}}) = \operatorname{Cu}(\mathcal{G}) \otimes \operatorname{Cu}(\mathcal{A}) = \{f \colon \widehat{\mathcal{G}} \to \operatorname{Cu}(\mathcal{A})\}$$

Let G act on a locally compact space X. Then $X \to X/G$ induces $\operatorname{Cu}^{G}(C_{0}(X/G)) \cong \operatorname{Cu}(G) \otimes \operatorname{Cu}(C_{0}(X/G)) \to \operatorname{Cu}^{G}(C_{0}(X)),$

so we get a natural map $\varphi \colon \mathrm{Cu}(C_0(X/G)) \to \mathrm{Cu}^G(C_0(X)).$

Theorem

Let G act on X. Consider the statements

- The action is free.
- Solution 3 The natural map φ : Cu(C₀(X/G)) → Cu^G(C₀(X)) is a Cu-isomorphism.

Then (1) implies (2), and if G is a Lie group and X is compact, then also (2) implies (1).

It is easy to see that if α and β are conjugate, then $Cu^{\mathcal{G}}(\mathcal{A}, \alpha) \cong Cu^{\mathcal{G}}(\mathcal{B}, \beta).$

It is easy to see that if α and β are conjugate, then $Cu^{\mathcal{G}}(\mathcal{A}, \alpha) \cong Cu^{\mathcal{G}}(\mathcal{B}, \beta).$

Definition

Let $\alpha: G \to \operatorname{Aut}(A)$ be an action. An α -cocycle is a strongly continuous function $\omega: G \to \mathcal{U}(M(A))$ such that $\omega_{gh} = \omega_g \alpha_g(\omega_h)$ for all $g, h \in G$.

It is easy to see that if α and β are conjugate, then $Cu^{\mathcal{G}}(\mathcal{A}, \alpha) \cong Cu^{\mathcal{G}}(\mathcal{B}, \beta).$

Definition

Let $\alpha: G \to \operatorname{Aut}(A)$ be an action. An α -cocycle is a strongly continuous function $\omega: G \to \mathcal{U}(\mathcal{M}(A))$ such that $\omega_{gh} = \omega_g \alpha_g(\omega_h)$ for all $g, h \in G$. In this case, $\alpha^{\omega}: G \to \operatorname{Aut}(A)$ given by $\alpha_g^{\omega} = \operatorname{Ad}(\omega_g) \circ \alpha_g$ is also a continuous action.

It is easy to see that if α and β are conjugate, then $Cu^{\mathcal{G}}(\mathcal{A}, \alpha) \cong Cu^{\mathcal{G}}(\mathcal{B}, \beta).$

Definition

Let $\alpha: G \to \operatorname{Aut}(A)$ be an action. An α -cocycle is a strongly continuous function $\omega: G \to \mathcal{U}(\mathcal{M}(A))$ such that $\omega_{gh} = \omega_g \alpha_g(\omega_h)$ for all $g, h \in G$. In this case, $\alpha^{\omega}: G \to \operatorname{Aut}(A)$ given by $\alpha_g^{\omega} = \operatorname{Ad}(\omega_g) \circ \alpha_g$ is also a continuous action.

Theorem

There is a natural isomorphism $\operatorname{Cu}^{G}(A, \alpha) \cong \operatorname{Cu}^{G}(A, \alpha^{\omega})$ as $\operatorname{Cu}(G)$ -semimodules.

It is easy to see that if α and β are conjugate, then $Cu^{\mathcal{G}}(\mathcal{A}, \alpha) \cong Cu^{\mathcal{G}}(\mathcal{B}, \beta).$

Definition

Let $\alpha: G \to \operatorname{Aut}(A)$ be an action. An α -cocycle is a strongly continuous function $\omega: G \to \mathcal{U}(\mathcal{M}(A))$ such that $\omega_{gh} = \omega_g \alpha_g(\omega_h)$ for all $g, h \in G$. In this case, $\alpha^{\omega}: G \to \operatorname{Aut}(A)$ given by $\alpha_g^{\omega} = \operatorname{Ad}(\omega_g) \circ \alpha_g$ is also a continuous action.

Theorem

There is a natural isomorphism $\operatorname{Cu}^{G}(A, \alpha) \cong \operatorname{Cu}^{G}(A, \alpha^{\omega})$ as $\operatorname{Cu}(G)$ -semimodules.

In some special cases, actions with isomorphic ${\rm Cu}^{{\mbox{\scriptsize G}}}$ are cocycle conjugate.

Definition (Robert's algebras)

A C^* -algebra is in Robert's class \mathcal{R} if it is a direct limit of 1-dimensional NCCW-complexes with trivial K_1 -groups.

Definition (Robert's algebras)

A C^* -algebra is in Robert's class \mathcal{R} if it is a direct limit of 1-dimensional NCCW-complexes with trivial K_1 -groups.

This includes all AF- and all AI-algebras.

Theorem (Robert, 2010)

Unital algebras in \mathcal{R} are classified by their Cuntz semigroup.

(Instead of A being unital, can require $A \otimes \mathcal{K}$ having an approximate identity of projections.)

Definition

Let $A \in \mathcal{R}$, and write it $A = \varinjlim A_n$ as in the definition. If G is finite, an action $\alpha \colon G \to \operatorname{Aut}(A)$ is called *locally representable* if it is the direct limit of inner actions on A_n .

Definition

Let $A \in \mathcal{R}$, and write it $A = \varinjlim A_n$ as in the definition. If G is finite, an action $\alpha \colon G \to \operatorname{Aut}(A)$ is called *locally representable* if it is the direct limit of inner actions on A_n .

These actions can be classified:

Theorem

Let G be finite abelian, let $A, B \in \mathcal{R}$ be unital and let α and β be locally representable actions on A and B.

Definition

Let $A \in \mathcal{R}$, and write it $A = \varinjlim A_n$ as in the definition. If G is finite, an action $\alpha \colon G \to \operatorname{Aut}(A)$ is called *locally representable* if it is the direct limit of inner actions on A_n .

These actions can be classified:

Theorem

Let G be finite abelian, let $A, B \in \mathcal{R}$ be unital and let α and β be locally representable actions on A and B. For every Cu(G)-semimodule morphism

$$\rho \colon \mathrm{Cu}^{\mathsf{G}}(\mathsf{A}, \alpha) \to \mathrm{Cu}^{\mathsf{G}}(\mathsf{B}, \beta) \text{ with } [1_{\mathsf{A}}] \mapsto [1_{\mathsf{B}}]$$

there are a β -cocycle ω and $\phi: (A, \alpha) \to (B, \beta^{\omega})$ lifting ρ .

Let G be finite abelian, let $A, B \in \mathcal{R}$ and let α and β be locally representable actions on A and B. For every Cu(G)-morphism

$$\rho \colon \mathrm{Cu}^{\mathsf{G}}(\mathsf{A}, \alpha) \to \mathrm{Cu}^{\mathsf{G}}(\mathsf{B}, \beta) \text{ with } [1_{\mathsf{A}}] \mapsto [1_{\mathsf{B}}]$$

there are a β -cocycle ω and a unital homomorphism $\phi: (A, \alpha) \to (B, \beta^{\omega})$ lifting ρ .

Let G be finite abelian, let $A, B \in \mathcal{R}$ and let α and β be locally representable actions on A and B. For every Cu(G)-morphism

$$\rho \colon \mathrm{Cu}^{\mathsf{G}}(\mathsf{A}, \alpha) \to \mathrm{Cu}^{\mathsf{G}}(\mathsf{B}, \beta) \text{ with } [1_{\mathsf{A}}] \mapsto [1_{\mathsf{B}}]$$

there are a β -cocycle ω and a unital homomorphism $\phi: (A, \alpha) \rightarrow (B, \beta^{\omega})$ lifting ρ . Moreover,

• If ρ is invertible, then ϕ can be chosen to be invertible.

イロト 不得下 イヨト イヨト 二日

Let G be finite abelian, let $A, B \in \mathcal{R}$ and let α and β be locally representable actions on A and B. For every Cu(G)-morphism

$$\rho \colon \mathrm{Cu}^{\mathsf{G}}(\mathsf{A}, \alpha) \to \mathrm{Cu}^{\mathsf{G}}(\mathsf{B}, \beta) \text{ with } [1_{\mathsf{A}}] \mapsto [1_{\mathsf{B}}]$$

there are a β -cocycle ω and a unital homomorphism $\phi: (A, \alpha) \rightarrow (B, \beta^{\omega})$ lifting ρ . Moreover,

- If ρ is invertible, then ϕ can be chosen to be invertible.
- ω is trivial iff $\rho([e_{\alpha}]) = [e_{\beta}].$

Here e_{α} is the projection $e_{\alpha} = \frac{1}{|G|} \sum_{g \in G} u_g$ in the crossed product $A \rtimes_{\alpha} G$, and similarly for e_{β} .

Let G be finite abelian, let $A, B \in \mathcal{R}$ and let α and β be locally representable actions on A and B. For every Cu(G)-morphism

$$\rho \colon \mathrm{Cu}^{\mathsf{G}}(\mathsf{A}, \alpha) \to \mathrm{Cu}^{\mathsf{G}}(\mathsf{B}, \beta) \text{ with } [1_{\mathsf{A}}] \mapsto [1_{\mathsf{B}}]$$

there are a β -cocycle ω and a unital homomorphism $\phi: (A, \alpha) \rightarrow (B, \beta^{\omega})$ lifting ρ . Moreover,

- If ρ is invertible, then ϕ can be chosen to be invertible.
- ω is trivial iff $\rho([e_{\alpha}]) = [e_{\beta}].$

Here e_{α} is the projection $e_{\alpha} = \frac{1}{|G|} \sum_{g \in G} u_g$ in the crossed product $A \rtimes_{\alpha} G$, and similarly for e_{β} .

(Unitality can be replaced by $A \otimes \mathcal{K}$ and $B \otimes \mathcal{K}$ having an approximate identity of projections.)

Thank you.