The continuous Rokhlin property and permanence of the UCT

Eusebio Gardella

University of Oregon and Fields Institute

 C^* -algebras and Dynamical Systems, Fields Institute, Toronto, June 2014

イロト イポト イヨト イヨト 二日

1/12

All C^* -algebras are separable and unital (and sometimes also nuclear).

Definition

An action $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the *Rokhlin property* if there exists a sequence $(u_n)_{n \in \mathbb{N}}$ of unitaries in A such that

•
$$\lim_{n\to\infty} \|\alpha_{\zeta}(u_n) - \zeta u_n\| = 0$$
 uniformly in $\zeta \in \mathbb{T}$.

$$\lim_{n\to\infty} \|u_n a - a u_n\| = 0 \text{ for all } a \in A$$

All C^* -algebras are separable and unital (and sometimes also nuclear).

Definition

An action $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the *Rokhlin property* if there exists a sequence $(u_n)_{n \in \mathbb{N}}$ of unitaries in A such that

•
$$\lim_{n\to\infty} \|\alpha_{\zeta}(u_n) - \zeta u_n\| = 0$$
 uniformly in $\zeta \in \mathbb{T}$.

$$\lim_{n\to\infty} \|u_n a - a u_n\| = 0 \text{ for all } a \in A$$

Theorem

If $\alpha : \mathbb{T} \to \operatorname{Aut}(A)$ has the Rokhlin property, then α is the dual action of some automorphism $\check{\alpha}$ of A^{α} . This automorphism $\check{\alpha}$ is unique up to cocycle equivalence and is approximately inner.

Rokhlin actions have a naturally associated $\operatorname{Ext-class}$, which in some cases is a complete invariant:

Rokhlin actions have a naturally associated $\operatorname{Ext-class}$, which in some cases is a complete invariant:

Theorem

If $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the Rokhlin property, then the exact sequences

$$0
ightarrow {\mathcal K}_j({\mathcal A}^lpha)
ightarrow {\mathcal K}_j({\mathcal A})
ightarrow {\mathcal K}_{1-j}({\mathcal A}^lpha)
ightarrow 0 \;\; j=0,1$$

obtained from the Pimsner-Voiculescu for α , are pure.

Rokhlin actions have a naturally associated $\operatorname{Ext-class}$, which in some cases is a complete invariant:

Theorem

If $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the Rokhlin property, then the exact sequences

$$0 o {\it K}_{j}({\it A}^{lpha}) o {\it K}_{j}({\it A}) o {\it K}_{1-j}({\it A}^{lpha}) o 0 \;\; j=0,1$$

obtained from the Pimsner-Voiculescu for α , are pure.

Theorem

Let $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ have the Rokhlin property. If A is a Kirchberg algebra and both A and A^{α} satisfy the UCT, then the Ext-class of the previous theorem is a complete invariant for α .

Without the UCT, a complete invariant is

 $(A^{\alpha}, KK(\check{\alpha})).$

Theorem

Let $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ have the Rokhlin property. If A is a Kirchberg algebra and both A and A^{α} satisfy the UCT, then the Ext-class of the previous theorem is a complete invariant for α .

Without the UCT, a complete invariant is

 $(A^{\alpha}, KK(\check{\alpha})).$

This leaves some questions open:

Theorem

Let $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ have the Rokhlin property. If A is a Kirchberg algebra and both A and A^{α} satisfy the UCT, then the Ext-class of the previous theorem is a complete invariant for α .

Without the UCT, a complete invariant is

 $(A^{\alpha}, KK(\check{\alpha})).$

This leaves some questions open:

Question

Does the UCT for A^{α} follow from the UCT for A?

Theorem

Let $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ have the Rokhlin property. If A is a Kirchberg algebra and both A and A^{α} satisfy the UCT, then the Ext-class of the previous theorem is a complete invariant for α .

Without the UCT, a complete invariant is

 $(A^{\alpha}, KK(\check{\alpha})).$

This leaves some questions open:

Question

Does the UCT for A^{α} follow from the UCT for A?

Question

What is the range of the invariant?

Theorem

Let $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ have the Rokhlin property. If A is a Kirchberg algebra and both A and A^{α} satisfy the UCT, then the Ext-class of the previous theorem is a complete invariant for α .

Without the UCT, a complete invariant is

 $(A^{\alpha}, KK(\check{\alpha})).$

This leaves some questions open:

Question

Does the UCT for A^{α} follow from the UCT for A?

Question

What is the range of the invariant?

Answering these questions is the main motivation of this work.

The following is our main definition.

Definition

An action $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the *continuous Rokhlin property* if there exists a continuous path $(u_t)_{t \in [0,\infty)}$ of unitaries in A such that

$$\lim_{t\to\infty} \|\alpha_{\zeta}(u_t) - \zeta u_t\| = 0 \text{ uniformly in } \zeta \in \mathbb{T}.$$

$$\lim_{t \to \infty} \|u_t a - a u_t\| = 0 \text{ for all } a \in A$$

The following is our main definition.

Definition

An action $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the *continuous Rokhlin property* if there exists a continuous path $(u_t)_{t \in [0,\infty)}$ of unitaries in A such that

$$\lim_{t\to\infty} \|\alpha_{\zeta}(u_t) - \zeta u_t\| = 0 \text{ uniformly in } \zeta \in \mathbb{T}.$$

$$Iim_{t\to\infty} \|u_t a - a u_t\| = 0 \ \text{for all} \ a \in A$$

Definition

An asymptotic morphism from A to B, is a family $\psi = (\psi_t)_t$ of maps $A \to B$, satisfying:

- $t \mapsto \psi_t(a)$ is continuous for all a in A
- $\textbf{@ For every } \lambda \text{ in } \mathbb{C} \text{ and every } \textbf{a} \text{ and } \textbf{b} \text{ in } \textbf{A} \text{, we have }$

$$\lim_{t\to\infty} \|\psi_t(\lambda a+b)-\lambda\psi_t(a)-\psi_t(b)\|=0,$$

 $\lim_{t\to\infty}\|\psi_t(ab)-\psi_t(a)\psi_t(b)\|=0,\quad\text{and}\quad \lim_{t\to\infty}\|\psi_t(a^*)-\psi_t(a)^*\|=0.$

Definition

An action $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the *continuous Rokhlin property* if there exists a continuous path $(u_t)_{t \in [0,\infty)}$ of unitaries in A such that

$$\lim_{t\to\infty} \|\alpha_{\zeta}(u_t) - \zeta u_t\| = 0 \text{ uniformly in } \zeta \in \mathbb{T}.$$

$$im_{t\to\infty} \|u_t a - a u_t\| = 0 \text{ for all } a \in A$$

The following is the main technical result:

Definition

An action $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the *continuous Rokhlin property* if there exists a continuous path $(u_t)_{t \in [0,\infty)}$ of unitaries in A such that

$$\lim_{t\to\infty} \|\alpha_{\zeta}(u_t) - \zeta u_t\| = 0 \text{ uniformly in } \zeta \in \mathbb{T}.$$

$$i m_{t \to \infty} \|u_t a - a u_t\| = 0 \text{ for all } a \in A$$

The following is the main technical result:

Asymptotic retraction $A \rightarrow A^{lpha}$

If $\alpha : \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property, then there exists an asymptotic morphism $\psi = (\psi_t)_t : A \to A^{\alpha}$ such that

$$\lim_{t\to\infty}\|(\psi_t\circ\iota)(a)-a\|=0$$

for all *a* in A^{α} .

Connections with *E*-theory and *KK*-theory

Assume that $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property. Recall that there is an asymptotic retraction $\psi = (\psi_t)_t \colon A \to A^{\alpha}$. Assume that $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property. Recall that there is an asymptotic retraction $\psi = (\psi_t)_t \colon A \to A^{\alpha}$.

Corollary

If B is separable and nuclear, there is an isomorphism

 $E(B,A)\cong E(B,A^{lpha})\oplus \ker(\psi_*)$

(ロ) (部) (E) (E) (E) (000)

induced by $\psi_* \colon E(B, A) \to E(B, A^{\alpha})$.

Assume that $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property. Recall that there is an asymptotic retraction $\psi = (\psi_t)_t \colon A \to A^{\alpha}$.

Corollary

If B is separable and nuclear, there is an isomorphism

 $E(B,A)\cong E(B,A^{lpha})\oplus \ker(\psi_*)$

```
induced by \psi_* \colon E(B, A) \to E(B, A^{\alpha}).
```

Triviality of the Ext-class

If A is nuclear, then there are isomorphisms

$$K_0(A) \cong K_0(A^{\alpha}) \oplus K_1(A^{\alpha}) \cong K_1(A).$$

In particular, the Ext-class associated to an action with the *continuous* Rokhlin property is trivial.

A C^* -algebra A satisfies the UCT if the following hold for every B:

A C^* -algebra A satisfies the UCT if the following hold for every B:

• The natural map $\tau_{A,B} \colon KK(A,B) \to \operatorname{Hom}(K_*(A),K_*(B))$ is surjective.

A C^* -algebra A satisfies the UCT if the following hold for every B:

- The natural map $\tau_{A,B} \colon KK(A,B) \to \operatorname{Hom}(K_*(A),K_*(B))$ is surjective.
- **2** The natural map $\mu_{A,B}$: ker $(\tau_{A,B}) \to \text{Ext}(K_*(A), K_{*+1}(B))$ is an isomorphism.

A C^* -algebra A satisfies the UCT if the following hold for every B:

- The natural map $\tau_{A,B} \colon KK(A,B) \to \operatorname{Hom}(K_*(A),K_*(B))$ is surjective.
- **2** The natural map $\mu_{A,B}$: ker $(\tau_{A,B}) \to \text{Ext}(K_*(A), K_{*+1}(B))$ is an isomorphism.

If this is the case, by setting $\varepsilon_{A,B} = \mu_{A,B}^{-1}$, we obtain

$$0 \longrightarrow \operatorname{Ext}(K_*(A), K_{*+1}(B)) \xrightarrow{\varepsilon_{A,B}} KK(A, B) \xrightarrow{\tau_{A,B}} \operatorname{Hom}(K_*(A), K_*(B)) \longrightarrow 0.$$

A C^* -algebra A satisfies the UCT if the following hold for every B:

- The natural map $\tau_{A,B} \colon KK(A,B) \to \operatorname{Hom}(K_*(A),K_*(B))$ is surjective.
- **2** The natural map $\mu_{A,B}$: ker $(\tau_{A,B}) \to \text{Ext}(K_*(A), K_{*+1}(B))$ is an isomorphism.

If this is the case, by setting $\varepsilon_{A,B} = \mu_{A,B}^{-1}$, we obtain

$$0 \longrightarrow \operatorname{Ext}(K_*(A), K_{*+1}(B)) \xrightarrow{\varepsilon_{A,B}} KK(A, B) \xrightarrow{\tau_{A,B}} \operatorname{Hom}(K_*(A), K_*(B)) \longrightarrow 0.$$

Preservation of the UCT

If α : $\mathbb{T} \to \text{Aut}(A)$ has the continuous Rokhlin property and A is nuclear, then the following are equivalent:

A C^* -algebra A satisfies the UCT if the following hold for every B:

- The natural map $\tau_{A,B} \colon KK(A,B) \to \operatorname{Hom}(K_*(A),K_*(B))$ is surjective.
- **2** The natural map $\mu_{A,B}$: ker $(\tau_{A,B}) \to \text{Ext}(K_*(A), K_{*+1}(B))$ is an isomorphism.

If this is the case, by setting $\varepsilon_{A,B} = \mu_{A,B}^{-1}$, we obtain

$$0 \longrightarrow \operatorname{Ext}(K_*(A), K_{*+1}(B)) \xrightarrow{\varepsilon_{A,B}} KK(A, B) \xrightarrow{\tau_{A,B}} \operatorname{Hom}(K_*(A), K_*(B)) \longrightarrow 0.$$

Preservation of the UCT

If $\alpha : \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property and A is nuclear, then the following are equivalent:

A satisfies the UCT;

A C^* -algebra A satisfies the UCT if the following hold for every B:

- The natural map $\tau_{A,B} \colon KK(A,B) \to \operatorname{Hom}(K_*(A),K_*(B))$ is surjective.
- **2** The natural map $\mu_{A,B}$: ker $(\tau_{A,B}) \to \text{Ext}(K_*(A), K_{*+1}(B))$ is an isomorphism.

If this is the case, by setting $\varepsilon_{A,B} = \mu_{A,B}^{-1}$, we obtain

$$0 \longrightarrow \operatorname{Ext}(K_*(A), K_{*+1}(B)) \xrightarrow{\varepsilon_{A,B}} KK(A, B) \xrightarrow{\tau_{A,B}} \operatorname{Hom}(K_*(A), K_*(B)) \longrightarrow 0.$$

Preservation of the UCT

If $\alpha : \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property and A is nuclear, then the following are equivalent:

- A satisfies the UCT;
- **2** A^{α} satisfies the UCT;

A C^* -algebra A satisfies the UCT if the following hold for every B:

- The natural map $\tau_{A,B} \colon KK(A,B) \to \operatorname{Hom}(K_*(A),K_*(B))$ is surjective.
- **2** The natural map $\mu_{A,B}$: ker $(\tau_{A,B}) \to \text{Ext}(K_*(A), K_{*+1}(B))$ is an isomorphism.

If this is the case, by setting $\varepsilon_{A,B} = \mu_{A,B}^{-1}$, we obtain

$$0 \longrightarrow \operatorname{Ext}(K_*(A), K_{*+1}(B)) \xrightarrow{\varepsilon_{A,B}} KK(A, B) \xrightarrow{\tau_{A,B}} \operatorname{Hom}(K_*(A), K_*(B)) \longrightarrow 0.$$

Preservation of the UCT

If $\alpha : \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property and A is nuclear, then the following are equivalent:

- A satisfies the UCT;
- **2** A^{α} satisfies the UCT;
- **3** $A \rtimes_{\alpha} \mathbb{T}$ satisfies the UCT.

Proof: (2) \iff (3) and (2) \Rightarrow (1) are easy.

(ロ) (部) (E) (E) (E) (000)

Preservation of the UCT

If $\alpha : \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property and A is nuclear, then the following are equivalent:

9/12

- A satisfies the UCT;
- **2** A^{α} satisfies the UCT;
- $A \rtimes_{\alpha} \mathbb{T} \text{ satisfies the UCT.}$

Preservation of the UCT

If $\alpha : \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property and A is nuclear, then the following are equivalent:

- A satisfies the UCT;
- **2** A^{α} satisfies the UCT;
- $A \rtimes_{\alpha} \mathbb{T} \text{ satisfies the UCT.}$

For (1) \Rightarrow (2): use $\psi = (\psi_t)_t \colon A \to A^{lpha}$ to get a diagram

which commutes by naturality.

Preservation of the UCT

If $\alpha : \mathbb{T} \to \operatorname{Aut}(A)$ has the continuous Rokhlin property and A is nuclear, then the following are equivalent:

- A satisfies the UCT;
- **2** A^{α} satisfies the UCT;
- $A \rtimes_{\alpha} \mathbb{T} \text{ satisfies the UCT.}$

For (1) \Rightarrow (2): use $\psi = (\psi_t)_t \colon A \to A^{lpha}$ to get a diagram

which commutes by naturality. An easy diagram chase gives that $\tau_{A^{\alpha},B}$ is surjective. The argument for $\mu_{A^{\alpha},B}$ is analogous.

Theorem

Let $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ have the Rokhlin property. If A is a Kirchberg algebra and both A and A^{α} satisfy the UCT, then its Ext-class is a complete invariant for α . Without the UCT, a complete invariant is

 $(A^{\alpha}, KK(\check{\alpha})).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Theorem

Let $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ have the Rokhlin property. If A is a Kirchberg algebra and both A and A^{α} satisfy the UCT, then its Ext-class is a complete invariant for α . Without the UCT, a complete invariant is

 $(A^{\alpha}, KK(\check{\alpha})).$

The range of the invariant for *continuous* Rokhlin actions can be described:

Theorem

Let $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ have the Rokhlin property. If A is a Kirchberg algebra and both A and A^{α} satisfy the UCT, then its Ext-class is a complete invariant for α . Without the UCT, a complete invariant is

 $(A^{\alpha}, KK(\check{\alpha})).$

The range of the invariant for *continuous* Rokhlin actions can be described:

(a) With UCT: every trivial extension arises (and only these).

Theorem

Let $\alpha \colon \mathbb{T} \to \operatorname{Aut}(A)$ have the Rokhlin property. If A is a Kirchberg algebra and both A and A^{α} satisfy the UCT, then its Ext-class is a complete invariant for α . Without the UCT, a complete invariant is

 $(A^{\alpha}, KK(\check{\alpha})).$

The range of the invariant for *continuous* Rokhlin actions can be described:

- (a) With UCT: every trivial extension arises (and only these).
- (b) Without UCT: every Kirchberg algebra is the fixed point algebra of some continuous Rokhlin action, and $KK(\check{\alpha}) = 1$.

Proposition

If a Kirchberg algebra A has finitely generated K-theory, then every circle action on A with the Rokhlin property has the continuous Rokhlin property.

Proposition

If a Kirchberg algebra A has finitely generated K-theory, then every circle action on A with the Rokhlin property has the continuous Rokhlin property.

In particular, we have answered the questions from the beginning in this case. As an application:

◆□ → ◆□ → ◆注 → ◆注 → □ □

Proposition

If a Kirchberg algebra A has finitely generated K-theory, then every circle action on A with the Rokhlin property has the continuous Rokhlin property.

In particular, we have answered the questions from the beginning in this case. As an application:

Corollary

All circle actions on \mathcal{O}_2 with the Rokhlin property are conjugate.

Proposition

If a Kirchberg algebra A has finitely generated K-theory, then every circle action on A with the Rokhlin property has the continuous Rokhlin property.

In particular, we have answered the questions from the beginning in this case. As an application:

Corollary

All circle actions on \mathcal{O}_2 with the Rokhlin property are conjugate.

Corollary

All circle actions on $\mathcal{O}_3 \otimes \mathcal{O}_3$ with the Rokhlin property are conjugate.

Thank you.