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The Cuntz semigroup

Definition (Cuntz comparison, Cuntz semigroup.)

Let A be a C*-algebra and let a, b ∈ A+.

We write a - b if
there is (dn)n∈N in A such that

lim
n→∞
‖dnbd∗n − a‖ = 0.

Write a ∼ b if a - b and b - a.
The Cuntz semigroup of A, denoted by Cu(A), is defined as
the set of Cuntz equivalence classes of positive elements of
A⊗K.

One shows that Cu(A) is a partially ordered abelian semigroup,
and that A 7→ Cu(A) is a functor from the category of
C ∗-algebras to a certain category Cu of such semigroups.
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The representation semiring

The Cuntz semigroup has been very important in classification
theory of C ∗-algebras, as in some cases it is a much finer
invariant than K -theory. We wish to use its equivariant version
as an invariant for group actions.

We first present the construction when the algebra is C.
Groups will always be compact (and second countable).

Definition (Representation semiring)

The representation semiring Cu(G ) of G is the set of all
unitary equivalence classes of unitary representations of G on
separable Hilbert spaces.

Cu(G ) is a unital Cu-semiring under direct sum and tensor
product.
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The Equivariant Cuntz semigroup

Recall: Cu(G ) is the set of equivalence classes of separable
unitary representations of G .

Definition

Let G be a compact group, let A be a C ∗-algebra and let
α : G → Aut(A). The equivariant Cuntz semigroup CuG (A, α)
is defined using G -invariant positive elements in A⊗K(Hµ),
where µ ranges over all unitary representations of G , and
A⊗K(Hµ) has the diagonal action of G .

CuG (A, α) has a natural Cu(G )-action (tensor product) which
makes it into a Cu(G )-semimodule.

CuG resembles KG
∗ .
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The equivariant Cuntz semigroup

Theorem

The equivariant Cuntz semigroup is a stable and continuous
functor from the category of G -C ∗-algebras, to the category CuG

of Cu(G )-semimodules,

whose objects S belong to Cu and satisfy

1 if x ∈ S , then 1 · s = s;

2 if x , y ∈ S and s, t ∈ Cu(G ) satisfy x ≤ y and r ≤ s, then
r · x ≤ s · y ;

3 if x , y ∈ S and s, t ∈ Cu(G ) satisfy x � y and r � s, then
r · x � s · y ;

4 if (xn)n∈N is an increasing sequence in S , and (rn)n∈N is an
increasing sequence in Cu(G ), then

sup
n∈N

(rn · xn) =

(
sup
n∈N

rn

)
·
(

sup
n∈N

xn

)
;

and whose morphisms are the morphisms in Cu that respect the
Cu(G )-semimodule structure.
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Alternative pictures

Theorem

CuG (A, α) is naturally isomorphic in CuG to the direct limit

lim−→
[µ]∈Cu(G)

Cu
(
(A⊗K(Hµ))G

)
.

Theorem

CuG (A, α) has a description using countably generated
equivariant Hilbert modules.

Theorem

CuG (A, α) is naturally isomorphic in CuG to

Cu
(
(A⊗K(L2(G ))⊗K)G

)
.
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Julg’s Theorem for CuG

One can checks that Cu(G ) = N[Ĝ ] (as semirings) when G is
compact abelian.

Julg’s Theorem for CuG

There is a natural Cu-isomorphism

CuG (A, α) ∼= Cu(Aoα G ).

When G is abelian, the Cu(G )-semimodule structure is easy

to describe: an element χ ∈ Ĝ acts via

χ · s = Cu(α̂χ)(s)

for s ∈ Cu(Aoα G ).

7 / 13



Julg’s Theorem for CuG

One can checks that Cu(G ) = N[Ĝ ] (as semirings) when G is
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An application to freeness of actions

Example

Suppose that G acts trivially on A.

Then

CuG (A, idA) = Cu(G )⊗ Cu(A) = {f : Ĝ → Cu(A)}.

Let G act on a locally compact space X . Then X → X/G induces

CuG (C0(X/G )) ∼= Cu(G )⊗ Cu(C0(X/G ))→ CuG (C0(X )),

so we get a natural map ϕ : Cu(C0(X/G ))→ CuG (C0(X )).

Theorem

Let G act on X . Consider the statements

1 The action is free.

2 The natural map ϕ : Cu(C0(X/G ))→ CuG (C0(X )) is a
Cu-isomorphism.

Then (1) implies (2), and if G is a Lie group and X is compact,
then also (2) implies (1).
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CuG as an invariant for group actions

It is easy to see that if α and β are conjugate, then
CuG (A, α) ∼= CuG (B , β).

Definition

Let α : G → Aut(A) be an action. An α-cocycle is a strongly
continuous function ω : G → U(M(A)) such that
ωgh = ωgαg (ωh) for all g , h ∈ G .
In this case, αω : G → Aut(A) given by αωg = Ad(ωg ) ◦ αg is
also a continuous action.

Theorem

There is a natural isomorphism CuG (A, α) ∼= CuG (A, αω) as
Cu(G )-semimodules.

In some special cases, actions with isomorphic CuG are
cocycle conjugate.
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Classification of finite group actions

Definition (Robert’s algebras)

A C ∗-algebra is in Robert’s class R if it is a direct limit of
1-dimensional NCCW-complexes with trivial K1-groups.

This includes all AF- and all AI-algebras.

Theorem (Robert, 2010)

Unital algebras in R are classified by their Cuntz semigroup.

(Instead of A being unital, can require A⊗K having an
approximate identity of projections.)
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Classification of finite group actions

Definition

Let A ∈ R, and write it A = lim−→An as in the definition. If G is
finite, an action α : G → Aut(A) is called locally representable if it
is the direct limit of inner actions on An.

These actions can be classified:

Theorem

Let G be finite abelian, let A,B ∈ R be unital and let α and β be
locally representable actions on A and B. For every
Cu(G )-semimodule morphism

ρ : CuG (A, α)→ CuG (B, β) with [1A] 7→ [1B ]

there are a β-cocycle ω and φ : (A, α)→ (B, βω) lifting ρ.
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Theorem (continuation)

Let G be finite abelian, let A,B ∈ R and let α and β be locally
representable actions on A and B. For every Cu(G )-morphism

ρ : CuG (A, α)→ CuG (B, β) with [1A] 7→ [1B ]

there are a β-cocycle ω and a unital homomorphism
φ : (A, α)→ (B, βω) lifting ρ.

Moreover,

If ρ is invertible, then φ can be chosen to be invertible.

ω is trivial iff ρ([eα]) = [eβ].

Here eα is the projection eα = 1
|G |
∑

g∈G ug in the crossed product
Aoα G , and similarly for eβ.

(Unitality can be replaced by A⊗K and B ⊗K having an
approximate identity of projections.)
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Thank you.
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