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Background

The sine-Gordon equation(
∂2

x − ∂2
t
)
φ = sinφ (1)

defines a relativistically invariant field theory. Depending on how
the field φ is interpreted, one can view (1) either as a classical
nonlinear evolution equation or as an interacting relativistic
quantum field theory.
A remarkable feature of both the classical and quantum
sine-Gordon models is the presence of ’solitons’. In the quantum
case this means that particle creation and annihilation is absent, in
a collision the set of momenta is conserved, and the scattering
operator for a N-particle collision factorizes as a product of all pair
scattering operators.
Some thirty years ago this led one of us (S.R.) to ask the following
question:

Do there exist Hamiltonian dynamics for N point particles that
lead to the same factorized scattering?

In the classical case this question has been answered in the
affirmative. An important aim of the present work is to show that the
answer is affirmative also in the quantum case.

A relativistic Calogero-Moser system

The relevant N-particle system is the so-called relativistic
Calogero-Moser system of hyperbolic type. In the quantum case
this system is given by 2N commuting Hamiltonians

Hk ,δ ≡
∑

I⊂{1,...,N}
|I|=k

∏
m∈I
n/∈I

fδ,−(xm − xn)
∏
l∈I

exp(−ia−δ∂xl)
∏
m∈I
n/∈I

fδ,+(xm − xn),

where k = 1, . . . ,N, δ = +,−, and

fδ,±(z) =

(
sinh π(z ± ib)/aδ

sinhπz/aδ

)1/2

.

Physical picture: For δ = +, there are two length scales, namely

a+ ≡ 2π/µ, (imaginary period/interaction length),

and

a− ≡ ~/mc, (shift step size/Compton wavelength),

with ~ Planck’s constant, m particle mass and c the speed of light;
b = a+/2 corresponds to the sine-Gordon model. (For δ = −, the
length scales are interchanged.)
Together with the boost B = −m

∑N
j=1 xj, the time and space

translation generators mc2[H1,+(x) + H1,+(−x)] and
mc[H1,+(x)− H1,+(−x)] form a representation of the Lie algebra of
the Poincaré group.

Goals

We aim to obtain the following results:
• Construct modular invariant (a+↔ a−) joint eigenfunctions of the
Hamiltonians Hk ,δ.
• Establish orthogonality and completeness of the eigenfunctions.
• Thus reinterpret the commuting Hamiltonians Hk ,δ as commuting
self-adjoint operators on the Hilbert space

L2(FN,dx), FN = {−∞ < xN < · · · < x1 <∞}.
• Prove the S-operator factorizes (soliton scattering).

For b = a+/2, we expect that this will reproduce the scattering in
the sine-Gordon model.

Kernel functions

To construct joint eigenfunctions our main tool is so-called kernel
functions. Given a pair of operators H1 and H2 a kernel function is a
function Ψ(v ,w) satisfying

H1(v)Ψ(v ,w) = H2(w)Ψ(v ,w),

where v and w may vary over spaces of different dimensions.
For the case at hand, we use kernel functions Ψ]

N(x , y) that connect
Hamiltonians Hk ,δ(x1, . . . , xN) in N variables to a sum of two
Hamiltonians in N − 1 variables y1, . . . , yN − 1. More specifically,
they satisfy the key identities

H(N)
k ,δ (x)Ψ]

N(x , y) =
(

H(N−1)
k ,δ (−y) + H(N−1)

k−1,δ (−y)
)

Ψ]
N(x , y), (2)

where k = 1, . . . ,N, δ = +,−, and H(N−1)
N,δ ≡ 0, H(N−1)

0,δ ≡ 1.
Moreover, Ψ]

N has an explicit expression in terms of the so-called
hyperbolic gamma function G(z) ≡ G(a+,a−; z):

Ψ(x , y) = S]N(x , y)[W (x)W (y)]1/2

with

S]N(b; x , y) ≡
N∏

j=1

N−1∏
k=1

G(xj − yk − ib/2)

G(xj − yk + ib/2)

and

W (x) = 1/C(x)C(−x), C(b; x) =
∏

1≤j<k≤N

G(xj − xk + ia− ib)

G(xj − xk + ia)
.

The name ’hyperbolic gamma function’ is motivated by the fact that
G(z) is a (minimal) solution of the analytic difference equations

G(z + iaδ/2)

G(z − iaδ/2)
= 2 cosh(πz/a−δ), δ = +,−.

A recursive scheme

Key observation: The connection (2) between the N − 1 and N
variable cases allows us to set up a recursive scheme to explicitly
construct N-variable joint eigenfunctions of the 2N Hamiltonians
Hk ,δ, adding one more variable in each step.
Indeed, assume that we have a function FN−1(x , y) that satisfies
the eigenvalue equations

H(N−1)
k ,δ (x)FN−1(x , y) = Sk

(
e2πy1/aδ, . . . ,e2πyN−1/aδ

)
FN−1(x , y), (3)

where S(M)
k (a1, . . . ,aM) denotes the elementary symmetric function

of M − 1 variables a1, . . . ,aM. Consider the function FN given
(formally) by

FN(x , y) =
exp

(
2πi

a+a−
yN
∑N

j=1 xj

)
(N − 1)!

×
∫
RN−1

Ψ]
N(x , z)FN−1(z, (y1 − yN, . . . , yN−1 − yN))dz.

Then, using essentially only (2) and a standard recurrence relation
for the symmetric functions S(M)

k one can verify (formally) that FN
satisfies the eigenvalue equation (3) for N − 1→ N. The details on
how to make this precise can be found in reference [3].
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