
QUASITRACES AND AW ∗-ALGEBRAS

Abstract. These are lecture notes of a talk given in the kleines Seminar in Münster. The talk is based on
Parts I and II of [BH82], and Sections 3 and 4 of [Haa14].
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1. Introduction

The notion of finiteness is crucial in the study of operator algebras. The weakest form of finiteness is
the requirement that x∗x = 1 implies xx∗ = 1, and the strongest is the existence of a separating family of
tracial states. For von Neumann algebras, these are equivalent, and this fact plays an important role in the
classification of factors by Murray and von Neumann. Cuntz’s groundbreaking work on dimension functions
[Cun81] was a big step forward in the understanding of the notion of finiteness for C∗-algebras. He defined a
partially ordered group K∗0 (A) for a C∗-algebra A, and showed that that its states are identified with what
he called dimension (or rank) functions on A.

Blackadar and Handelman clarified the relation between rank functions and (quasi)traces. Their extensive
study of quasitraces was the starting point in Haagerup’s work [Haa14], where he showed that every quasitrace
on a unital exact C∗-algebra is a trace.

There are two goals in this lecture: first, to explain the correspondence between rank functions and
quasitraces, and second, to prove the following result:

Theorem. (Blackadar-Handelman; Haagerup). Let A be a unital C∗-algebra and let τ be a quasitrace on
A. Then there exist a finite AW ∗-algebra Mτ , a faithful normal quasitrace τ on Mτ , and a unital embedding
ψ : A→Mτ such that τ = τ ◦ψ. Moreover, Mτ is the smallest such AW ∗-algebra. Finally, if τ is an extreme
quasitrace, then Mτ is a factor.

2. Rank functions and quasitraces

We begin with the definition of rank functions. Let A be a unital C∗-algebra. For positive elements
a, b ∈ A, we write a - b if there exists a sequence (xn)n∈N in A such that xnbx

∗
n → a.

Definition 2.1. A function D : A→ [0, 1] is said to be a rank function if

(1) D(a+ b) = D(a) +D(b) whenever a ⊥ b;
(2) D(a) = D(a∗a) = D(aa∗) = D(a∗) for all a ∈ A;
(3) 0 ≤ a ≤ b implies D(a) ≤ D(b);
(4) a - b implies D(a) ≤ D(b)

Moreover, we say that D is

(a) Normalized, if sup
a∈A

D(a) = 1.

(b) Subadditive, if D(a+ b) ≤ D(a) +D(b) for all a, b ∈ A.
(c) Weakly subadditive, if D(a+ b) ≤ D(a) +D(b) whenever ab = ba.
(d) Lower semicontinuous, if D−1((λ, 1]) is open in A for λ ∈ [0, 1).
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(Dimension functions are defined analogously, using M∞(A) as the domain and [0,∞) as the codomain.
We will not need these in this lecture.)

The kernel of D is ker(D) = {a ∈ A : D(a) = 0}, and D is said to be faithful if ker(D) = {0}.

Lower semicontinuity guarantees that ker(D), which is always a 2-sided ∗-ideal, is closed. By Theo-
rem I.1.17 in [BH82], a lower semicontinuous rank function D on A induces a lower semicontinuous faithful
rank function on A/ ker(D).

The following is Corollary 4.7 in [Cun81].

Theorem 2.2. (Cuntz). Let A be a simple unital C∗-algebra. Then A is stably finite if and only if there
exists a lower semicontinuous, normalized, faithful, subadditive rank function on A.

In analogy to what happens in von Neumann algebras, one would like to conclude that A has a trace.
While this is not known to be the case in general, one can conclude that A has a quasitrace (roughly speaking,
this is a trace that is only assumed to be linear on commutative subalgebras). Here is the precise definition:

Definition 2.3. Let A be a unital C∗-algebra. A 1-quasitrace on A is a function τ : A→ C satisfying

(1) τ(x∗x) = τ(x∗x) ≥ 0 for all x ∈ A;
(2) τ(a+ ib) = τ(a) + iτ(b) for a, b ∈ Asa;
(3) τ is linear on every abelian subalgebra of A.

We say that τ is normalized if τ(1) = 1. For n ≥ 2, we say that τ is an n-quasitrace if it extends to a
1-quasitrace on Mn(A).

We denote by QT(A) the set of all 2-quasitraces.

Since 1-quasitraces are continuous (not obvious), it follows that a linear quasitrace is in fact a trace. Also,
a 2-quasitrace is an n-quasitrace for all n ∈ N.

Question 2.4. (Kaplansky). Is every 2-quasitrace a trace?

Our next immediate goal is to show that there is a canonical correspondence between rank functions and
quasitraces. We start with the commutative case:

Proposition 2.5. Let X be a locally compact Hausdorff space. Then there is a canonical correspondence
between subadditive lower semicontinuous rank functions on C0(X) and countably additive measures on X
with σ-compact support, defined on the σ-algebra generated by σ-compact open sets.

Proof. Given µ, set Dµ(f) = µ({x ∈ X : f(x) 6= 0}. Given D, define µD as follows. For U ⊆ X open and
σ-compact, find h ∈ C0(X) with U = {x ∈ X : h(x) 6= 0}, and set µD(U) = D(f). Then D is well defined
by property (4) in Definition 2.1. �

Theorem 2.6. (Theorem II.2.2 in [BH82]). There is a natural affine bijection between weakly subadditive
lower semicontinuous rank functions on A and quasitraces on A.

Moreover, the subadditive rank functions correspond to the 2-quasitraces.

Proof. We give a sketch. Suppose D is as in the statement, and define τD as follows. If B ⊆ A is commutative,
then D induces a positive functional τBD on B by Proposition 2.5. This defines τD on normal elements. For
general x ∈ A, write x = a+ ib with a, b ∈ Asa, and set τD(x) = τD(a) + iτD(b).

It remains to show that τ(x∗x) = τ(xx∗). For this, and by the correspondence given in Proposition 2.5, it
suffices to show that for all nonnegative f ∈ C(sp(x∗x)∪{0}) vanishing at 0, we have D(f(x∗x)) = D(f(xx∗).
Represent A on a Hilbert space H, and consider the polar decomposition x = u|x| of x in B(H). Then
y = u(f(x∗x))1/2 belongs to A and y∗y = f(x∗x) and yy∗ = f(xx∗). Since D(y∗y) = D(yy∗), we are done.

Conversely, given τ , set Dτ (a) = sup
ε>0

τ(fε(|a|)) for a ∈ A. Then Dτ is a weakly subadditive lower

semicontinuous rank function. We omit the details. �

3. Minimal AW ∗-completions

In this section, we will explain how every 2-quasitrace on a unital C∗-algebra comes from a AW ∗-algebra.
We write QT(A) for the set of all 2-quasitraces on A.
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Definition 3.1. Let τ ∈ QT(A). Set ‖x‖τ,2 = τ(x∗x)1/2 for x ∈ A.

Lemma 3.2. Let τ ∈ QT(A), and let x, y ∈ A. Then

(1) τ(a+ b)1/2 ≤ τ(a)1/2 + τ(b)1/2.

(2) ‖x+ y‖2/3τ,2 ≤ ‖x‖
2/3
τ,2 + ‖y‖2/3τ,2 .

(3) ‖xy‖τ,2 ≤ ‖x‖‖y‖τ,2 and ‖xy‖τ,2 ≤ ‖x‖τ,2‖y‖.

Proof. We only sketch (2). For λ > 0, we have

(x+ y)∗(x+ y) ≤ (x+ y)∗(x+ y) + (λ1/2x− λ−1/2y)∗(λ1/2x− λ−1/2y) = (1 + λ)x∗x+ (1 + 1/λ)y∗y.

Using (1), it follows that ‖x + y‖τ,2 ≤ (1 + λ)1/2‖x‖τ,2 + (1 + 1/λ)1/2‖y‖τ,2. Minimize on λ: we get

λ =
(
‖y‖τ,2
‖x‖τ,2

)3/2

and the minimum value gives

‖x+ y‖τ,2 ≤
(
‖x‖2/3τ,2 + ‖y‖2/3τ,2

)3/2

.

�

Definition 3.3. For a unital C∗-algebra A and a faithful quasitrace τ on A, define a metric dτ on A by

dτ (x, y) = ‖x− y‖2/32,τ .

The sum, the involution, and τ |A+
are continuous in the dτ metric. Moreover, the product is (jointly)

continuous on norm-bounded subsets.

Proposition 3.4. Let τ be a faithful quasitrace on a unital C∗-algebra A. Then the unit ball A1 of A is
closed in the dτ metric.

Proof. Let (xn)n∈N be a sequence in A1 converging to x ∈ A in dτ . Set an = x∗nxn and a = x∗x. By the
comments above (dτ -continuity of sum, bounded product and τ on A+), we deduce that

dτ - lim
n→∞

τ(f(an)) = f(a)

for every polynomial f . Let µn be the measure on sp(an) given by τ |C∗(an,1), and let µ be the measure on
sp(a) given by τ |C∗(a,1). We regard them as measures on J = [0,max{1, ‖a‖}]. Then

weak∗- lim
n→∞

µn = µ

as elements in C(J)∗. Since µn is supported on [0, 1] for all n, we deduce that the same holds for µ. Since
τ is faithful, we must have supp(µ) = sp(a). Hence ‖x‖2 = ‖a‖ ≤ 1, and the proof is finished. �

We turn to AW ∗-algebras. Recall that a compact Hausdorff space X is said to be stonean if the closure
of every open subset of X is open. A Stonean space X is called hyperstonean if C(X) is isomorphic, as a
Banach space, to the dual of some Banach space E.

Definition 3.5. Let A be a unital C∗-algebra. We say that A is an AW ∗-algebra if every maximal abelian
subalgebra of A has stonean spectrum.

Since the spectrum of an abelian von Neumann algebra is hyperstonean, and a maximal abelian subalgebra
of a von Neumann algebra is a von Neumann algebra, it follows that a von Neumann algebra is an AW ∗-
algebra.

The following will be very relevant. Recall that a C∗-algebra B with a faithful trace is a von Neumann
algebra if and only if its norm unit ball is complete in the 2-norm associated to that trace. (And moreover
the trace is automatically normal.)

Theorem 3.6. Let τ be a faithful quasitrace on a unital C∗-algebra A. Then A is an AW ∗-algebra and τ
is normal if and only if the unit ball of A is complete in dτ .

Proof. We only prove part of the “if” implication. Suppose that A1 is complete in dτ , and let B be a maximal
abelian subalgebra of A. First, let’s observe that B is dτ -closed in A: if a ∈ A is a dτ -limit of elements in b,
it follows from continuity of the product on bounded sets that a commutes with every element in B. Since
B is maximal abelian, we conclude that a ∈ B, so B is dτ -closed in A.
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By Proposition 3.4, B1 is dτ -closed in B, so B1 is dτ -closed in A. In particular, B1 is dτ -closed in A1. Since
A1 is dτ -complete, the same holds for B1. Now, τ restricts to a (faithful) trace on B, and dτ -completeness
of a bounded set is the same as completeness with respect to the associated 2-norm on B. It follows that B
is a von Neumann algebra, and in particular sp(B) is (hyper)stonean. Hence A is an AW ∗-algebra. �

Theorem 3.7. Let M be an AW ∗-algebra with a faithful normal quasitrace τ , and let A be a C∗-subalgebra
of M . Then the dτ closure B of A in M is the smallest AW ∗-subalgebra of M containing A.

Proof. One can show, using an argument similar to the proof of Kaplansky’s density theorem, that A1 is
dense in B1. In particular, B1 is dτ -complete and B is an AW ∗-algebra by Theorem 3.6. If C is another
AW ∗-algebra with A ⊆ C, then C1 is dτ -complete again by Theorem 3.6, and thus C is dτ -closed. Hence

A
dτ

= B ⊆ C. �

Theorem 3.8. Let A be a unital C∗-algebra and let τ be a faithful quasitrace on A. Then there exist an
AW ∗-algebra M , a normal faithful quasitrace σ on M , and an embedding ϕ : A→M such that τ = σ ◦ ϕ.

Proof. Let ω be a free ultrafilter on N, and define a (rarely faithful) quasitrace τω on `∞(A) by

τω((xn)n∈N) = lim
ω
τ(xn)

for (xn)n∈N ∈ `∞(A). Set
Jτ,ω = {(xn)n∈N : lim

ω
τn(x∗nxn) = 0},

which is a closed two-sided ideal in `∞(A). Set Aω = `∞(A)/Jτ,ω. Then τω induces a faithful quasitrace
τω : Aτ,ω → C. If ϕ : A→ `∞(A)→ Aτ,ω denotes the composition of the canonical maps, then ϕ is injective
because τ is faithful, and it is clear that τ = τω ◦ ϕ.

We claim that Aτ,ω is an AW ∗-algebra. It is not hard to see that the unit ball of Aτ,ω is dτω -complete,
using a reindexation argument, and the fact that it is the ultrapower of the metric spaces A1. The result
then follows from Theorem 3.6. �

The AW ∗-algebra from the previous theorem is not unique, and it is generally too large.
By Theorem 3.7, the dσ-closure Mτ of ϕ(A) in M is the smallest AW ∗-subalgebra of M containing A.

With
`∞τ (A) = {(xn)n∈N ∈ `∞(A) : (xn)n∈N is a dτ -Cauchy sequence}

and
Iτ = {(xn)n∈N ∈ `∞(A) : dτ - lim

n→∞
xn = 0},

it is easy to see that Mτ
∼= `∞τ (A)/Iτ . Moreover, there is a faithful quasitrace τ on Mτ induced by τ , given

by
τ((xn)n∈N) = lim

n→∞
τ(xn).

With ψ : A → `∞τ (A) → Mτ denoting the canonical inclusion, it follows that τ = τ ◦ ψ. This is the
AW ∗-algebra we were looking for.

Definition 3.9. We call the pair (Mτ , τ) the (minimal) AW ∗-completion of (A, τ).

For a projection p in a unital C∗-algebra, we write p⊥ for 1− p.

Proposition 3.10. Let τ be a faithful normalized quasitrace on a unital C∗-algebra A. If τ is an extreme
point in QT(A), then Mτ is an AW ∗-factor (it has trivial center).

Proof. Suppose there is a central projection p ∈ Z(Mτ )\{0, 1}. Set τ1(x) = τ(pψ(x)) and τ2(x) = τ(p⊥ψ(x))
for all x ∈ A. Then τ1 6= 0 6= τ2. Since p and p⊥ are central, it follows that τ = τ1 + τ2. Upon normalizing
τ1 and τ2, we conclude that τ is not extreme. This contradiction implies the result. �
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