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Preface

Two important methods in analysis is differentiation and Fourier trans-
formation. Unfortunally not all functions are differentiable or has a Fourier
transform. The theory of distribution tries to remedy this by imbedding
classical functions in a larger class of objects, the so called distributions (or
general functions). The basic idea is not to think of functions as pointwise
defined but rather as a ”mean value”. A locally integrable function f is
identified with the map

ϕ 7→
∫
fϕ,

where ϕ belongs to a space of ”nice” test functions, for instance C∞0 .
As an extension of this we let a distribution be a linear functional on the

space of test functions. When extending operations such as differentiation
and Fourier transformation, we do this by transfering the operations to the
test functions, where they are well defined.

Let us for instance see how to define the derivative of a locally integrable
function f on R. If f is continuously differentiable, an integration by parts
implies that ∫

fϕ = −
∫
fϕ′.

Now we use this formula to define the differential of f , when f is not classi-
cally differentiable. f ′ is the map

ϕ 7→ −
∫
fϕ′.

In these lectures we will study how differential calculus and Fourier anal-
ysis can be extended to distributions and study some applications mainly in
the theory of partial differential equations.

The presentation is rather short and for a deeper study I recommend the
following books:

Laurent Schwartz. Théorie des Distributions I, II. Hermann, Paris, 1950–
51.

Lars Hörmander. The Analysis of Linear Partial Differential Operators
I, 2nd ed. Springer, Berlin, 1990.
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Chapter 1

A primer on C∞0 -functions

When we shall extend differential calculus to distributions, it is suitable to
use infintely differentiable functions with compact support as test functions.
In this chapter we will show that there is ”a lot of” C∞0 -functions.

Notation

Let Ω be a domain in Rn. Ck(Ω) denotes the k times comtinuously differ-
entiable functions on Ω. (k may be +∞.) Ck

0 (Ω) are those functions in
Ck(Ω) with compact support. We denote points in Rn with x = (x1, . . . , xn)
and dx = dx1 . . . dxn denotes the Lebesgue measure. For a vector α =
(α1, . . . αn) ∈ Nn we let

|α| = α1 + . . .+ αn, α! = α1! . . . αn!, xα = xα1
1 . . . xαnn

and

∂αf =
∂αf

∂xα
=

∂α1

∂xα1
1

. . .
∂αn

∂xαnn
f.

Example 1.1. With these notations the Taylorpolynomial of f of degree N
can be written as ∑

|α|≤N

∂αf(a)

α!
xα.

2

As described in the preface, to a function f ∈ L1
loc, we will associate the

map Λf , given by

ϕ 7→
∫
Rn
fϕ dx, ϕ ∈ C∞0 .
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Problem. Does the map Λf determine f?

More precisely, if f, g ∈ L1
loc and∫

Rn
fϕ dx =

∫
Rn
gϕ dx, ϕ ∈ C∞0 ,

does this imply that f = g a.e.? 2

To be able to solve this problem we need to construct functions ϕ ∈ C∞0 .
We start with

Example 1.2. There are functions f ∈ C∞(R) with f(x) = 0 when x ≤ 0
and f(x) > 0 when x > 0.

Remark 1.3. There is no such real analytic function. 2

Proof. Such a function must satisfy f (n)(0) = 0 for all n. Thus f(x) =
0(xn), x→ 0, for all n. Guided by this, we put

f(x) =

 e−1/x, x > 0

0, x ≤ 0 .

We have to prove that f ∈ C∞. By induction we have

f (n)(x) =

 Pn
(

1
x

)
e−

1
x , x > 0

0, x ≤ 0

for some polynomials Pn. This is clear when x 6= 0. But at the origin we
have if h > 0,

f (n)(h)− f (n)(0)

h
=

1

h
Pn

(
1

h

)
e−

1
h → 0, h→ 0.

Example 1.4. There are non-trivial functions in C∞0 (Rn).

Proof. Let f be the function in Example 2 and put ϕ(x) = f(1− |x|2).
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Approximate identities

Pick a function ϕ ∈ C∞0 (Rn) with
∫
ϕ = 1 and ϕ ≥ 0. For δ > 0 we let

ϕδ(x) = δ−nϕ(x/δ). Then ϕδ ∈ C∞0 (Rn) and
∫
ϕδ = 1. {ϕδ; δ > 0} is called

an approximate identity.

”ϕδ → δ”

Regularization by convolution

The convolution of two functions f and ϕ is defined by

f ∗ ϕ(x) =

∫
Rn
f(x− y)ϕ(y)dy.

The convolution is defined for instance if f ∈ L1
loc and ϕ ∈ C∞0 . Then

f ∗ ϕ = ϕ ∗ f, f ∗ ϕ ∈ C∞ and ∂α(f ∗ ϕ) = f ∗ ∂αϕ.

Exercise 1.1. Verify this.

Theorem 1.5.

a) If f ∈ C0, then f ∗ ϕδ → f, δ → 0, uniformly.

b) If f is continuous in x, then f ∗ ϕδ(x)→ f(x), δ → 0.

c) If f ∈ Lp, 1 ≤ p < +∞, f ∗ ϕδ → f i Lp (and a.e.).

Remark 1.6. a) implies that C∞0 (Ω) is dense in C0(Ω) (in the supremum
norm).

Exercise 1.2. Verify this.
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Proof.

a) Take R so that supp ϕ ⊂ {x; |x| ≤ R}. We have

|f ∗ ϕδ(x)− f(x)| ≤
∫
|y|≤δR

|f(x− y)− f(x)|ϕδ(y)dy

≤ uniform continuity ≤ ε
∫
Rn ϕδ(y)dy = ε, if δ is small enough.

b) Exercise 1.3.

c) Jensen’s inequality implies

|f ∗ ϕδ(x)− f(x)|p ≤
(∫

Rn
|f(x− y)− f(x)|ϕδ(y)dy

)p
≤
∫
Rn
|f(x− y)− f(x)|pϕδ(y)dy =

∫
Rn
|f(x− δt)− f(x)|pϕ(t)dt.

Using Fubini’s theorem and the notation f δt(x) = f(x− δt), we get

‖f ∗ ϕδ − f‖pp ≤
∫
Rn
ϕ(t)dt

∫
Rn
|f(x− δt)− f(x)|pdx

=

∫
Rn
‖f δt − f‖pp ϕ(t)dt→ 0,

That the limit is zero follows by dominated convergence and that translation
is continuous on Lp. This in turn follows since C0 is dense in Lp, 1 ≤ p < +∞:

If g ∈ C0, then

‖gδ − g‖pp =

∫
K

|g(x− δ)− g(x)|pdx→ 0, δ → 0,

by dominated convergence. Now approximate f ∈ Lp with g ∈ C0, ‖f−g‖p <
ε. Minkowski’s inequality (the triangle inequality) implies

‖f δ − f‖p ≤ ‖f δ − gδ‖p + ‖gδ − g‖p + ‖g − f‖p ≤ 2ε+ ‖gδ − g‖p ≤ 3ε,

if δ is small enough.

Exercise 1.4. a) Let Br = {x; |x| < r}. Construct a function ψδ ∈ C∞0 (Rn) such that
0 ≤ ψδ ≤ 1, ψδ = 1 on Br and supp ψδ ⊂ Br+δ. How big must ‖δαψδ‖∞ be?

b) Let K ⊂ Ω where K is compact and Ω is open in Rn. Construct ψ ∈ C∞0 (Ω) with
ψ = 1 on a neighborhood of K and 0 ≤ ψ ≤ 1. How big must ‖∂αψ‖∞ be?
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Now we are able to answer yes to the problem on page 7.

Theorem 1.7. A locally integrable function that is zero as a distribution is
zero a.e.

Proof. We assume that
∫
fϕ = 0 for all ϕ ∈ C∞0 . According to Theorem 1 a),

we have
∫
fΦ = 0 for all Φ ∈ C0, and thus f = 0 a.e. (for instance by the

Riesz representation theorem.)
Alternatively we can argue as follows: Take ψn ∈ C∞0 with ψn(x) = 1

when |x| ≤ n. Then fψn ∈ L1 and

fψn ∗ ϕδ(x) =

∫
Rn
f(y)ψn(y)ϕδ(x− y)dy = 0,

since y 7→ ψn(y)ϕδ(x − y) is C∞0 . But fψn ∗ ϕδ → fψn in L1 according to
Theorem 1 c). Hence fψn = 0 a.e., and thus f = 0 a.e.

10



Chapter 2

Definition of distributions

Definition 2.1. Let Ω be an open domain in Rn. A distribution u in Ω is
a linear functional on C∞0 (Ω), such that for every compact set K ⊂ Ω there
are constants C and k such that

|u(ϕ)| ≤ C
∑
|α|≤k

‖∂αϕ‖∞, (2.1)

for all ϕ ∈ C∞0 with supp ϕ ⊂ K. 2

We denote the distributions on Ω by D ′(Ω). If the same k can be used
for all K, we say that u has order ≤ k. These distributions are denoted
D ′k(Ω). The smallest k that can be used is called the order of the distribution.
D ′F = ∪kD ′k are the distributions of finite order.

Example 2.2.

(a) A function f ∈ L1
loc is a distribution of order 0.

(b) A measure is a distribution of order 0.

(c) u(ϕ) = ∂αϕ(x0) defines a distribution of order |α|.

(d) Let xj be a sequence without limit point in Ω and let

u(ϕ) =
∑

∂αjϕ(xj).

Then u is a distribution. u has finite order if and only if
sup |αj| <∞ and then the order is sup |αj|. 2

We will use the notation D(Ω) to denote the set C∞0 (Ω), in particular
when we consider D(Ω) with a topology that corresponds to the the following
convergence of test functions.
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Definition 2.3. ϕj → 0 in D(Ω) if, for all j, supp ϕj are contained in a fix
compact set and ‖∂αϕj‖∞ → 0, j →∞, for all α. 2

Theorem 2.4. A linear functional u on D(Ω) is a distribution if and only
if u(ϕj)→ 0 when ϕj → 0 in D(Ω).

Proof. ⇒): Trivial.
⇐): Assume that (1) doesn’t hold. We have to prove that u(ϕj) 6→ 0,

although ϕj → 0 in D(Ω). That (1) doesn’t hold implies that there is a
compact set K and a function ϕj ∈ D(Ω), with ϕj ⊂ K, u(ϕj) = 1 and

|u(ϕj)| > j
∑
|α|≤j

‖∂αϕj‖∞.

This implies ‖∂αϕj‖∞ ≤ 1
j

if j ≥ |α|. Thus ϕj → 0 in D(Ω).

Theorem 2.5. A distribution u ∈ D ′k(Ω) can uniquely be extended to a linear
functional on Ck

0 (Ω). For every compact set K ⊂ Ω there is a constant
C = CK such that

|u(ϕ)| ≤ C
∑
|α|≤k

‖∂αϕ‖∞, (2.2)

for all ϕ ∈ Ck
0 (Ω) with support in K.

Corollary 2.6. Measures and distributions of order 0 coincides.

Proof of Theorem 5. Let ϕ be a fix function in Ck
0 (Ω). Let Φδ ∈ C∞0 be

an approximate identity and put ϕn = ϕ ∗ Φ 1
n
, n ≥ N . Then all ϕn are

supported in a fix compact set K in Ω and if |α| ≤ k then

‖∂α(ϕ− ϕn)‖∞ = ‖∂αϕ− (∂αϕ) ∗ Φ 1
n
‖∞ → 0, n→∞ . (2.3)

Hence, if u has an extension satisfying (2), then u(ϕ) = limn→∞ u(ϕn). This
proves the uniqueness of the extension and makes it natural to define

u(ϕ) = lim
n→∞

u(ϕn) .

The limit exists since u(ϕn) is a Cauchy sequence:

|u(ϕn)− u(ϕm)| = |u(ϕn − ϕm)| ≤ C
∑
|α|≤k

‖∂α(ϕn − ϕm)‖ → 0,

as n,m→∞.
It is easy to see, by taking limits in (1), that u satisfies (2).
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Exercise 2.1. Verify this.

Theorem 2.7. A positive distribution is a positive measure.

Definition 2.8. A distribution u is positive if ϕ ≥ 0 implies u(ϕ) ≥ 0 2

Proof. By Corollary 6 it is enough to show that u ∈ D ′0.
Assume first that ϕ is real valued. Let K ⊂⊂ Ω and take χ ∈ C∞0 (Ω), 0 ≤

χ ≤ 1 with χ = 1 on K. If supp ϕ ⊂ K, then χ‖ϕ‖∞ ± ϕ ≥ 0. Hence
u(χ‖ϕ‖∞ ± ϕ) ≥ 0, or

|u(ϕ)| ≤ u(χ‖ϕ‖∞) = u(χ)‖ϕ‖∞.

So (1) holds with k = 0, C = u(χ).
If ϕ = f + ig is complex valued,we get

|u(ϕ)| ≤ |u(f)|+ |u(g)| ≤ u(χ)(‖f‖∞ + ‖g‖∞) ≤ 2u(χ)‖ϕ‖∞.

Theorem 2.9. A distribution is determined by its local behavior.
More precisely: Assume that Ω = ∪Ωi and that ui ∈ D ′(Ωi). Furthermore

we assume that ui = uj on Ωi∩Ωj, i.e. if ϕ ∈ C∞0 (Ωi∩Ωj) then ui(ϕ) = uj(ϕ).
Then there is a unique distribution u on Ω with u = ui on Ωi.

To prove this we need a C∞0 partition of unity.

Proposition 2.10. Let K ⊂ ∪N1 Ωi. Then there are ϕi ∈ C∞0 (Ωi), 0 ≤ ϕi ≤ 1
and Σϕi = 1 on K.

Proof of Theorem 9. Assume that u = ui on Ωi. Let supp ϕ = K and ϕi be
a partition av unity as above. By linearity, since ϕ =

∑
i ϕϕi,

u(ϕ) =
∑
i

u(ϕϕi) =
∑
i

ui(ϕϕi) (2.4)

This shows the uniqueness.
To prove the existence, we need to show that (4) gives a well defined distri-

bution u. But if ϕ̃k is another partition of unity, then ϕ̃k =
∑

i ϕiϕ̃k on K and
thus

∑
k uk(ϕϕ̃k) =

∑
k

∑
i uk(ϕϕ̃kϕi) =

∑
i

∑
k ui(ϕϕ̃kϕi) =

∑
i ui(ϕϕi), so

(4) defines u uniquely.
It is easy to show that u satisfies (1), and the theorem is proved.

Exercise 2.2. Do it!

13



Proof of Proposition 10. We shall show the following
Claim. There are open sets Vi with V i ⊂ Ωi and K ⊂ ∪N1 Vi.

Assuming this take ϕ̃i ∈ C∞0 (Ωi), 0 ≤ ϕ̃i ≤ 1 with ϕ̃i = 1 on V i.
Then Σϕ̃i > 0 on a neighborhood U of K. Take χ with χ = 1 on K and
supp χ ⊂ U . Put

ϕi = χ
ϕ̃i

Σϕ̃i
.

It is clear that ϕi satisfy the conditions in the proposition.
To prove the claim, take to x ∈ K a neighborhood Vx with x ∈ Vx ⊂

V x ⊂ Ωj for some j. Then K ⊂
⋃
Vx. By compactness we get K ⊂

⋃N
1 Vxk .

Let Vi =
⋃

Vxk⊂Ωi

Vxk .

The support of a distribution

If f ∈ C then supp f = {x; f(x) 6= 0}. This implies that
∫
fϕ = 0 for all

ϕ ∈ C∞0 whos support doesn’t intersect the support of f .

Definition 2.11. If u ∈ D ′(Ω) then supp u = {x ∈ Ω; There is no neighbor-
hood of x with u = 0 in this neighborhood.}

Exercise 2.3. Show that supp u is closed.

Theorem 2.12. If supp u ∩ supp ϕ = ∅, then u(ϕ) = 0.

Proof. This follows directly from Theorem 9, since u = 0 locally on
Ω \ supp u.

An important extension of Theorem 12 is the following theorem and its
corollary.

Theorem 2.13. Assume that u ∈ D ′k(Ω) and ϕ ∈ Ck
0 (Ω) with ∂αϕ(x) = 0 if

|α| ≤ k and x ∈ supp u. Then u(ϕ) = 0.

Corollary 2.14. If u ∈ D ′(Ω) and supp u = {x0} ⊂ Ω, then u is of the
form

u(ϕ) =
∑
|α|≤k

aα∂
αϕ(x0).

Proof of Theorem 13. Let K = supp u ∩ supp ϕ. If K = ∅, the result follow
from Theorem 5. But K can be non empty. Then, let Kε = {x; d(x,K) < ε}
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and take χε ∈ C∞0 (Kε) with χε = 1 in a neighborhood of K. Then, by
Theorem 5,

u(ϕ) = u(χεϕ+ (1− χε)ϕ) = u(χεϕ).

If k = 0 this implies

|u(ϕ)| ≤ C‖χεϕ‖∞ → 0, ε→ 0.

If k > 0 we get

|u(ϕ)| ≤ C
∑
|α|≤k

‖∂α(χεϕ)‖∞ ≤ C
∑

|α|+|β|≤k

‖∂αχε∂βϕ‖∞.

We can choose χε such that ‖∂αχε‖∞ ≤ Cε−|α|. To estimate ‖∂βϕ‖∞ we
consider the Taylor expansion of ϕ at a point x ∈ K. Let y ∈ Kε and take
x ∈ K with |x− y| ≤ ε. Put

g(t) = ∂βϕ(x+ t(y − x)).

By the Taylorexpansion of g at t = 0 of order k − |β| − 1, we get

|∂βϕ(y)| = |g(1)| =
∣∣∣ ∑
i≤k−|β|−1

g(i)(0)

i!
+R(y)

∣∣∣.
Now g(i)(0) = 0 and

|R(y)| ≤ C sup
0≤s≤1

|∂k−|β|g(s)| ≤ Cεk−|β|
∑
|β|=k

‖∂βϕ‖Kε .

This implies

|u(ϕ)| ≤ C
∑

|α|+|β|≤k

εk−|α|−|β|
∑
|β|=k

‖∂βϕ‖Kε → 0, ε→ 0.

Proof of the corollary. u is of finite order k for some k. Fix χ ∈ C∞0 (Ω) with
χ = 1 near x0 and put

ψ(x) = ϕ(x)− χ(x)
∑
|α|≤k

(x− x0)α
∂αϕ(x0)

α!
.

Then ∂αψ(x0) = 0 if |α| ≤ k. By Theorem 13, u(ψ) = 0 or

u(ϕ) =
∑
|α|≤k

∂αϕ(x0)u
((x− x0)α

α!
χ(x)

)
=
∑
|α|≤k

aα∂
αϕ(x0).
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Exercise 2.4. H 2.2

Exercise 2.5. H 3.1.7.

Exercise 2.6. Show that u(ϕ) =
∑∞

1 nα(ϕ( 1
n )−ϕ(− 1

n )) is a distribution of order ≤ 1 if
α < 0. Also show that supp u = {0,±1,± 1

2 ,±
1
3 , . . .}, but if K is a closed set with

|u(ϕ)| ≤ C
k∑
i=0

sup
K
|∂iϕ|, ϕ ∈ C∞0 (R) ,

then either α < −1 or else K contains a neighborhood of the origin. (In particular
we can not choose K = supp u.)

Exercise 2.7. Assume that u ∈ D ′k(R) and supp u ⊂ I where I is a compact interval.
Show that

|u(ϕ)| ≤ C
∑
|α|≤k

sup
I
|∂αϕ|, ϕ ∈ C∞0 (R).

(Hint. Theorem 13.)

Exercise 2.8. Is there a linear functional u on C∞0 that isn’t a distribution?
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Chapter 3

Operations on distributions

The derivative of distributions

If u is a continuously differentiable function in Rn, an integration by parts
gives ∫

Rn
∂ku · ϕdx = −

∫
Rn
u · ∂kϕdx, ϕ ∈ D ,

as ϕ has compact support. This motivates the following definition.

Definition 3.1. If u ∈ D ′(Ω), we define ∂ku ∈ D ′(Ω) by

∂ku(ϕ) = −u(∂kϕ).

That ∂ku defines a distribution follows since

|∂ku(ϕ)| = |u(∂kϕ)| ≤ C
∑
|α|≤k

‖∂α(∂kϕ)‖∞ ≤ C
∑
|α|≤k+1

‖∂αϕ‖∞.

If u ∈ C1 the distribution derivative coincides with the classsical derivative.

Example 3.2. Let the Heavisidefunktionen H be defined by

H(x) =

 1, x ≥ 0

0, x < 0.

Then

H ′(ϕ) = −H(ϕ′) = −
∫ ∞

0

ϕ′(x)dx = ϕ(0).
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The Dirac measure at x0 ∈ Rn is given by δx0(ϕ) = ϕ(x0). So we have
showed that H ′ = δ0. The derivatives of the Dirac measure are given by
∂αδx0(ϕ) = (−1)|α|δx0(∂

αϕ) = (−1)|α|∂αϕ(x0). With this notation, by Corol-
lary 2.14, a distribution supported at x0 can be written as

u =
∑
|α|≤k

Cαδ
(α)
x0
.

A generalization of Exempel 2 is given by

Proposition 3.3. Let u be a function in Ω ⊂ R, which is continuously
differentiable for x 6= x0. Assume that the derivative v is integrable near x0.
Then

u′ = v + (u(x0 + 0)− u(x0 − 0))δx0 .

Proof. We start by showing that the limits exist. Let x0 < x < y. Then

u(x) = u(y)−
∫ y

x

v(t)dt.

Since v is integrable we obtain as x ↓ x0

u(x0 + 0) = u(y)−
∫ y

x0

v(t)dt.

By the same argument also u(x0 − 0) exists. We get

u′(ϕ) = −u(ϕ′) = −
∫
R
uϕ′ dx = lim

ε→0
−
∫
|x−x0|>ε

u(x)ϕ′(x)dx

= lim
ε→0

{
−
[
u(x)ϕ(x)

]∞
x0+ε
−
[
u(x)ϕ(x)

]x0−ε
−∞

+

∫
|x−x0|>ε

v(x)ϕ(x)dx
}

= (u(x0 + 0)− u(x0 − 0))ϕ(x0) +

∫
R
v(x)ϕ(x)dx.

Theorem 3.4. Let u be a distribution on an interval I ⊂ R. If u′ = 0, then
u is constant.

Proof. That u′ = 0 as a distribution means that u′(ϕ) = 0 or u(ϕ′) = 0 for
all ϕ ∈ D . To compute u(φ), we want to decide if φ = ψ′ for some ψ ∈ D .
This is the case exactly when

∫
φ = 0 and then ψ(x) =

∫ x
−∞ φ(t)dt. Thus,

if
∫
φ = 0, then u(φ) = 0. We shall reduce the general case to this special

case. Fix ψ0 ∈ D with
∫
ψ0 = 1. Put φ̃ = φ − ψ0

∫
φ. Then

∫
φ̃ = 0 so

0 = u(φ̃) = u(φ) − u(ψ0)
∫
φ or u(φ) = u(ψ0)

∫
φ. Thus u is the constant

u(ψ0).
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Multiplication by functions

D(Ω) is a linear space, since we can add distributions and multiply a distri-
bution with a scalar in a natural way. We also want to multiply a distribution
with a function f . If u is a locally integrable function, then

fu(ϕ) =

∫
Rn

(fu)ϕdx =

∫
Rn
u(fϕ) dx = u(fϕ) .

To be able to use this to define fu when u is a distribution we need that
fϕ ∈ C∞.

Definition 3.5. If f ∈ C∞ we define fu by

fu(ϕ) = u(fϕ).

Exercise 3.1. Show that fu ∈ D ′(Ω).

Remark 3.6. If u is of order k, it is enough to demand that f ∈ Ck. 2

Proposition 3.7.
(a) ∂j∂ku = ∂k∂ju
(b) ∂k(fu) = (∂kf)u+ f∂ku.

Exercise 3.2. Prove Proposition 7.

Remark 3.8. By (a), the distributional derivatives commutes and we can
use the notation ∂αu, ∂αu(ϕ) = (−1)|α|u(∂αϕ) where α is a multiindex. 2

Theorem 3.9. If u ∈ D ′(Ω), Ω ⊂ R, and u′ + au = f where f ∈ C and
a ∈ C∞, Then u ∈ C1 and the equation is holds classically.

Proof. Assume first that a ≡ 0. Let F be a (classsical) primitive function
of f . Then F ∈ C1 and (u − F )′ = u′ − F ′ = f − f = 0 as a distribution.
Theorem 1 implies that u = F + C, and thus u ∈ C1 and u′ = F ′ = f
classically.

If a 6≡ 0, we multiply the equation with its integrating factor. Let A be a
primitive function of a. Then A and eA are C∞ functions. Furthermore, we
have

(eAu)′ = eAu′ + eAau = eA(u′ + au)

in the distributional sense. Therefore, the equation is equivalent to

(eAu)′ = eAf,

and we can use the case a ≡ 0.
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Exercise 3.3. H 3.1.1

Exercise 3.4. H 3.1.5

Exercise 3.5. H 3.1.14

Exercise 3.6. H 3.1.21

Exercise 3.7. H 3.1.22.

Exercise 3.8. Assume that u ∈ D ′(Ω), Ω ⊂ R, satisfies u(m) +am−1u
(m−1) + . . .+a0u =

f , where f ∈ C and aj ∈ C∞. Show that u ∈ Cm, and that the equation holds
classically.
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Chapter 4

Finite parts

In this chapter we will extend Proposition 3.3 to the case where the derivative
is not locally integrable.

Example 4.1. What is
d

dx

(
1
√
x+

)
?

We have

〈( 1
√
x+

)′, ϕ〉 = −〈 1
√
x+

, ϕ′〉 =

= lim
ε→0
−
∫ ∞
ε

1√
x
ϕ′(x)dx = lim

ε→0

(
−
[ 1√

x
ϕ(x)

]∞
ε
− 1

2

∫ ∞
ε

ϕ(x)

x3/2
dx
)

= −1

2
lim
ε→0

(∫ ∞
ε

1

x3/2
ϕ(x)dx− 2ϕ(0)√

ε

)
2

Definition 4.2.

〈fp 1

x
3/2
+

, ϕ〉 = lim
ε→0

{∫ ∞
ε

ϕ(x)

x3/2
dx− 2ϕ(0)√

ε

}
.

2

Thus we have shown that

d

dx
(

1
√
x+

) = −1

2
fp

1

x
3/2
+

.

A version of the definition that is easier to remember is

〈fp 1

x
3/2
+

, ϕ〉 =

∫ ∞
0

ϕ(x)− ϕ(0)

x3/2
dx.
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Example 4.3. We define fp
1

|x|5/2
by

〈fp 1

|x|5/2
, ϕ〉 =

∫
R

ϕ(x)− ϕ(0)− xϕ′(0)

|x|5/2
dx .

The order of fp
1

|x|5/2
is 2. To show this we split the integral into two pieces,

〈fp 1

|x|5/2
, ϕ〉 =

∫
|x|≤1

+

∫
|x|>1

ϕ(x)− ϕ(0)− xϕ′(0)

|x|5/2
dx = I+II.

To estimate the first integral we use that

|ϕ(x)− ϕ(0)− xϕ′(0)| ≤ 1

2
x2‖ϕ′′‖∞ .

This implies

|I| ≤ 1

2
‖ϕ′′‖∞

∫
|x|≤1

1

|x|1/2
dx ≤ C‖ϕ′′‖∞ .

For the second integral we have

|II| ≤
∫
|x|>1

2‖ϕ‖∞ + |x|‖ϕ′‖∞
|x|5/2

dx ≤ C(‖ϕ‖∞ + ‖ϕ′‖∞) .

Thus the order is at most two.
To show that the order can not be smaller, we let ϕ ∈ C∞0 , 0 ≤ ϕ ≤ 1,

supp ϕ ⊂ (0, 3) and ϕ = 1 on [1, 2] and put ϕε(x) = ϕ(x/ε). Then

|〈fp 1

|x|5/2
, ϕε〉| =

∫
R

ϕε(x)

x5/2
dx ≥

∫ 2ε

ε

1

x5/2
dx ≥ c

1

ε3/2
.

Furthermore ‖ϕε‖∞ + ‖ϕ′ε‖∞ ≤ C/ε. Thus if the order were less than 2, we

would have c/ε3/2 ≤ |〈fp 1

|x|5/2
, ϕ〉| ≤ C/ε, a contradiction.

Since the order of fp
1

|x|5/2
is 2 and |x|5/2 ∈ C2, |x|5/2fp

1

|x|5/2
is well

defined and

〈|x|5/2fp
1

|x|5/2
, ϕ〉 = 〈fp 1

|x|5/2
, |x|5/2ϕ〉

=

∫
R

|x|5/2ϕ(x)

|x|5/2
dx =

∫
R
ϕ(x)dx = 〈1, ϕ〉.

Here we have used that |x|5/2ϕ(x) and its derivative vanishes at x = 0.
Thus fp 1

|x|5/2 solves the division problem |x|5/2u = 1. 2
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Exercise 4.1. Show that (fp
1

x
3/2
+

)′ = −3

2
fp

1

x
5/2
+

.

The above examples can be generalized to to define fp x−a+ , fp |x|−a and
(for certain a) fp x−a etc. when a is not an integer, for instance

〈fp 1

|x|a
, ϕ〉 =

∫ ∞
−∞

ϕ(x)− P (x)

|x|a
dx,

where P is the Taylorpolynomial of ϕ at the origin of order [a] - 1. Then

(fp
1

|x|a
)′ = −a fp

sgn x

|x|a+1
= a

(
fp

1

xa+1
+

− fp
1

xa+1
−

)
och

|x|afp 1

|x|a
= 1.

Another important property of fp
1

|x|a
, a 6= −1,−2, . . . , is that it is ho-

mogeneous of degree −a. As we shall see later this fact simplifies the com-
putation of its Fourier transform.

To show that fp
1

|x|a
is homogeneous we first must define what this means.

If u(x) is a function on Rn, u is homogeneous of degree α if u(tx) = tαu(x), t >
0. This can be reformulated in a way that is meaningful for distributions.
For a function u, we have

〈u(tx), ϕ〉 =

∫
R
u(tx)ϕ(x)dx = [y = tx] =

∫
R
u(y)

1

tn
ϕ(
y

t
)dy = 〈u, ϕt〉.

But if u is homogeneous of degree α, we also have

〈u(tx), ϕ〉 =

∫
R
u(tx)ϕ(x)dx =

∫
R
tαu(x)ϕ(x)dx = tα〈u, ϕ〉.

Therefore we make the following definition.

Definition 4.4. u ∈ D ′(Rn) is homogeneous of degree α if

〈u, ϕt〉 = tα〈u, ϕ〉, t > 0.

2

Proposition 4.5. fp
1

|x|a
och fp

1

xa+
are homogeneous of degree −a if a 6=

1, 2, 3, . . .
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Proof when a =
5

2
. We have ϕt(0) =

1

t
ϕ(0) and ϕ′t(0) =

1

t2
ϕ′(0). Thus

〈fp 1

|x|5/2
, ϕt〉 =

∫
R

1

|x|5/2
(1

t
ϕ(
x

t
)− 1

t
ϕ(0)− x

t2
ϕ(0)

)
dx

=
[
y =

x

t

]
=

∫
R

1

t5/2|x|5/2
(ϕ(x)− ϕ(0)− xϕ′(0))dx =

1

t5/2
〈fp 1

|x|5/2
, ϕ〉.

Example 4.6. Compute (log |x|)′.
We have

〈(log |x|)′, ϕ)〉 = −〈log |x|, ϕ′〉 = −
∫
R
ϕ′(x) log |x|dx

= − lim
ε→0

∫
|x|>ε

ϕ′(x) log |x|dx = lim
ε→0
−
{

[ϕ(x) log |x|]−ε−∞

+ [ϕ(x) log |x|]∞ε −
∫
|x|>ε

ϕ(x)
dx

x

}
= lim

ε→0

{∫
|x|>ε

ϕ(x)
dx

x
+ (ϕ(ε)− ϕ(−ε)) log ε

}
= lim

ε→0

∫
|x|>ε

ϕ(x)
dx

x
= pv

∫
R

ϕ(x)

x
dx ,

where the last equality is a definition. 2

Definition 4.7. 〈pv
1

x
, ϕ〉 = lim

ε→0

∫
|x|>ε

ϕ(x)

x
dx.

If we instead differentiate log x+, we get

〈log x+, ϕ〉 = lim
ε→0
−
∫ ∞
ε

ϕ′(x) log xdx =

= lim
ε→0

(
−[ϕ(x) log x]∞ε +

∫ ∞
ε

ϕ(x)

x
dx

)
=

= lim
ε→0

(∫ ∞
ε

ϕ(x)

x
dx+ ϕ(0) log ε

)
= lim

ε→0

(∫ ∞
0

ϕ(x)

x
dx−

∫ 1

ε

ϕ(0)

x
dx

)
=

=

∫ ∞
0

ϕ(x)− χ(x)ϕ(0)

x
dx,

where χ = χ[−1,1], as in the rest of this chapter.
Thus with the following
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Definition 4.8. 〈fp 1

x+

, ϕ〉 =

∫ ∞
0

ϕ(x)− χ(x)ϕ(0)

x
dx 2

we have proved that (log x+)′ = fp
1

x+

.

Exercise 4.2. Show that fp
1

x+
solves the division problem xu = H.

The above examples can be generalized to the following

Definition 4.9.

〈fp 1

|x|n
, ϕ〉 =

∫ ∞
−∞

ϕ(x)− P (x)− xn−1

(n−1)!
ϕ(n−1)(0)χ(x)

|x|n
dx

if n = 1, 2, 3, . . . and P is the Taylorpolynomial of ϕ of degree n− 2. 2

Example 4.10. (fp
1

x2
+

)′ = −2fp
1

x3
+

+
1

2
δ(2). 2

Proof.

〈(fp 1

x2
+

)′, ϕ〉 = −〈fp 1

x2
+

, ϕ′〉 = −
∫ ∞

0

ϕ′(x)− ϕ′(0)− xϕ′′(0)χ(x)

x2
dx =

− lim
ε→0

{∫ ∞
ε

ϕ′(x)− ϕ′(0)

x2
dx−

∫ 1

ε

xϕ′′(0)

x2
dx
}
.

As ϕ(x)−ϕ(0)−xϕ′(0) is a primitive function of ϕ′(x)−ϕ′(0), an integration
by parts in the first integral implies that

〈(fp 1

x2
+

)′, ϕ〉 = − lim
ε→0

{[ϕ(x)− ϕ(0)− xϕ′(0)

x2

]∞
ε

+

2

∫ ∞
ε

ϕ(x)− ϕ(0)− xϕ′(0)

x3
dx−

∫ 1

ε

xϕ′′(0)

x2
dx
}
.

Now

lim
ε→0

[ϕ(x)− ϕ(0)− xϕ′(0)

x2

]∞
ε

= −1

2
ϕ′′(0)

and

lim
ε→0

{
2

∫ ∞
ε

ϕ(x)− ϕ(0)− xϕ′(0)

x3
dx−

∫ 1

ε

xϕ′′(0)

x2
dx
}

=

2

∫ ∞
0

ϕ(x)− ϕ(0)− xϕ′(0)− 1
2
x2ϕ′′(0)χ(x)

x3
dx .
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Hence

〈(fp 1

x2
+

)′, ϕ〉 =
1

2
ϕ′′(0)− 2

∫ ∞
0

ϕ(x)− ϕ(0)− xϕ′(0)− 1
2
x2ϕ′′(0)χ(x)

x3
dx

= 〈−2fp
1

x3
+

+
1

2
δ(2), ϕ〉.

Example 4.11. fp
1

|x|3
is not homogeneous of degree −3 since

〈fp 1

|x|3
, ϕt〉 =

∫
R

1
t
ϕ(x

t
)− 1

t
ϕ(0)− x

t2
ϕ′(0)− 1

2
x2

t3
ϕ′′(0)χ(x)

|x|3
dx

=
[
y =

x

t

]
=

1

t3

∫
R

ϕ(x)− ϕ(0)− xϕ′(0)− 1
2
x2ϕ′′(0)χ(xt)

|x|3
dx

= (If we assume that t > 1) =
1

t3
〈fp 1

|x|3
, ϕ〉+

1

2t3
ϕ′′(0)

∫
1
t
<|x|<1

dx

|x|

=
1

t3
〈fp 1

|x|3
, ϕ〉+ ϕ′′(0)

log t

t3
.

2

Exercise 4.3. What happens if t < 1?

Exercise 4.4. Is fp 1
x3 homogeneous of degree −3?

Exercise 4.5. Show that the equation xNu = 0 has the solution u =

N−1∑
n=0

cnδ
(n).

Since xN fp 1
xN

= 1, Exercise 4.5 implies that the equation

xNu = 1 has the general solution u = fp
1

xN
+

N−1∑
n=0

cnδ
(n) .

In the same way the equation

(x− a)Nu = 1 has the solution u = fp
1

(x− a)N
+

N−1∑
n=0

cnδ
(n)
a .

where fp
1

(x− a)N
is defined in the same way as fp

1

xN
.
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Now we can solve the division problem Pu = 1, where P is a polynomial
of one variable. In a neighborhood where P 6= 0, u = 1/P is a nice function.
So the the only problem is to understand 1/P near a real zero a of P . But
there we have P (x) = (x − a)nQ(x) where Q(a) 6= 0. Hence, near x = a,

we have (x − a)nQ(x)u = 1. This is satisfied if Qu = fp
1

(x− a)n
. Hence

u =
1

Q(x)
fp

1

(x− a)n
solves Pu = 1 near x = a. By Theorem 2.9, u is a well

defined distribution on R that solves Pu = 1.

Exercise 4.6. H 3.1.14

Exercise 4.7. H 3.1.20

Exercise 4.8. Let u be a continuous function on Rn \ {0} that is homogeneous of degree
−n. Show that we can define a distribution pvu by

〈pvu, ϕ〉 = lim
ε→0

∫
|x|>ε

u(x)ϕ(x)dx,

if and only if
∫
|x|=1

u(x)dσ(x) = 0.

Exercise 4.9. An alternative method to define fpxα+ is by analytic continuation. If ϕ ∈ D
and Reα > −1 the map

Fϕ(α) =

∫ ∞
0

xαϕ(x)dx

is analytic. Show that this map can be continued to a meromophic function in C,
whose only singularities are simple poles in −1,−2,−3, . . .. Compute the residues
R−k of Fϕ and show that if we for k = 1, 2, 3, . . . extend the definition of Fϕ by

Fϕ(−k) = lim
α→−k

(
Fϕ(α)− R−k

α+ k

)
,

we have
Fϕ(α) = 〈fpxα+, ϕ〉.

This approach gives an alternative proof that

xα+fpx−α+ = H, α ∈ C

and
(fpxα+)′ = αfpxα−1+ , α 6= 0,−1,−2,−3, . . .

27



Chapter 5

Fundamental solutions of the
Laplace and heat equations

Definition 5.1. Let P (D) be a differential operator. A distribution E with
P (D)E = δ, is called a fundamental solution of P .

2

In Example 3.2, we saw that the Heaviside function H is a fundamental
solution of d/dx. A little more general, H(x1) . . . H(xn) is a fundamental
solution of ∂1 . . . ∂n.

In this chapter we will treat the Laplace operator

∆u =
n∑
i=1

∂2u

∂x2
i

,

and the heat operator (
∂

∂t
−∆x

)
u =

∂u

∂t
−

n∑
i=1

∂2u

∂x2
i

.

To accomplish this we need to be able to integrate by parts in Rn, and we
remind the reader about

Green’s identity∫
Ω

(u∆v − v∆u) dx =

∫
∂Ω

(
u
∂v

∂n
− v ∂u

∂n

)
dσ

where ∂/∂n is the exterior normal derivative.
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Theorem 5.2.

E(x) =


1

2π
log |x|, n = 2,

− 1

ωn(n− 2)|x|n−2
, n ≥ 3,

is a fundamental solution of the Laplace operator in Rn.

(ωn is the surface measure of the unit sphere in Rn.)

Exercise 5.1. Compute ωn in terms of the Γ function,

Γ(s) =

∫ ∞
0

ts−1e−tdt, Res > −1.

Exercise 5.2. Visa att ∆E(x) = 0 om x 6= 0.

Proof.

〈∆E,ϕ〉 = 〈E,∆ϕ〉 = lim
ε→0

∫
|x|>ε

E∆ϕdx

= Exercise 2 = lim
ε→0

∫
|x|>ε

(E∆ϕ− ϕ∆E)dx = Green’s identity =

= lim
ε→0

∫
|x|=ε

(
E
∂ϕ

∂n
− ϕ∂E

∂n

)
dσ = lim

ε→0
(Iε + IIε).

We only consider the case n ≥ 3, and leave the case n = 2 as
Exercise 5.3.

We have

|Iε| ≤ C

∥∥∥∥∂ϕ∂n
∥∥∥∥
∞

1

εn−2
ωnε

n−1 −→ 0, ε→ 0 ,

and as ∂/∂n = −∂/∂r,

IIε =

∫
|x|=ε

ϕ
∂E

∂r
dσ = − 1

(n− 2)ωn

∫
|x|=ε

ϕ(x)
−(n− 2)

|x|n−1
dσ(x)

=
ϕ(0)

ωn

∫
|x|=ε

dσ(x)

εn−1
+

1

ωn

∫
|x|=ε

(ϕ(x)− ϕ(0))
dσ(x)

εn−1

−→ ϕ(0), ε→ 0.

Theorem 5.3.

E(x, t) =


1

(4πt)n/2
exp(−|x|

2

4t
), t > 0,

0, t < 0,

is a fundamental solution of the heat equation in Rn+1.
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Exercise 5.4. Show that ( ∂∂t −∆x)E(t, x) = 0 if t 6= 0.

Proof. Let φ(x) = E(x, 1
2
). When n = 1, this is the density of a N(0, 1) dis-

tributed stochastic variable and, when n > 1 the product of n such densities.
Furthermore, E(x, t) = φ√2t(x) and thus

∫
Rn E(x, t)dx = 1 for all t > 0 and

E ∈ L1
loc (Rn+1). Now〈

∂E

∂t
, ϕ

〉
= −

〈
E,

∂ϕ

∂t

〉
= lim

ε→0
−
∫
Rn
dx

∫
t>ε

E
∂ϕ

∂t
dt

= lim
ε→0

{∫
Rn
E(x, ε)ϕ(x, ε)dx+

∫
Rn

∫
t>ε

ϕ
∂E

∂t
dxdt

}
,

and

〈∆xE,ϕ〉 = 〈E,∆xϕ〉 = lim
ε→0

∫
Rn

∫
t>ε

E∆xϕdxdt = lim
ε→0

∫
Rn

∫
t>ε

∆xEϕdxdt

Thus〈(
∂

∂t
−∆x

)
E,ϕ

〉
=

lim
ε→0

{∫
Rn
E(x, ε)ϕ(x, ε)dx+

∫
Rn

∫
t>ε

ϕ

(
∂E

∂t
−∆xE

)
dxdt

}
=

= Exercise 4 = lim
ε→0

∫
Rn
E(x, ε)ϕ(x, ε)dx.

Since E(x, t) = φ√2t(x) is an approximate identity, we ought to have

Iε =

∫
Rn
E(x, ε)ϕ(x, ε)dx→ ϕ(0), ε→ 0.

This does not follow directly from Theorem 1.4 since the support of ϕ(x, ε)
is not compact and depend on ε. But the change of variables x =

√
2ε y gives

Iε =

∫
Rn
φ(x)ϕ(

√
2ε x, ε)dx .

Since φ ∈ L1 and |ϕ(
√

2ε x, ε)| ≤ ‖ϕ‖∞, we get by dominated convergence

lim
ε→0

Iε =

∫
Rn
φ(x) lim

ε→0
ϕ(
√

2ε x, ε)dx =

∫
Rn
φ(x)ϕ(0, 0)dx = ϕ(0) .

Exercise 5.5. Show that
1

πz
is a fundamental solution to

∂

∂z
in C.

Exercise 5.6. Compute
∂

∂z
log |z| and ∆ log |z| in C.

Exercise 5.7. H 3.3.9

Exercise 5.8. H 3.3.11

Exercise 5.9. H 3.3.12
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Chapter 6

Distributions with compact
support

Theorem 6.1. Assume that u ∈ D ′(Ω) has compact support Then u has a
unique extension to C∞(Ω) that satisfies u(ϕ) = 0 if suppu and suppϕ are
disjoint.

If K is a compact set that contains a neighborhood of suppu, then

|u(ϕ)| ≤ C
∑
|α|≤k

‖∂αϕ‖K , ϕ ∈ C∞(Ω). (6.1)

Proof. Take χ ∈ C∞0 (K) with χ = 1 in a neighborhood of suppu. If ϕ ∈ C∞0 ,
then according to Theorem 2.12

u(ϕ) = u(χϕ+ (1− χ)ϕ) = u(χϕ) + u((1− χ)ϕ) = u(χϕ).

Thus
u(ϕ) = u(χϕ), ϕ ∈ C∞

defines an extension of u. (1) follows Leibnitz’ rule.
Assume on the other hand that u1 is an extension to C∞. The condition

on the support implies that u1((1 − χ)ϕ) = 0, and consequently u1(ϕ) =
u1(χϕ) = u(χϕ) and thus the extension is unique.

Remark 6.2. Exercise 2.6 shows that it is not always possible to take K =
suppu in (1). 2

Exercise 6.10. State and prove a converse of Theorem 1.

Thus we can identify distributions with compact support with the linear
functionals on C∞(Ω) that satisfies (1). These distributions are denoted
E ′(Ω).
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Chapter 7

Convergence of distributions

Definition 7.1. A sequence uj ∈ D ′(Ω) converges to u ∈ D ′(Ω) if

uj(ϕ)→ u(ϕ), j →∞,

for every test function ϕ ∈ D(Ω). We denote this by uj → u in D ′. 2

If uj → u in D ′, we also have ∂αuj → ∂αu in D ′ for every multiindex α.
We write u =

∑
uj in D ′ if the partial sums converges in D ′. If the series

converges, it is differentiable and we have ∂α(
∑
uj) =

∑
∂αuj.

Remark 7.2. Convergence in D ′ is a ”weak” condition, if for instance fj → f
in Lp then fj → f i D ′. 2

Exercise 7.1. Prove that.

Definition 7.3. uj ∈ D ′(Ω) is a Cauchy sequence in D ′(Ω) if uj(ϕ) is a
Cauchy sequence in C for every ϕ ∈ D(Ω).

Theorem 7.4. D ′(Ω) is complete.

Since uj(ϕ) is a Cauchy sequence in C, the following limit exist

u(ϕ) = lim
j→∞

uj(ϕ),

and defines a linear functional on D(Ω). The difficulty is to show that u is a
distribution, i.e. that u satisfies the norm inequality (2.1), or the equivalent
formulation in Theorem 2.4. This is a consequence of the Banach-Steinhaus
theorem.

Let K be a compact set in Ω. We shall study the space X = XK =
{ϕ ∈ C∞(Ω); suppϕ ⊂ K}. We introduce a metric on X by

d(ϕ1, ϕ2) =
∑
k

2−k
‖ϕ1 − ϕ2‖k

1 + ‖ϕ1 − ϕ2‖k
,
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where ‖ϕ‖k =
∑
|α|≤k supK |∂αϕ| and put ‖ϕ‖ = d(ϕ, 0).

Observe that if ε > 0, and we take N = Nε so that
∑∞

N+1 2−k < ε
2
, then

‖ϕ‖ ≤
N∑
k=1

2−k‖ϕ‖k +
ε

2
≤

N∑
k=1

2−k‖ϕ‖N +
ε

2
≤ ‖ϕ‖N +

ε

2
< ε ,

if ‖ϕ‖N < ε
2
.

Exercise 7.2. Show that d is a metric on X.

Exercise 7.3. Show that X is complete.

Exercise 7.4. Show that ϕj → 0 in D(K) if and only if ‖ϕj‖ → 0.

Exercise 7.5. Show that if ‖ϕj‖ → 0 in D(K), there are positive numbers cj with cj →∞
but ‖cjϕj‖ → 0.

The Banach-Steinhaus theorem

Let Λα be a family of linear functionals on X with |Λαϕ| ≤ Cα‖ϕ‖. Then,
either

1) there are r > 0 and C <∞ with

sup
α
|Λαϕ| ≤ C

for all ϕ ∈ X with ‖ϕ‖ ≤ r ,

or

2) supα |Λαϕ| =∞ for some ϕ ∈ X.

Now we can complete the proof of Theorem 4. Take ϕ with support in
K. Since uj(ϕ) converges, 2) can not hold. Thus 1) holds, ie.

|u(ϕ)| ≤ sup
j
|uj(ϕ)| ≤ C if ‖ϕ‖ ≤ r .

Hence if ϕk → 0 in D(K), k → ∞, Exercise 7.5 implies that |u(ckϕk)| ≤ C
if k is large enough. Thus |u(ϕk)| ≤ C

ck
→ 0, k →∞, ie. u ∈ D ′.

2
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The Banach-Steinhaus theorem is a consequence of

Baire’s theorem

Assume that X is a complete metric space. Let V1, V2, . . . be open dense sets
in X. Then ∩iVi is non-empty.

Proof. Let Br(φ) = {ϕ ∈ X; d(ϕ, φ) < r}. Since Vi are open and dense vi
can successivly choose φi and ri with ri <

1
i

such that Br1(φ1) ⊂ V1 and

Bri(φi) ⊂ Vi ∩Bri−1
(φi−1), i = 1, 2, 3, . . ..

If i, j ≥ n, then φi, φj ∈ Brn(φn), and therefore d(φ1, φj) <
2
n
. Thus φn

is a Cauchy sequence, and φn → φ0 for some φ0 ∈ X. But φi ∈ Brn(φn) if
i ≥ n. Hence φ0 ∈ Brn(φn) ⊂ Vnfor all n and φ0 ∈ ∩Vi.

Proof of the Banach-Steinhaus theorem. Let φ(ϕ) = sup |Λαϕ|. φ is lower
semi-continuous, and hence Vn = {ϕ;φ(ϕ) > n} is open. If some VN isn’t
dense, then there are ϕ0, r with Br(ϕ0) ⊂ V c

N ie.

{ϕ; ‖ϕ− ϕ0‖ < r} ⊂ V c
N .

Thus if ‖ϕ‖ < r, then |Λα(ϕ0 + ϕ)| ≤ N . This implies
|Λαϕ| ≤ |Λα(ϕ+ ϕ0)|+ |Λαϕ0| ≤ 2N = C if ‖ϕ‖ < r.

On the other hand if all Vn are dense, then there are ϕ ∈ ∩Vn, ie. φ(ϕ) =
∞ or supα |Λαϕ| =∞.

Theorem 7.5. Assume that uj → u0 in D ′(Ω) and that uj ≥ 0. Then uj
converges weakly to a positive measure u0.

Proof. Since u0 is the limit of positive distributions, u0 is a positve distribu-
tion. By Theorem 2.7, u0 is a positive measure. If χ ∈ C∞0 is equal to 1 on
K, the proof of Theorem 2.7 gave the estimate

|uj(ϕ)| ≤ 2uj(χ)‖ϕ‖∞,

when ϕ ∈ C∞0 is supported in K.
Since uj(χ)→ u0(χ), we have supj |uj(χ)| ≤ C, and we obtan

|uj(ϕ)| ≤ C‖ϕ‖∞, ϕ ∈ C∞0 , j = 0, 1, 2, . . .

By taking limits, compare Theorem 2.5, this also holds when ϕ ∈ C0.
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Now let ϕ ∈ C0. We have to prove that uj(ϕ) → u0(ϕ), j → ∞. Take
ϕn ∈ C∞0 whit ϕn → ϕ uniformly. Then

|uj(ϕ)− u0(ϕ)| ≤ |uj(ϕ)− uj(ϕn)|+ |uj(ϕn)− u0(ϕn)|+ |u0(ϕn)− u0(ϕ)|
= |uj(ϕ− ϕn)|+ |uj(ϕn)− u0(ϕn)|+ |u0(ϕn − ϕ)|

≤ 2C‖ϕ− ϕn‖+ |uj(ϕn)− u0(ϕn)| .

Hence
lim
j→∞
|uj(ϕ)− u0(ϕ)| ≤ 2C‖ϕ− ϕn‖∞ < ε

if n is large enough.

Exercise 7.6. Assume that f is analytic in Ω = I × (0, δ) ⊂ C, where I is an open
interval. Show that if |f(z)| ≤ C|Imz|−N, then f(x+ i0) = limy→0 f(x+ iy) exists
in the distribution sense and f(x+ i0) ∈ D ′N+1(I).

Exercise 7.7. Compute

a) 1
x+i0 + 1

x−i0
and

b) 1
x+i0 −

1
x+i0 .

Exercise 7.8. H 2.5

Exercise 7.9. H 2.6

Exercise 7.10. H 2.7

Exercise 7.11. H 2.9

Exercise 7.12. H 2.16
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Chapter 8

Convolution of distributions

If u ∈ L1
loc and ϕ ∈ C∞0 , then u ∗ ϕ(x) =

∫
u(y)ϕ(x − y)dy. This motivates

the following

Definition 8.1. If u ∈ D ′(Rn) and ϕ ∈ D(Rn), then

u ∗ ϕ(x) = 〈uy, ϕ(x− y)〉.

2

The notation 〈uy, ϕ(x−y)〉 means that the distribution u acts on the test
function y 7→ ϕ(x− y). Sometimes we also write 〈u, ϕ(x− ·)〉.

Remark 8.2. This definition can also be used in the case where u ∈ E ′(Rn),
ϕ ∈ C∞(Rn). 2

Theorem 8.1. If u ∈ D ′(Rn) and ϕ ∈ D(Rn), then
a) u ∗ ϕ ∈ C∞(Rn)
b) supp(u ∗ ϕ) ⊂ suppu+ suppϕ
c) ∂α(u ∗ ϕ) = u ∗ ∂αϕ = (∂αu) ∗ ϕ

Proof. We first show that u ∗ ϕ is continuous. Let x → x0. If |x − x0| ≤ 1,
then y 7→ ϕ(x− y) has support in a fixed compact set. Furthermore
∂αy (ϕ(x−y)−ϕ(x0−y))→ 0, x→ x0, uniformly. Hence ϕ(x−y)→ ϕ(x0−y),
in D when x→ x0, and we get u ∗ϕ(x) = 〈uy, ϕ(x− y)〉 → 〈uy, ϕ(x0− y)〉 =
u ∗ ϕ(x0), x→ x0.

Since u ∗ ϕ is continuous, to prove b) it is enough to show that if x /∈
suppu + suppϕ, then u ∗ ϕ(x) = 0. But if x /∈ suppu + suppϕ, there are
no y ∈ suppu with x − y ∈ suppϕ. So there is no y with y ∈ suppu and
y ∈ suppϕ(x− ·). Hence suppu ∩ suppϕ(x− ·) = ∅ och u ∗ ϕ(x) = 0.
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The proof of the second equality in c) is simple.

∂αu ∗ ϕ(x) = 〈∂αuy, ϕ(x− y)〉 = (−1)|α|〈uy, ∂αy ϕ(x− y)〉 =

= 〈uy, ϕ(α)(x− y)〉 = u ∗ (∂αϕ)(x).

The first equality follows by induction if we can prove it in the special case
α = (1, 0, . . . , 0). Thus it is enough to show that

lim
h→0

1

h
(u ∗ ϕ(x+ he1)− u ∗ ϕ(x)) = u ∗ ∂1ϕ(x).

Let φx,h(y) = 1
h
(ϕ(x+he1−y)−ϕ(x−y)). Then 1

h
(u∗ϕ(x+he1)−u∗ϕ(x)) =

u(φx,h). But φx,h(y)→ ∂ϕ
∂x1

(x−y) i D . Hence ∂α(u∗ϕ)(x) = limh→0 u(φx,h) =

uy(
∂ϕ
∂x1

(x− y)) = u ∗ ∂1ϕ(x).
Since a) follows from c) the theorem is proved.

Exercise 8.1. Show that φx,h(y)→ ∂ϕ
∂x1

(x− y) i D .

Exercise 8.2. Show that the convolution of functions is associative.

Theorem 8.2. If u ∈ D ′(Rn) and ϕ, ψ ∈ D(Rn), then (u∗ϕ)∗ψ = u∗(ϕ∗ψ).

Remark 8.3. If u ∈ E ′(Rn), it is enough that one of ϕ, ψ has compact
support. 2

Proof. We have

u ∗ (ϕ ∗ ψ)(x) = 〈uy, ϕ ∗ ψ(x− y)〉 = 〈uy,
∫
Rn
ϕ(x− y − t)ψ(t)dt〉 ?

=

?
=

∫
Rn
〈uy, ϕ(x− y − t)〉ψ(t)dt =

∫
Rn
u ∗ ϕ(x− t)ψ(t)dt

= (u ∗ ϕ) ∗ ψ(x).

To prove that
?
= holds, we approximate the integral with its Riemann sum.

By Lemma 4 below the Riemann sum converges to the convolution in D and

thus
?
= holds.

Lemma 8.4. If ϕ ∈ Cj
0(Rn) and ψ ∈ C0(Rn), then∑

k∈Zn
ϕ(x− kh)ψ(kh)hn −→ ϕ ∗ ψ(x) i Cj

0 ,

as h→ 0.
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Proof of Lemma 4. The sum is supported in suppϕ+ suppψ. The function
(x, y) 7→ ϕ(x − y)ψ(y) is uniformly continuous. Hence the Riemann sum
converges uniformly to ϕ ∗ ψ(x). Since ∂α(ϕ ∗ ψ) = ∂αϕ ∗ ψ om |α| ≤ j, this
also holds for the derivatives.

Theorem 8.5 (Regularisation of distributions.). Let u ∈ D ′(Rn) and ϕδ be
an approximate identity. Then u ∗ ϕδ → u in D ′(Rn), δ → 0 .

Proof. Define
∨

ψ by
∨

ψ (x) = ψ(−x). Then u(ψ) = u∗
∨

ψ (0). By Theorem 2,
this implies

uδ(ψ) = u ∗ ϕδ(ψ) = (u ∗ ϕδ)∗
∨

ψ (0) =

= u ∗ (ϕδ∗
∨

ψ)(0) .

But, since ϕδ is an approximate identity, ϕδ∗
∨

ψ→
∨

ψ in D(Rn), δ → 0. Hence

lim
δ→0

uδ(ψ) = lim
δ→0

u ∗ (ϕδ∗
∨

ψ)(0) = u∗
∨

ψ (0) = u(ψ).

Exercise 8.3. Let u ∈ D ′(Ω). Show that there are C∞0 functions un with un → u in
D ′(Ω), n→∞.

Example 8.6. An alternative proof that u is constant if u′ = 0.
Let uδ = u ∗ ϕδ ∈ C∞. Then u′δ = u′ ∗ ϕδ = 0 ∗ ϕδ = 0. Hence uδ = Cδ.

But uδ → u in D ′, and Cδ → C for some constant C and u = C. 2

Exercise 8.4. Let u ∈ D ′(R). Show that
a) If u′ ≥ 0, then u is an increasing function.
b) If u′′ ≥ 0, then u is a convex function.

Example 8.7. Harmonic functions.
If u ∈ C2(Rn) satisfies ∆u = 0, we say that u is a harmonic function.

Harmonic functions satisfies the mean value property.

u(x) =
1

|Sr(x)|

∫
Sr(x)

u(y)dσ(y).

In R2, this follows from the Cauchy integral formula since a harmonic function
locally is the real part of a holomorphic function. The general case follows
from
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Exercise 8.5. Prove the mean value property.
Hint. We may assume that x = 0. First apply Green’s identity to the functions u and
1 on Br = {|x| ≤ r}, and then on u and E (E is the fundamental solution of ∆) on
Ωε = {ε ≤ |x| ≤ 1}. Let ε→ 0.

A different proof is given in Section 17.2.

Theorem 8.8 (Weyl’s lemma). If u ∈ D ′(Rn) and ∆u = 0, then u ∈ C∞
and ∆u = 0 classically.

Proof. Let ϕδ be an approximate identity, ϕ(x) = ϕ(|x|), ϕ ≥ 0 and
∫
ϕ = 1.

Put uδ = u ∗ ϕδ. Then uδ ∈ C∞ and ∆uδ = (∆u) ∗ ϕδ = 0 ∗ ϕδ = 0. So uδ
satisfies the mean value property. Hence

uδ ∗ ϕ(x) =

∫ ∞
0

rn−1ϕ(r)dr

∫
Sn−1

uδ(x− rω)dσ(ω)

= ωnuδ(x)

∫ ∞
0

rn−1ϕ(r)dr = uδ(x)

∫
Rn
ϕ(y)dy = uδ(x).

Thus uδ = uδ ∗ ϕ. Now let δ → 0. We get u = u ∗ ϕ ∈ C∞ and ∆u =
∆u ∗ ϕ = 0 ∗ ϕ = 0.

Next we will define the convolution of two distributions. We want to do
it in such a way that the associativity is preserved. To be able to that we
assume that at least one of the distributions has compact support.

Definition 8.9. Assume that u, v ∈ D ′(Rn), and at least one of them has
compact support. Then u ∗ v is the (uniquely determined) distribution that
satisfies

(u ∗ v) ∗ ϕ = u ∗ (v ∗ ϕ), ϕ ∈ D(Rn).

2

Is this a definition?
We first observe that u∗ (v ∗ϕ) is well-defined. If v has compact support,

then v ∗ ϕ ∈ D and u ∗ (v ∗ ϕ) is well-defined by Definition 1.1. On the
other hand, if u has compact support, then v ∗ ϕ ∈ C∞ and u ∗ (v ∗ ϕ) is
well-defined by Remark 1.2.

That there is at most one U = u ∗ v is also clear. Namely, if there
were two such distribution U and Ũ , then U ∗ ϕ = u ∗ (v ∗ ϕ) = Ũ ∗ ϕ and

U(ϕ) = U∗
∨
ϕ (0) = Ũ∗

∨
ϕ (0) = Ũ(ϕ).

To show the existence we will study the map ϕ 7→ u ∗ ϕ.

Proposition 8.10. Let Tϕ = u ∗ ϕ. Then we have

a) If u ∈ D ′(Rn), then T is a continuous linear map D(Rn)→ C∞(Rn).
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b) If u ∈ E ′(Rn), then T is a continuous linear map D(Rn)→ D(Rn) and
C∞(Rn)→ C∞(Rn).

Proof. We prove a) and leave b) as an exercise. Thus we assume that ϕj → 0
i D(Rn) and shall prove that ∂α(u∗ϕj)→ 0 uniformly on compact sets. Since
∂αϕj → 0 in D(Rn) if ϕj → 0 in D(Rn), and ∂α(u ∗ ϕj) = u ∗ ∂αϕj, we may
assume that α = 0. If x is contained in a compact set and if all ϕj are
supported in another compact set, then also y 7→ ϕj(x − y) is supported in
a fix compact set. Thus

|u ∗ ϕj(x)| = |u(ϕj(x− ·)| ≤ C
∑
|α|≤k

‖∂αϕj(x− ·)‖∞ −→ 0, j →∞.

Exercise 8.6. Prove Proposition 10 b).

Let τh be the translation operator, τhϕ(x) = ϕ(x− h). Then we have

Proposition 8.11. Convolution and translation commutes.

Proof.

u ∗ τhϕ(x) = 〈uy, τhϕ(x− y)〉 = 〈uy, ϕ(x− h− y)〉
= u ∗ ϕ(x− h) = τh(u ∗ ϕ)(x).

An important converse of this is

Theorem 8.12. Assume that T is a continuous linear map from D(Rn)
into C∞(Rn) that commutes with translations. Then there is a distribution
u ∈ D ′(Rn) with

Tϕ = u ∗ ϕ, ϕ ∈ D(Rn).

Proof. If Tϕ = u ∗ ϕ, then in particular u(ϕ) = u∗
∨
ϕ (0) = T

∨
ϕ (0). We

therefore define u by

u(ϕ) = T
∨
ϕ (0).

The continuity assumption implies that u is a distribution. Furthermore we
have

u ∗ ϕ(h) = 〈u, ϕ(h− x)〉 = 〈u, τh
∨
ϕ〉 = T ((τh

∨
ϕ)∨)(0)

= T (τ−hϕ)(0) = τ−hT (ϕ)(0) = Tϕ(h) .
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The above results implies that Definition 9 is a definition. Proposition 10
shows that ϕ 7→ u ∗ (v ∗ ϕ) satisfies the conditions in Theorem 12 and, u ∗ v
is this distribution. 2

Remark 8.13.

a) If v ∈ D(Rn), Definitions 1 and 2 coincides.

b) If both u and v have compact support, then (u ∗ v) ∗ϕ = u ∗ (v ∗ϕ) for
all ϕ ∈ C∞(Rn).

2

Example 8.14. u ∗ δ = u since (u ∗ δ) ∗ ϕ = u ∗ (δ ∗ ϕ) = u ∗ ϕ. 2

Theorem 8.15.

a) u ∗ v = v ∗ u

b) supp (u ∗ v) ⊂ suppu+ supp v

c) u ∗ (v ∗ w) = (u ∗ v) ∗ w
if at least two of the distributions have compact support.

Proof. a) To show that two distributions U and V coincides, it is enough to
show that U ∗ (ϕ ∗ ψ) = V ∗ (ϕ ∗ ψ), if ϕ, ψ ∈ D(Rn). Namely, in that case,
(U ∗ϕ)∗ψ = U ∗ (ϕ∗ψ) = V ∗ (ϕ∗ψ) = (V ∗ϕ)∗ψ, according to Theorem 2.
This implies U ∗ ϕ = V ∗ ϕ, and U = V .

Now

(u ∗ v) ∗ (ϕ ∗ ψ) = u ∗ (v ∗ (ϕ ∗ ψ)) = u ∗ ((v ∗ ϕ) ∗ ψ)

= u ∗ (ψ ∗ (v ∗ ϕ)) = (u ∗ ψ) ∗ (v ∗ ϕ).

If v has compact support, the last equality follows by Theorem 8.2. If v does
not have compact support it follows from the next exercise.

We also have

(v ∗ u) ∗ (ϕ ∗ ψ) = (v ∗ u) ∗ (ψ ∗ ϕ) = (v ∗ ϕ) ∗ (u ∗ ψ) = (u ∗ ψ) ∗ (v ∗ ϕ),

and a) is proved.
b) By the commutativity we may assume that v has compact support.

Definie
∨
v by 〈∨v, ϕ〉 = 〈v,

∨
ϕ〉. If x ∈ supp (u ∗ v), there is to every ε > 0 a

ϕ ∈ D(Rn), suppϕ ⊂ {y; |x− y| < ε} = Oε, with 0 6= u ∗ v(ϕ) = u ∗ v∗
∨
ϕ (0)

= u((v∗
∨
ϕ)∨) = u(

∨
v ∗ϕ). So E = suppu∩ supp (

∨
v ∗ϕ) 6= ∅. Let y ∈ E. Then
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y ∈ suppu och y ∈ supp
∨
v ∗ϕ, or y = −z + x + δ, where z ∈ supp v and

|δ| < ε. Thus x = y + z − δ ∈ suppu+ supp v +Oε. Now let ε→ 0.
c) Assume first that w has compact support. Then w ∗ ϕ ∈ D , and we

get
((u ∗ v) ∗ w) ∗ ϕ = (u ∗ v) ∗ (w ∗ ϕ) = u ∗ (v ∗ (w ∗ ϕ)).

But also,

(u ∗ (v ∗ w)) ∗ ϕ = u ∗ ((v ∗ w) ∗ ϕ) = u ∗ (v ∗ (w ∗ ϕ))

and hence u ∗ (v ∗ w) = (u ∗ v) ∗ w.
If w does not have compact support, both u and v have, and a) implies

u ∗ (v ∗ w) = (v ∗ w) ∗ u = v ∗ (w ∗ u) = (w ∗ u) ∗ v
= w ∗ (u ∗ v) = (u ∗ v) ∗ w.

Exercise 8.7. Show that u ∗ (ψ ∗ ϕ) = (u ∗ ψ) ∗ ϕ if u ∈ E ′, ψ ∈ D and ϕ ∈ C∞.

Theorem 8.16. ∂α(u ∗ v) = ∂αu ∗ v = u ∗ ∂αv if at least one of the distri-
butions have compact support.

Proof. If u ∈ D ′(Rn), we have ∂αu = ∂αδ ∗ u, since

∂αu ∗ ϕ = u ∗ ∂αϕ = u ∗ (δ ∗ ∂αϕ) = u ∗ (∂αδ ∗ ϕ) = (u ∗ ∂αδ) ∗ ϕ.

Using this we get

∂α(u ∗ v) = ∂αδ ∗ (u ∗ v) = (∂αδ ∗ u) ∗ v = ∂αu ∗ v.

The second equality follows from Theorem 15 a).

Theorem 8.17. Assume that u ∈ D ′k and v ∈ Ck
0 (or u ∈ E ′k, v ∈ Ck). Then

u ∗ v is the continuous function x 7→ 〈uy, v(x− y)〉.

Proof. If x→ x0, then v(x− ·)→ v(x0− ·) i Ck
0 . But u is continuous on Ck

0 ,
and we get 〈uy, v(x− y)〉 → 〈uy, v(x0 − y)〉. Thus h(x) = 〈uy, v(x− y)〉 is a
continuous function.

According to Definition 9, (u ∗ v) ∗ ψ = u ∗ (v ∗ ψ). As in the proof of
Theorem 2 one can show that h ∗ ψ = u ∗ (v ∗ ψ). Hence h = u ∗ v.

Exercise 8.8. Let u, v ∈ D ′(R) with support in {x ≥ 0}. Define u ∗ v.

Exercise 8.9. H 4.2.1

Exercise 8.10. H 4.2.2

Exercise 8.11. H 4.2.3

Exercise 8.12. H 4.2.4
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Chapter 9

Fundamental solutions

Let
P =

∑
|α≤N |

aα∂
α

be a differential operator with constant coefficients and E a fundamental
solution to P , ie. E ∈ D ′(Rn) and PE = δ. Then

P (E ∗ f) = f, f ∈ E ′(Rn), (9.1)

and
E ∗ Pu = u, u ∈ E ′(Rn). (9.2)

Thus E is both a left and a right invers to P on E ′. (But on different domains,
so it does not imply that P is bijective.) So (1) gives a solution u = E ∗ f
of the equation Pu = f if f has compact support. (2) can be used to study
regularity of solutions of Pu = f .

Remark 9.1. In Chapter 14 we will show that every differential operator
with constant coefficients has a fundamental solution. 2

In Chapter 5, we obtained fundamental solutions to the Laplace and heat
equations. Another example is that

Ek(x) =

 (x1 . . . xn)k/(k!)n, all xi > 0

0 otherwise,

is a fundamental solution to Pk+1 = ∂k+1
1 . . . ∂k+1

n . Using this we can prove

Theorem 9.2. If u ∈ E ′m(Rn), there is a continuous function f with

∂m+2
1 . . . ∂m+2

n f = u.
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Proof. Em+1 is a fundamental solution to Pm+2. Thus f = Em+1 ∗ u satisfies
Pm+2f = u. By Theorem 8.17, f is continuous.

A corollary of Theorem 1 is the following representation theorem for
distributions.

Theorem 9.3. If u ∈ D ′(Ω), there are functions fα ∈ C(Ω) with

u =
∑

∂αfα

in D ′. The sum is locally finite, and if u has finite order the sum is finite.

Proof. Choose a partition of unity ψi ∈ C∞0 and χi ∈ C∞0 with χi = 1 on
suppψi. This can be done in such a way that Σχi is locally finite. We get

u(ϕ) =
∑
i

ψiu(ϕ) =
∑
i

χiu(ψiϕ).

The distribution χiu has compact support, and hence finite order. Theorem 1
implies that χiu = ∂αifi, fi ∈ C. Hence

u(ϕ) =
∑
i

∂αifi(ψiϕ) =
∑
i

(−1)|αi|
∫
Rn
fi∂

αi(ψiϕ) dx .

If we compute ∂αi(ψiϕ), we get

u(ϕ) =
∑
i

∑
α

(−1)|α|
∫
Rn
fi,α∂

αϕdx =
∑
α

∑
i

∂αfi,α(ϕ) .

Finally, we let fα =
∑

i fi,α.

To study the regularity of solutions of the equation Pu = f , we want to
study the set where u is not C∞.

Definition 9.4. The singular support of a distribution u ∈ D ′(Ω) is denoted
sing suppu, and consists of those points in Ω that have no neighborhood
where u is C∞. 2

sing suppu is the smallest closed set such that u is C∞ in its complement.
It is clear that sing suppu ⊂ supp u.

Theorem 9.5. If u, v ∈ D ′(Rn), and at least one of them have compact
support, then

sing supp (u ∗ v) ⊂ sing suppu+ sing supp v. (9.3)
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Proof. Put u1 = u and u2 = v. Let us first assume that both distributions
have compact support. Let Ki = sing supp ui, and Ωi a neighborhood of Ki

and take ψi ∈ C∞0 (Ωi) with ψi = 1 on Ki. Then

u1 ∗ u2 = (ψ1u1 + (1− ψ1)u1) ∗ (ψ2u2 + (1− ψ2)u2)

=ψ1u1 ∗ ψ2u2 + ψ1u1 ∗ (1− ψ2)u2

+(1− ψ1)u1 ∗ ψ2u2 + (1− ψ1)u1 ∗ (1− ψ2)u2.

Since (1 − ψi)ui ∈ C∞0 , Theorem 8.1 implies that the last three terms are
C∞. Thus

sing supp (u1 ∗ u2) = sing supp (ψ1u1 ∗ ψ2u2)

⊂ supp (ψ1u1 ∗ ψ2u2) ⊂ suppψ1 + suppψ2 ⊂ Ω1 + Ω2.

If we let Ωi ↓ Ki, we obtain (9.3).

If only one of the distributions have compact support, we can by Theo-
rem 8.15 asssume that v ∈ E ′.

To show that sing suppu ∗ v ⊂ sing suppu+sing supp v, it is enough to
show that sing suppu∗v∩B1(x) ⊂ (sing suppu+sing supp v)∩B1(x) for each
x ∈ Rn.

Take R ≥ 1 so large that supp v ⊂ BR(0) and |x| ≤ R, and choose
χ ∈ C∞0 (B6R(0)) with χ = 1 on B5R(0). Put u1 = χu and u2 = (1 − χ)u.
Thus u = u1 + u2 where u1 has compact support and suppu2 ⊂ BC

5R(0).
Then suppu2 ∗ v ⊂ BC

5R(0) + BR(0) ⊂ BC
4R(0) and B1(x) ⊂ B2R(0). Hence

u2 ∗ v = 0 on B1(x). Since both u1 and v have compact support, we get

sing supp (u ∗ v) ∩B1(x) = sing supp (u1 ∗ v) ∩B1(x)

⊂ (sing suppu1 + sing supp v) ∩B1(x) = (sing suppu+ sing supp v) ∩B1(x),

and the theorem is proved.

Theorem 9.6. If P has a fundamental solution with sing suppE = {0}, then
sing suppu = sing suppPu, u ∈ D ′.

Remark 9.7. The converse is also true. Thus if there is a fundamental solu-
tion with singular support at the origin, then this is true for all fundamental
solutions. 2

Proof. sing suppPu ⊂ sing suppu allways holds since Pu is C∞ if u is.
For the other inclusion, we first observe that if u has compact support,

then u = E ∗ Pu and by Theorem 5

sing suppu ⊂ sing suppE + sing suppPu = sing suppPu.
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If u is not compactly supported, take ψ ∈ C∞0 with ψ = 1 on an open set Ω.
Then

sing suppψu ⊂ sing suppP (ψu).

But on Ω we have P (ψu) = Pu and ψu = u, and the result follows.

A differential operator P is called hypoelliptisk if every solution u of Pu =
f is C∞ if f is. Theorem 6 thus implies that P is hypoelliptic if P has a
fundamental solution E with sing suppE = {0}.

The Laplace and the heat operators are hypoelliptic. In Chapter 12, we
will show that all elliptic operators are hypoelliptic. The Laplace operator is
elliptic but not the heat operator.

Exercise 9.1. Let P be a polynomial of one variable. Show that P ( d
dx ) has a fundamental

solution.

Exercise 9.2. H 4.4.3

Exercise 9.3. H 4.4.4

Exercise 9.4. H 4.4.5

Exercise 9.5. H 4.4.6

Exercise 9.6. H 4.4.9
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Chapter 10

The Fourier transform

If u is a ”nice” periodic function with period T , u can be written as

u(x) =
∑
m

cme
2πimx/T . (10.1)

Then

u(x)e−2πiνx/T =
∑
ν

cνe
2πi(m−ν)x/T ,

and integration over [−T
2
, T

2
] gives formally that

Tcν =

∫ T
2

−T
2

u(x)−2πiνx/Tdx

or

cν =
1

T

∫ T
2

−T
2

u(x)e−2πiνx/Tdx

cν are the Fourier coefficients of u. (1) is the inversion theorem. We also
have Parseval’s identity ∑

|cν |2 =
1

2π
‖u‖2

2 .

How can this be generalised to Rn? Let us first consider the case n = 1.
Let u ∈ C∞0 (R) and choose T so that suppu ⊂ (−T

2
, T

2
). Let uT be the

periodic extension of u,

uT (x) =
∑
k∈Z

u(x− kT ).
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Then we have

cT (ν) =
1

T

∫ T
2

−T
2

u(x)e−i
2πν
T
xdx.

Thus for |x| < T
2
, (1) implies

u(x) = uT (x) =
∑
ν

cT (ν)e2πi ν
T
x.

Define

û(ξ) =

∫
R
u(x)e−iξxdx, ξ ∈ R.

We observe that cT (ν) = 1
T
û(2πν

T
), and we can write

u(x) =
∑
ν

1

T
û(

2πν

T
)e2πi ν

T
x =

1

2π

∑
ν

2π

T
û(

2πν

T
)ei

2πν
T
x .

This is a Riemann sum of the integral

1

2π

∫
R
û(ξ)eiξxdξ.

So, if we let T →∞, we obtain

u(x) =
1

2π

∫
R
û(ξ)eiξxdξ. (10.2)

With some care, the above argument can be used to prove (2) when u is a nice
function. We will not do this, but instead prove (2) (and its generalization
to Rn) directly. The theory for Fourier series will then be a corollary of the
theory of the Fourier transform.

Definition 10.1. Assume that f ∈ L1(Rn). The Fourier transform of f is
defined by

f̂(ξ) =

∫
Rn
f(x)e−ixξdx,

where xξ =
∑n

1 xiξi. We sometimes write Ff instead of f̂ .
2

We will prove the following important properties of the Fourier transform.

I. The inversion formula. If f and f̂ ∈ L1, then

f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eixξdξ.
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II. Parseval’s identity. If f ∈ L1 ∩ L2, then f̂ ∈ L2 and ‖f‖2 = 1
(2π)n
‖f̂‖2.

III. If f, g ∈ L1, then (f ∗ g)∧ = f̂ ĝ.

IV. F(P (D)f)(ξ) = P (ξ)f̂(ξ) where Dj = −i∂j.

Exercise 10.1. Prove the Riemann-Lebesgue lemma: If f ∈ L1, then f̂ is continuous
and f̂(ξ)→ 0 when |ξ| → ∞.

Exercise 10.2. Prove III and IV.

To solve the constant coefficient differential equation P (D)u = f , we

can use I and IV. By Fourier transformation, we get P (ξ)û(ξ) = f̂(ξ). Thus

û(ξ) = f̂(ξ)/P (ξ) and u = F−1(f̂/P ). To be able to use this method ”often”,
we want to extend the Fourier transform to distributions. As a motivation
for the definition, we observe that, by Fubini’s theorem we have

Proposition 10.2. If f, g ∈ L1, then

∫
Rn
fĝ dx =

∫
Rn
f̂ g dx.

Exercise 10.3. Prove Proposition 2.

Hence for a L1 function we have

〈f̂ , ϕ〉 =

∫
Rn
f̂ϕ dx =

∫
Rn
fϕ̂ dx = 〈f, ϕ̂〉.

It is therefore natural to define û when u ∈ D ′ by

〈û, ϕ〉 = 〈u, ϕ̂〉. (10.3)

But if ϕ ∈ D , ϕ 6≡ 0, then ϕ̂ can not have compact support and hence ϕ̂ /∈ D .
So we can not define 〈u, ϕ̂〉 by (3).

So what to do? Well, we will consider a different class of test functions,
that is preserved by the Fourier transform. This is the Schwartz space S ,
that consists of C∞ rapidly decreasing functions.

Definition 10.3.

(a) ϕ ∈ S (Rn) if ϕ ∈ C∞ and supx∈Rn(1 + |x|2)k|∂αϕ(x)| < ∞ for alla k
and α.

(b) ϕj → 0 in S (Rn) if

sup
x∈Rn

(1 + |x|2)k|∂αϕj(x)| → 0

for all k and α. 2
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Definition 10.4.

(a) A tempered distribution on Rn is a linear functional on S , such that
u(ϕj)→ 0 when ϕj → 0 in S . We write u ∈ S ′.

(b) A sequence uj ∈ S ′ converges to u ∈ S ′ if

uj(ϕ)→ u(ϕ),

for every testfunction ϕ ∈ S .

2

To show that (3) works as a definition of the Fourier transform if u ∈ S ′

we need to study the Fourier transform on S . We start with the following

Proposition 10.5. If f, g ∈ S , then

(a) F(xαf(x)) = iα∂αf̂

(b) (∂αf)∧(ξ) = (iξ)αf̂(ξ)

(c) (τhf)∧(ξ) = e−iξhf̂(ξ)

(d) F(eixhf(x)) = τhf̂

(e) f̂a(ξ) = f̂(aξ)

(f) (f(ax))∧ = (f̂)a

(g)

∫
Rn
f ĝ =

∫
Rn
f̂ g

(h) (f ∗ g)∧ = f̂ ĝ

and

(i) f̂ ∈ S .

Exercise 10.4. Prove Proposition 5.

Theorem 10.6 (The inversion theorem). If f ∈ S , then

f(x) =
1

(2π)n

∫
Rn
eixξf̂(ξ)dξ. (10.4)
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To prove this we need to find one function that satisfies (4). Then (4)
follows in general by Proposition 5. We make the choice G(x) = e−|x|

2/2.

Lemma 10.7. Ĝ = (2π)n/2G.

Proof. By Fubinin’s theorem it is enough to consider the case n = 1. G
satisfies the differential equation

G′(x) + xG(x) = 0.

If we take the Fourier transform of this equation, Proposition 5 (a) and (b)
implies

iξĜ(ξ) + iĜ′(ξ) = 0,

or
Ĝ′(ξ) + ξĜ(ξ) = 0.

Hence Ĝ(ξ) = CG(ξ). If we let ξ = 0, we get

C = Ĝ(0) =

∫
R
e−x

2/2dx =
√

2π.

Exercise 10.5.
a) Prove Lemma 7 using the Cauchy theorem.

b) Prove Lemma 7, letting ξ = ζ ∈ C, and compute Ĝ(iη).

Proof of Theorem 6. 1
(2π)n

(Ĝ)δ is an approximate identity. Proposition 5 f)

and g) implies that

1

(2π)n

∫
Rn
f(x)(Ĝ)δ(x)dx =

1

(2π)n

∫
Rn
f̂(ξ)G(δξ)dξ.

Letting δ → 0, we get

f(0) = G(0)
1

(2π)n

∫
Rn
f̂(ξ)dξ =

1

(2π)n

∫
Rn
f̂(ξ)dξ.

Exercise 10.6. Prove this.

If we apply this to τ−xf , we get

f(x) = τ−xf(0) =
1

(2π)n

∫
Rn

(τ−xf)∧(ξ)dξ =
1

(2π)n

∫
Rn
f̂(ξ)eixξdξ.
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Remark 10.8. If we only assume that f ∈ L1, then

1

(2π)n
f∗(Ĝ)δ(x) =

1

(2π)n

∫
Rn
f(x+y)Ĝδ(y)dy =

1

(2π)n

∫
Rn
f̂(ξ)eixξe−δ

2|ξ|2/2dξ.

This implies

f(x) = lim
δ→0

1

(2π)n

∫
Rn
f̂(ξ)eixξe−δ

2|ξ|2/2dξ,

with convergence in L1.
In particular, if f̂ ∈ L1, then

f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eixξdξ a.e.

2

Theorem 10.9 (Plancherel). If φ, ψ ∈ S , then∫
Rn
φψ̄ dx =

1

(2π)n

∫
Rn
φ̂ ψ̂ dξ .

Corollary 10.10 (Parseval). If φ ∈ S , then

‖φ‖2 =
1

(2π)n/2
‖φ̂‖2

.

Proof. Proposition 2 g) implies∫
Rn
φψ̂0 dx =

∫
Rn
φ̂ψ0 dx .

Let ψ̂0 = ψ̄. By the inversion theorem,

ψ0(x) =
1

(2π)n

∫
Rn
eixξψ̂0(ξ)dξ =

1

(2π)n

∫
Rn
eixξψ̄(ξ)dξ

=
1

(2π)n

∫
Rn
e−ixξψ(ξ)dξ =

1

(2π)n
ψ̂(x).

Thus

∫
Rn
φψ̄ =

1

(2π)n

∫
Rn
φ̂ ψ̂. The corollary follows by taking ψ = φ.

Remark 10.11. The Parseval formula also holds if φ, ψ ∈ L2. We will prove
this in the next chapter. 2

To prove that û, defined by û(ϕ) = u(ϕ̂), is a tempered distribution we
need the following
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Lemma 10.12. F : S → S continuously, i.e., if ϕj → 0 i S , then ϕ̂j →
0 i S .

Proof. Proposition 5 a) and b) implies ξβ∂αϕ̂j(ξ) = cF
(
∂β(xαϕj(x))

)
(ξ) .

Hence

sup
ξ
|ξβ∂αϕ̂j(ξ)| ≤ c sup

ξ

∣∣∣∣∫
Rn
e−ixξ∂β(xαϕj(x))dx

∣∣∣∣
≤ c

∫
Rn
|∂β(xαϕj(x))|dx→ 0,

as ϕj → 0 in S .

We are now ready to make the following definition.

Definition 10.13. If u ∈ S ′, then û is the tempered distribution given by

û(ϕ) = u(ϕ̂).

2

Remark 10.14. We observe that the two definitions of f̂ when f ∈ L1

coincides. 2

Theorem 10.15. The Fourier transform is a continuous linear bijection

from S ′ to S ′ with ̂̂u = (2π)n
∨
u.

Proof. We remind the reader that
∨
u is defined by

∨
u(ϕ) = u(

∨
ϕ), and that

uj → u in S ′ means that uj(ϕ) → u(ϕ) for all ϕ ∈ S . The theorem is an
easy consequence of the corresponding properties on S :

̂̂u(ϕ) = û(ϕ̂) = u(̂̂ϕ) = (2π)nu(
∨
ϕ) = (2π)n

∨
u(ϕ)

and

ûj(ϕ) = uj(ϕ̂)→ u(ϕ̂) = û(ϕ)

if uj → u i S ′.

Example 10.16. a) A measure µ with
∫
Rn(1 + |x|2)−kdµ(x) < ∞ for some

k is a tempered distribution.
b) If f ∈ Lp, 1 ≤ p ≤ ∞, then f ∈ S ′. (Proof. Hölder’s inequality.)

c) δ̂ = 1 and 1̂ = (2π)nδ.
d) ex is not a tempered distribution. 2
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Proposition 10.17. If u ∈ S ′, then
a) (xju)∧ = −Djû
b) (Dju)∧ = ξjû
c) (τhu)∧(ξ) = exp(−ihξ)û(ξ)
and
d) F(exp(ixh)u) = τhû.

Proof. It is easy to see that Dju, xju, . . . are tempered distributions. Then
the formulas follows from Proposition 5. (Remember that Dj = −i∂j.)

Exercise 10.7. Show that ex cos(ex) ∈ S ′.

Exercise 10.8. Show that u ∈ S ′ if and only if

|u(ϕ)| ≤ C
∑

k+|α|≤N

sup(1 + |x|2)k|∂αϕ(x)|

for some N .

Exercise 10.9. H 7.1.10

Exercise 10.10. H 7.1.19

Exercise 10.11. H 7.1.20

Exercise 10.12. H 7.1.21

Exercise 10.13. H 7.1.22

Exercise 10.14. H 7.6.1
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Chapter 11

The Fourier transform on L2

According to Exempel 10.16b), f ∈ L2 has a Fourier transform defined as a
tempered distribution. In fact we have the following result.

Theorem 11.1. If f ∈ L2(R2), then f̂ ∈ L2(Rn) and

‖f‖2 =
1

(2π)n/2
‖f̂‖2.

Furthermore f̂ is given by

f̂(ξ) = lim
N→∞

∫
|x|≤N

e−iξxf(x)dx ,

with convergence in L2.

Proof. Take fn ∈ C∞0 , fn → f in L2. Then fn is a Cauchy sequence in L2.
By the Plancherel theorem, we have

‖f̂n − f̂m‖2 = c‖fn − fm‖2 → 0, n,m→∞.

Hence f̂n is a Cauchy sequence in L2. By the completeness of L2, we have
f̂n → g i L2 for some g ∈ L2. This implies that f̂n → g in S ′. Furthermore
fn → f in S ′, and since the Fourier transform is continuous on S ′, we have
f̂n → f̂ in S ′. Hence f̂ = g ∈ L2 and we get

‖f̂‖2 = lim
n→∞

‖f̂n‖2 =
1

(2π)n/2
lim
n→∞

‖fn‖2 =
1

(2π)n/2
‖f‖2 ,

and the first part is proved.
Put fN = fχ{|x|≤N}. Then fN → f in L2 and fN ∈ L1. Hence

f̂N(ξ) =

∫
|x|≤N

e−ixξf(x)dx,
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and by the Plancherel theorem, we obtain

‖f̂ − f̂N‖2 = c‖f − fN‖2 → 0, N →∞,

and the proof is complete.
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Chapter 12

The Fourier transform and
convolutions

We shall show that under suitable conditions (u ∗ v)∧ = û v̂.
First we observe that D ⊂ S ⊂ C∞. The inclusions are continuous, ie. if

ϕj → 0 i D , then ϕj → 0 in S , and this in turn implies that ϕj → 0 in C∞.
Furthermore, D is dense in S , and S is dense in C∞. (Show that!) Hence

E ′(Rn) ⊂ S ′(Rn) ⊂ D ′(Rn).

Definition 12.1. If u ∈ S ′ and φ ∈ S , we define the convolution u ∗ φ by
u ∗ φ(x) = 〈uy, φ(x− y)〉. 2

Theorem 12.2. If u ∈ S ′ and φ ∈ S , then

(a) u ∗ φ ∈ C∞ och ∂α(u ∗ φ) = ∂αu ∗ φ = u ∗ ∂αφ

(b) u∗φ is bounded by a polynomial (and hence u∗φ ∈ S ′), and (u∗φ)∧ =

φ̂ û.

(c) u ∗ (φ ∗ ψ) = (u ∗ φ) ∗ ψ (ψ ∈ S )

and

(d) û ∗ φ̂ = (2π)n(φu)∧.

Sketch of proof. (a) We assume that n = 1. The second equality is proved
in the same way as in Theorem 8.1. As in the proof of Theorem 8.1, the first
equality folows if we can prove that

φ(x+ h)− φ(x)

h
−→ φ′(x) in S .
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To do this is elementary but tedious. The simplest way is (probably) to use
the Fourier transform.

(b) By Exercise 10.8, we have

|u ∗ φ(x)| = |〈uy, φ(x− y)〉|

≤ C sup
y

∑
k+|α|≤N

(1 + |y|2)k|∂αφ(x− y)|

≤ C sup
y

∑
k+|α|≤N

(1 + |x|2)k(1 + |x− y|2)k|∂αφ(x− y)|

≤ C(1 + |x|2)N .

If ψ ∈ D , we also have

(u ∗ φ)∧(ψ̂) = (u ∗ φ)(
̂̂
ψ ) = (2π)n(u ∗ φ)(

∨

ψ) = (2π)n
∫
Rn
u ∗ φ(x)ψ(−x)dx

= (2π)n
∫
−K
〈uy, ψ(−x)φ(x− y)〉dx = Approximate with a Riemann sum =

= (2π)n〈uy,
∫
Rn
ψ(−x)φ(x− y)dx〉 = (2π)n〈uy,

∫
Rn
ψ(x)φ(−y − x)dx〉

= (2π)n〈uy, (φ ∗ ψ)∨)〉 = 〈uy, (φ ∗ ψ)
∧
∧〉 = û((φ ∗ ψ)∧) = û(φ̂ψ̂) = φ̂ û(ψ̂).

But D̂ is dense in S , and (b) follows.
(c) From the proof of (b), we get

u ∗ φ(
∨

ψ) = u((φ ∗ ψ)∨),

first for ψ ∈ D , and by contiuity also for ψ ∈ S . This can be written

(u ∗ φ) ∗ ψ(0) = u ∗ (φ ∗ ψ)(0).

The general case follows if we replace ψ with τ−xψ.

(d) By (b), we have (û∗φ̂)∧ =
̂̂
φ ̂̂u = (2π)2n

∨

φ
∨
u= (2π)2n(φu)∨ = (2π)n(φu)̂̂.

Thus, by the inversion theorem we get û ∗ φ̂ = (2π)n(φu)̂.

Theorem 12.3. If u ∈ E ′(Rn), then û ∈ C∞ and û(ξ) = ux(e
−ixξ).

Proof. Let ψ ∈ C∞0 be 1 on a neighborhood of supp u. Then u = ψu and by

Theorem 2(d) we get û = (ψu)̂ = (2π)−nû ∗ ψ̂ ∈ C∞. Thus

û(ξ) = (2π)−nû ∗ ψ̂(ξ) = (2π)−n〈ûx, ψ̂(ξ − x)〉 = (2π)−n〈ûx,
∨

ψ̂ (x− ξ)〉
= (2π)−2n〈ûx,F3ψ(x− ξ)〉 = (2π)−2n〈ûx, τξF3ψ(x)〉
= (2π)−2n〈ux, e−ixξF4ψ(x)〉 = ux(e

−iξxψ(x)) = ux(e
−iξx).
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Remark 12.4. In the next chapter we will prove the Paley-Wiener theorem
that gives much more precise information of û when u ∈ E ′. 2

Example 12.5. Determine the Fourier transform of pv
1

x
. 2

Method 1. Let u = pv
1

x
. Then u is the sum of a distribution in E ′ and

an L2 function. Thus

û(ξ) = lim
ε→0
N→∞

∫
ε<|x|<N

e−ixξ
dx

x
.

If ξ > 0, the change of variables y = xξ implies,

û(ξ) = lim
ε→0
N→∞

∫
ε<|x|<N

e−iy

y
dy = −i

∫ ∞
−∞

sin y

y
dy = −iπ.

When ξ < 0, we instead get û(ξ) = iπ. Hence

û(ξ) = −π sgn ξ.

Exercise 12.1. Prove that
∫∞
−∞

sin y
y dy = π.

Method 2. We have xpv
1

x
= 1. This implies iû′ = 2πδ, û′ = −2πiδ and

û = −2πi(H + c). Since u is odd, so is û. Hence c = −1
2

och

û(ξ) = −iπ sgn ξ.

In the last argument we used that if a distribution u is odd, then û is also
odd. This is clear if u ∈ L1 (a simple change of variables).

Definition 12.6. A distribution is even if
∨
u= u, and odd if

∨
u= −u. 2

Proposition 12.7. If u is an odd tempered distribution, then its Fourier
transform is also odd.

Proof. By Theorem 10.15

∨

û= (2π)−n
̂̂̂
u =

(
(2π)−n ̂̂u)∧ =

∨̂
u = (u is odd) = −û .

In the same way we see that the Fourier transform of an even distribution
is even.
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Remark 12.8. The map Hϕ = pv
1

x
∗ϕ, is called the the Hilbert transform.

The Hilbert transform is an important example of a so called singular integral
operator. The Hilbert transform is bounded on Lp, 1 < p <∞, and of weak-
type (1, 1).

When p = 2, this follows from Exampel 5 and the Plancherel theorem. 2

Next we will study invariance properties of the Fourier transform. Let
F : Rn → Rn be a diffeomorphism (i.e. a C∞ bijection). If u is a function,
we have ∫

Rn
u ◦ F (x)ϕ(x)dx =

∫
Rn
u(y)

ϕ

|F ′|
◦ F−1(y)dy.

Therefore, if u ∈ D ′, we define u ◦ F by

〈u ◦ F, ϕ〉 = 〈u, ϕ

|F ′|
◦ F−1〉

In particular, if F = Λ is linear, then

〈u ◦ Λ, ϕ〉 = | det Λ|−1〈u, ϕ ◦ Λ−1〉

2

Definition 12.9. A distribution u is radial if u ◦ O = u for all orthogonal
maps O.

Theorem 12.10. If u is a radial tempered distribution, then û is radial.

Proof. First, we observe that if ϕ ∈ S , then

ϕ̂ ◦O(ξ) = ϕ̂(Oξ) =

∫
Rn
e−ixOξϕ(x)dx

=

∫
Rn
e−iO

∗xξϕ(x)dx =

 y = O∗x

x = Oy


=

∫
Rn
e−iyξϕ(Oy)dy = (ϕ ◦O)∧(ξ).

This implies

〈û ◦O,ϕ〉 = 〈û, ϕ ◦O−1〉 = 〈u, (ϕ ◦O∗)∧〉
= 〈u, ϕ̂ ◦O∗〉 = 〈u, ϕ̂ ◦O−1〉 = 〈u ◦O, ϕ̂ 〉 = 〈u, ϕ̂ 〉 = 〈û, ϕ〉.
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Theorem 12.11. If u is a tempered distribution that is homogeneous of
degree α, then û is homogeneous of degree −n− α.

Proof. By Definition 4.4, u ∈ S ′ is homogeneous of degree α if 〈u, ϕt〉 =
tα〈u, ϕ〉. Therefore,

〈û, ϕt〉 = 〈u, ϕ̂t〉 = 〈uξ, ϕ̂(tξ)〉 = t−n〈u, (ϕ̂)1/t〉
= t−(n+α)〈u, ϕ̂〉 = t−(n+α)〈û, ϕ〉.

Example 12.12. A fundamental solution of the Laplace operator when n ≥
3.

By Fourier transformation of

∆u = δ,

we get
−|ξ|2û(ξ) = 1.

One solution is

û(ξ) = − 1

|ξ|2
.

Observe that 1
|ξ|2 ∈ L

1
loc(Rn) if n ≥ 3, and that 1

|ξ|2 is radial and homogeneous
of degree−2. Hence u is radial and homogeneous of degree 2−n. This implies

u(x) =
cn
|x|n−2

.

Argument. If n = 3, then 1
|ξ|2 ∈ L

1 + L2, and thus u is a function. If

n > 4, then 1
|x|n−2 ∈ L1 + L2, and we can argue as above using the inversion

theorem. When n = 4, we have uε =
1

|x|2+ε
∈ L1 + L2, and thus its Fourier

transform is a constant times
1

|ξ|2−ε
and the statement follows by letting

ε→ 0.
An alternative way is to use Exercise 4 below.

Exercise 12.2. What is cn

Exercise 12.3. What happens if n = 2?

Exercise 12.4. Determine all radial distributions in Rn that are homogeneous of degree
α.

Hint. Consider first n = 1. Compute the derivate of 〈u, ϕt〉 = tα〈u, ϕ〉 with respect
to t.
Warning. Be careful when −α = n, n+ 2, n+ 4, . . ..
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Exercise 12.5. What is the Fourier transform of fp|x|α in R?

Exercise 12.6. What is a reasonably definition of fp|x|α in Rn? What is its Fourier
transform?

Exercise 12.7. Determine a fundamental solution to the heat equation.

Hint. Determine FE(x, t), where F is the Fourier transform with respect to x ∈ Rn.

Theorem 12.13. If u ∈ S ′ and v ∈ E ′, then u ∗ v ∈ S ′ and

(u ∗ v)∧ = v̂ û.

Proof. If ϕ ∈ C∞0 , then

u ∗ v(ϕ) = (u ∗ v)∗
∨
ϕ (0) = u ∗ (v∗

∨
ϕ)(0) = u((v∗

∨
ϕ)∨) = u(

∨
v ∗ϕ).

To see that u ∗ v ∈ S ′, we need to show that
∨
v ∗ϕj → 0 in S when

ϕj → 0 in S . Let K be a compact neigborhood of av supp v and k the order
of v. Then

|∂β(
∨
v ∗ϕj)(x)| = |〈vy, ∂βϕj(y − x)〉| ≤ C

∑
|γ|≤k

sup
y∈K
|∂β+γϕj(x− y)|.

Thus

(1+|x|2)`|∂β(
∨
v ∗ϕj)(x)| ≤ C

∑
|γ|≤k

(1+|x|2)` sup
y∈K
|∂β+γϕj(x−y)| → 0, j →∞.

To compute the Fourier transform, we observe that

(u ∗ v)∧(ϕ) = u ∗ v(ϕ̂) = u(
∨
v ∗ϕ̂)

= (2π)−nu(̂̂v ∗ ϕ̂) = u((v̂ϕ)∧) = û(v̂ϕ) = v̂ û(ϕ).

Exercise 12.8. Compute ( 1
1+x2 )∗n and (e−x

2

)∗n.

Exercise 12.9. H 7.1.6

Exercise 12.10. H 7.1.7

Exercise 12.11. H 7.1.9

Exercise 12.12. H 7.1.11

Exercise 12.13. H 7.1.18

Exercise 12.14. H 7.1.28
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Chapter 13

The Paley-Wiener theorem

If u ∈ E ′(Rn), we know that û ∈ C∞ and that

û(ξ) = u(e−ixξ).

We shall show that û can be extended to an analytic function in Cn, ie.
û(ζ1, . . . , ζn) is an analytic function in each variable ζ1, . . . , ζn. We start with
a version of the theorem for test functions.

Proposition 13.1.

(a) If φ ∈ C∞0 and supp φ ⊂ {x; |x| ≤ R}, then

φ̂(ζ) =

∫
Rn
e−ixζφ(x)dx

is an entire function with

|φ̂(ζ)| ≤ CN(1 + |ζ|)−NeR|Im ζ| (13.1)

for all N .

(b) Conversely, if φ̂ is entire and satifies (1), then φ ∈ C∞0 and
supp φ ⊂ {x; |x| ≤ R}.

Proof. (a) By differentiation under the integral sign, we see that φ̂ is analytic.
Furthermore, if ζ = ξ + iη,

|φ̂(ζ)| ≤
∫
|x|≤R

exη|φ(x)|dx ≤ CeR|η| . (13.2)

If we apply (2) to Dαφ, (1) follows.
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(b) Since φ̂ is rapidly decreasing we can differentiate under the integral
sign in the Fourier inversion formula. Hence φ ∈ C∞.

Again, by the rapid decrease of φ̂ we can use the Cauchy theorem to
change the contour of integration and integrate along {ζ; Imζi = ηi}. We get

|φ(x)| =
∣∣∣∣(2π)−n

∫
Rn
eix(ξ+iη)φ̂(ξ + iη)dξ

∣∣∣∣ ≤ Ce−xηeR|η|.

If we let η = tx, we obtain

|φ(x)| ≤ Ce−t|x|(|x|−R).

Thus if |x| > R, and we let t→∞, we obtain φ(x) = 0. Hence
supp φ ⊂ {x; |x| ≤ R}.

For distributions we have

Theorem 13.2 (The Paley-Wiener thorem).

(a) If u is a distribution of order N with support in {x; |x| ≤ R}, then û is
an entire function and

|û(ζ)| ≤ C(1 + |ζ|)NeR |Im ζ|. (13.3)

(b) Conversely, if û is an entire function that satisfies (3) for some N , then
u is a distribution that is supported in {x; |x| ≤ R}.

Proof. (a) That û is entire follows since

∂

∂ζi
û(ζ) =

∂

∂ζi
u(e−ixζ) = u

( ∂

∂ζi
(e−ixζ)

)
.

The last equality holds as

e−ix(ζ+ωi) − e−ixζ

ωi
→ ∂

∂ζi
(e−ixζ) i C∞, ωi → 0.

To prove (3), we fix χδ ∈ C∞0 with χδ = 1 in a neighborhood of {x; |x| ≤
R} and supp χδ ⊂ {x; |x| < R+ δ}. We can choose χδ such that ‖Dαχδ‖∞ ≤
Cδ−|α|. We obtain

|û(ζ)| = |u(e−ixζ)| = |u(χδ(x)e−ixζ)|

≤ CN sup
∑
|α|≤N

|Dα
x (χδ(x)e−ixζ)|

≤ Ce(R+δ)|Imζ|
∑
|β|≤N

δ−|β|(1 + |ζ|)N−β.

64



If we let δ = 1
1+|ζ| , (3) follows.

(b) The polynomial growth of û implies that û, and hence also u, is in
S ′. Let ϕδ ∈ S be an approximative identity and let uδ = u ∗ ϕδ. Then
uδ ∈ C∞, uδ → u as δ → 0, and

|ûδ(ζ)| = |û(ζ)ϕ̂(δζ)| ≤ CM,δ(1 + |ζ|)−M exp((R + cδ)|Imζ|).

Here we have used (3) and (1) in Proposition 1. If we apply Proposition 1
to uδ, we get supp uδ ⊂ {x; |x| ≤ (R+ cδ)}. If we let δ → 0, we obtain supp
u ⊂ {x; |x| ≤ R}.

Exercise 13.1. Assume that u, v ∈ E ′(Rn) and that u ∗ v = 0. Show that then u = 0 or
v = 0. What happens if only one of u and v have compact support?

Exercise 13.2. H 7.1.40.
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Chapter 14

Existence of fundamental
solutions

Let P (D) be a differential operator with constant coefficients in Rn. We shall
show that P (D) has a fundamental solution E.

Let us first make a formal computation. By Fourier transformation of
P (D)E = δ, we get P (ξ)Ê(ξ) = 1 and Ê(ξ) = P (ξ)−1. Now

〈E,ϕ〉 = 〈E,
∨
∨
ϕ〉 = (2π)−n〈E,

∨̂
ϕ̂〉 = (2π)−n〈Ê,

∨
ϕ̂〉 .

Hence it is natural to define E by

〈E,ϕ〉 = (2π)−n
∫
Rn
P (ξ)−1ϕ̂(−ξ)dξ.

Then (formally)

〈P (D)E,ϕ〉 = 〈E,P (−D)ϕ〉 = (2π)−n
∫
Rn
P (ξ)−1(P (−D)ϕ)̂(−ξ)dξ

= (2π)−n
∫
Rn
P (ξ)−1P (ξ)ϕ̂(−ξ)dξ = ϕ(0) = 〈δ, ϕ〉.

However, this does not always work since P (ξ) may vanish. Therefore, we
will change the contour of integration and define 〈E,ϕ〉 by an integral along
a set in Cn that contains no zero of P .

Theorem 14.1. Every linear differential operator with constant coefficients
has a fundamental solution E ∈ D ′.

Proof. Let m = grad P . After a linear change of variables P is of the form

P (ξ) = Pξ′(ξn) = ξmn + Pm−1(ξ′)ξm−1
n + . . .+ P0(ξ′)

= (ξn − α1(ξ′)) . . . (ξn − αm(ξ′)).
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Here ξ = (ξ1, . . . , ξn) = (ξ′, ξn) and αi(ξ
′) are the zeros of Pξ′(ξn). We

can choose φ(ξ′) ∈ R such that |φ(ξ′)| ≤ m + 1 and |φ(ξ′) − αi(ξ
′)| ≥

|φ(ξ′)− Im αi(ξ
′)| ≥ 1 for i = 1, 2, . . . ,m. Define 〈E,ϕ〉, when ϕ ∈ D , by

〈E,ϕ〉 = (2π)−n
∫
Rn−1

dξ′
∫

Im ζn=φ(ξ′)

P (ζ)−1ϕ̂(−ζ)dζn.

By the Paley-Wiener theorem, ϕ̂(ζ) is an entire function and

|ϕ̂(ζ)| ≤ C

(1 + |ζ|)N
∑
|α|≤N

‖Dαϕ‖∞.

Furthermore |P (ζ)−1| ≤ 1, and hence, if N is large enough, we get

|〈E,ϕ〉| ≤ C
∑
|α|≤N

‖Dαϕ‖∞.

Thus E ∈ D ′. Finally, we see that

〈P (D)E,ϕ〉 = 〈E,P (−D)ϕ〉

= (2π)−n
∫
Rn−1

dξ′
∫

Im ζn=φ(ξ′)

P (ζ)−1(P (−D)ϕ)∧(−ζ)dζn

= (2π)−n
∫
Rn−1

dξ′
∫

Im ζn=φ(ξ′)

ϕ̂(−ζ)dζn

= the Cauchy theorem = (2π)−n
∫
Rn−1

dξ′
∫
R
ϕ̂(−ξ)dξn

= (2π)−n
∫
Rn
ϕ̂(ξ)dξ = ϕ(0) = 〈δ, ϕ〉.

Exercise 14.1. Determine a fundamental solution to the Schrödinger equation

(Dt −
n∑
1

D2
xi

)E = δ.

(D = −i∂)
Hint. See Exercise 10.14 and the hint to Excercise 12.7

67



Chapter 15

Fundamental solutions of
elliptic differential operators

Let P (D) be a differential operator with constant coefficients. We write the
polynomial P as

P = Pm + Pm−1 + . . .+ P0,

where Pk is a homogeneous polynomial of degree k. The operator P (D) is
called elliptic if Pm(ξ) 6= 0 for ξ 6= 0, ξ ∈ Rn.

Example 15.1. ∆ and ∂̄ are elliptic. The heat and wave operators are not
elliptic. 2

Theorem 15.1. Let P (D) be an elliptic differential operator Then there is
a distribution E ∈ S ′(Rn) such that sing suppE = {0} and P (D)E = δ−ω,
for some ω ∈ S (Rn).

Corollary 15.2. If P is elliptic, then P is hypoelliptic.

Proof of the corollary. We shall show that u is C∞ if P (D)u is. If u has
compact support, we have u = δ∗u = (P (D)E+ω)∗u = E ∗P (D)u+ω∗u ∈
C∞. The general case follows by considering ψnu where ψn ∈ C∞0 with ψn = 1
on {|x| ≤ n} (compare Theorem 9.6)

Proof of the theorem. Since P is elliptic, |Pm(ξ)| ≥ δ > 0 when |ξ| = 1. By
homogenity this implies

|Pm(ξ)| ≥ δ|ξ|m.

Hence, if |ξ| > R where R is large enough,

|P (ξ)| ≥ c|ξ|m.
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Take χ ∈ C∞0 (Rn) with χ(ξ) = 1 if |ξ| ≤ R. Then (1 − χ)P−1 is bounded
and hence a tempered distribution. Thus we can define E ∈ S ′(Rn) by

Ê =
1− χ
P

.

Then,

(P (D)E)∧ = PÊ = P
1− χ
P

= 1− χ = δ̂ − χ.

If we define ω by ω̂ = χ, then ω ∈ D̂ ⊂ S and P (D)E = δ − ω. It remains
to show that E ∈ C∞(Rn \ {0}). Observe that

(xβDαE)∧(ξ) = cDβ(ξα
1− χ(ξ)

P (ξ)
) = O(|ξ|−|β|−m+|α|), |ξ| → ∞.

If we choose |β| large enough, we get (xβDαE)∧ ∈ L1. Thus xβDαE ∈ C
and hence DαE ∈ C(Rn \ {0}), and the proof is complete.
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Chapter 16

Fourier series

Let u be a distribution that is periodic with period 2π in each variable, i.e.

〈u, τ2πkϕ〉 = 〈u, ϕ〉,

if k ∈ Zn. Intuitively u is determined by its ”values” on

T = {x; 0 ≤ xi < 2π}.

Lemma 16.1. If u is periodic, then u ∈ S ′.

Proof. Let ψ ∈ C∞0 with 0 ≤ ψ ≤ 1 and ψ = 1 on T . Put

ψ̃(x) =
∑
k∈Zn

ψ(x− 2πk).

Then ψ̃ is a periodic C∞-function with ψ̃ ≥ 1. Thus φ = ψ/ψ̃ ∈ C∞0 and∑
k

φ(x− 2πk) = 1.

If ϕ ∈ D , then

〈u, ϕ〉 = 〈ux,
∑
k

φ(x− 2πk)ϕ(x)〉 = a finite sum =

=
∑
k

〈ux, φ(x− 2πk)ϕ(x)〉 = periodicity =

=
∑
k

〈ux, φ(x)ϕ(x+ 2πk)〉 = 〈ux, φ(x)
∑
k

ϕ(x+ 2πk)〉.

But if ϕj → 0 in S , then φ(x)
∑

k ϕj(x+2πk)→ 0 i D . (Prove that!) Hence
the right hand side defines an extension of u to S ′.
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To compute û, we first show the following result.

Theorem 16.2 (The Poisson summation formula). If ϕ ∈ S , then∑
k∈Zn

ϕ̂(2πk) =
∑
k∈Zn

ϕ(k).

Proof. Let u =
∑

k∈Zn δ2πk. Then δ2πl ∗ u = u, since δ2πl ∗ δ2πk = δ2π(k+l).
(Prove that!)
Hence

(e−2πilξ − 1)û = 0.

But e−2πilξ − 1 6= 0 if ξ /∈ Zn, and consequently û is supported on Zn.
By choosing different l, we see that close to the origin we have ξiû = 0,
i = 1, 2, . . . , n. Thus û = cδ0 there. Furthermore e−ikxu = u, and hence û is
invariant under translation by integers. From this, we obtain

û = c
∑
k∈ZN

δk.

This means that ∑
k∈Zn

ϕ̂(2πk) = c
∑
k∈Zn

ϕ(k).

If we replace ϕ with a translation of ϕ, we get∑
k∈Zn

ϕ̂(2πk)e2πikx = c
∑
k∈Zn

ϕ(k + x).

Integration over {x; 0 ≤ xi < 1} gives

ϕ̂(0) = c

∫
Rn
ϕ(x)dx = cϕ̂(0) .

Thus c = 1 and the proof is complete.

Let us return to the computation of û when u is periodic. Using the
Poisson summation formula on ϕ(y) = ψ(y)e−ixy, we get, as ϕ̂(ξ) = ψ̂(x+ξ),∑

k

ψ̂(x+ 2πk) =
∑
k

ϕ̂(2πk) =
∑
k

ϕ(k) =
∑
k

e−ixkψ(k).

From the proof of Lemma 1, we have

〈û, ψ〉 = 〈u, ψ̂〉 = 〈u, φ(x)
∑
k

ψ̂(x+ k)〉

= 〈u, φ(x)
∑
k

e−ixkψ(k)〉

=
∑
k

ψ(k)〈u, φ(x)e−ixk〉.
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Hence û =
∑

k ckδk,where

ck = 〈u, φ(x)e−ixk〉.

In particular, if u is an integrable function on T , we have

ck = 〈u, φ(x)e−ixk〉 =

∫
Rn
u(x)φ(x)e−ixkdx

=
∑
j

∫
T

u(x− 2πj)φ(x− 2πj)e−i(x−2πj)kdx

=

∫
T

u(x)e−ixk
∑
j

φ(x− 2πj)dx =

∫
T

u(x)e−ixkdx.

Hence ck are ”our old” Fourier coefficients. The inversion theorem implies
that

u(x) =
1

(2π)n

∑
k

cke
ikx in S ′.

If u ∈ C l, then ck = O(|k|−l), |k| → ∞, and the sum is uniformly convergent
if l > n. Thus we have proved

Theorem 16.3. If u ∈ C l(Rn), l > n, and u is periodic with period 2π in
each variable, then

u(x) =
1

(2π)n

∑
k

cke
ixk,

where the series is uniformly convergent.

We finish this chapter by proving

Theorem 16.4 (The Plancherel theorem). If u ∈ L2(T ) with Fourier coef-
ficients ck, then

u(x) =
1

(2π)n

∑
cke

ixk in L2,

and ∫
T

|u|2dx =
1

(2π)n

∑
|ck|2.

Conversely, if
∑
|ck|2 < ∞, then u(x) = 1

(2π)n

∑
k cke

ixk is a function in

L2(T ) with Fourier coefficients ck.

Proof. If u ∈ Cn+1, the series is uniformly convergent, and we get∫
T

|u|2dx =
1

(2π)2n

∑
k,l

ckc̄l

∫
T

eix(k−l)dx =
1

(2π)n

∑
|ck|2.
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As Cn+1 is dense in L2, we can extend this to u ∈ L2: Take un ∈ Cn+1, un → u
in L2. Then, also un → u in S ′ and ûn → û in S ′. But also, by the isometry,
ûn is a Cauchy sequence in l2. This implies ûn → û in l2. Hence∫

T

|u|2dx = lim
n→∞

∫
T

|un|2dx = lim
n→∞

1

(2π)n

∑
k

|ck(un)|2 =
1

(2π)n

∑
|ck|2.

Conversely, if
∑
|ck|2 <∞, let

u(x) =
1

(2π)n

∑
k

cke
ixk and uN(x) =

1

(2π)n

∑
|k|≤N

cke
ixk.

Then, uN → u in L2 and S ′, and we get

û = lim
N→∞

ûN =
∑

ckδk.

Remark 16.5. If u is a function with period t, then ut(x) = u(2πx
t

) has
period 2π. Using this, we can generalise Fourier series to functions with
arbitrary period. 2

Exercise 16.1. H 7.2.1

Exercise 16.2. H 7.2.5

Exercise 16.3. H 7.2.8

Exercise 16.4. Compute a)
∑∞
−∞

1
1+n2 b)

∑+∞
−∞

1
(n+a)2 and c)

∑∞
n=0

(−1)n
(2n+1)3 .
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Chapter 17

Some applications

17.1 The central limit theorem

Let X,X1, X2, . . . be independent identically distributed stochastic variables
with E[X] = m and Var[X] = σ2. Then

lim
n→∞

P
(X1 +X2 + . . .+Xn − nm

σ
√
n

≤ x
)

=
1√
2π

∫ x

−∞
e−

1
2
y2dy. (17.1)

Some background: To a stochastic variable X we associate a probability
measure µ on R (we write X ∼ µ) by

P (X ≤ x) =

∫ x

−∞
dµ(y).

If µ1 are µ2 probability measures, we define a new probability measure µ1∗µ2

by

〈µ1 ∗ µ2, ϕ〉 =

∫∫
R2

ϕ(x+ y)dµ1(x)dµ2(y).

Then (µ1∗µ2)∧ = µ̂1µ̂2. (Show that!) If X ∼ µ1 and Y ∼ µ2 are independent,
then X + Y ∼ µ1 ∗ µ2.

Proof. We may assume that m = 0 and σ = 1. Let

Sn =
X1 + . . .+Xn√

n

and
µn∗ = µ ∗ . . . ∗ µ︸ ︷︷ ︸

n times

.
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Then Sn ∼ µn, where

〈µn, ϕ〉 =

∫
R
ϕ

(
x√
n

)
dµn∗(x),

and

µ̂n(ξ) =

(
µ̂

(
ξ√
n

))n
.

Since Var[X] <∞,

µ̂(ξ) =

∫
R
e−ixξdµ(x)

is a C2-function with

µ̂ ′(0) = −im = 0 and µ̂ ′′(0) = −σ2 = −1.

Thus

µ̂(ξ) = 1− 1

2
ξ2 + o(ξ2), ξ → 0,

and

µ̂n(ξ) =

(
µ̂

(
ξ√
n

))n
=
(

1− 1

2n
ξ2 + o

(
ξ2

n

))n
→ e−

1
2
ξ2 , n→∞,

for each fixed ξ. But, since |µ̂(ξ)| ≤ 1, we get, by dominated convergence,
that

µ̂n(ξ)→ e−
1
2
ξ2 in S ′.

Hence Fourier inversion implies that

µn →
1√
2π
e−

1
2
x2

in S ′, and hence also in D ′. But µn are positive measures, and by Theo-
rem 7.4

µn →
1√
2π
e−

1
2
x2

weakly, and hence we obtain (1).

17.2 The mean value property for harmonic

functions

If u ∈ C∞ is harmonic in a neighborhood of {|x| ≤ 1}, then

u(0) =
1

ωn

∫
Sn−1

u(y)dσy).
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Remark 17.1. By Weyl’s lemma, the assumption that u ∈ C∞ is unneces-
sary. 2

Proof. Define a distribution Λ by

〈Λ, ϕ〉 =

∫
Sn−1

ϕ(y)dσ(y)− ωnϕ(0).

Then Λ ∈ E ′, and hence Λ̂ is an entire function. Furthermore, Λ, and
therefore also Λ̂, is radial. Hence Λ̂(ζ) = G(|ζ|), where G(t) = Λ̂(t, 0, . . . , 0)
is holomorphic. Also, G is even, so G(z) = F (z2) for some entire function F .

Since F (0) = Λ̂(0) = Λ(1) = 0,

Λ̂(ξ)

|ξ|2
=
F (|ξ|2)− F (0)

|ξ|2

is the restriction of an entire function. By the Paley-Wiener theorem, there
is a distribution µ ∈ E ′ with µ̂(ξ) = −F (|ξ|2)/|ξ|2, and so

(∆µ)̂(ξ) = −|ξ|2µ̂(ξ) = Λ̂(ξ).

Hence ∆µ = Λ, which gives

〈Λ, u〉 = 〈∆µ, u〉 = 〈µ,∆u〉 = 〈µ, 0〉 = 0.

17.3 The Heisenberg uncertainty principle

If f ∈ L2(R), then

‖xf(x)‖2‖ξf̂(ξ)‖2 ≥
√
π

2
‖f‖2

2, (17.2)

with equality only if f(x) = exp(−kx2), k > 0.
Quantum mechanical background: The state of a particle is described by

a function ψ ∈ L2(R) with ‖ψ‖2 = 1. We interprete∫
E

|ψ|2

as the probability that the particle is in the set E. An observable quantity
A is a symmetric operator on a suitable subspace of L2. The mean value of
A in the state ψ is

E[A] =

∫
Aψ · ψ̄ = 〈Aψ,ψ〉.
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That A is symmetric means that A = A∗ and hence we have

〈Aψ,ψ〉 = 〈ψ,A∗ψ〉 = 〈ψ,Aψ〉 = 〈Aψ,ψ〉.

Thus the mean value is real.

Example 17.2.
a) Position. Aψ(x) = xψ(x)
b) Momentum. Bψ = 2πiψ′. 2

We have

E[B] =

∫
Bψ · ψ̄ = 2πi

∫
ψ′ψ̄ = Plancherel =

∫
ξψ̂(ξ)ψ(ξ) =

∫
ξ|ψ̂(ξ)|2dξ.

Hence we can interprete |ψ̂(ξ)|2 as the density of the momentum.

The general form of the Heisenberg uncertainty principle is

E[(A− E[A])2]E[(B − E[B])2] ≥ 1

4

∣∣E[AB −BA]
∣∣2 (17.3)

for arbitrary A and B.

Exercise 17.1. Show that if A and B are position and momentum, then AB − BA =
−2πi.

Exercise 17.2. Prove that (2) implies (3), when A and B are position and momentum.

Proof. If f ∈ S , then

‖xf(x)‖2‖ξf̂(ξ)‖2 = ‖xf(x)‖2‖f̂ ′(ξ)‖2 = Parseval =

=
√

2π‖xf(x)‖2‖f ′(x)‖2 ≥ Schwartz ≥
√

2π

∫
|xf(x)f ′(x)|dx

≥ (|xz̄w| ≥ x Re z̄w) ≥
√

2π

∫
x

1

2

(
f(x)f ′(x) + f(x)f ′(x)

)
dx

=

√
π

2

∫
x(|f(x)|2)′dx = Integration by parts =

√
π

2

∫
|f |2dx =

√
π

2
‖f‖2

2.

The proof that the theorem holds for functions in L2, and the statement of
equality is left to the reader.
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17.4 A primer on Sobolev inequalities

A benefit of the theory of distributions is that we can find solutions to prob-
lems that has no classical solutions. But we often want our solutions to be
nice functions. Therefore it is natural to ask the question

When is a distributional solution a function?
The theory of Sobolev spaces gives us a method to answer that question.

We start with the simplest result in Sobolev theory,

The Sobolev L1-inequality Let f be an integrable function on
Rn. Assume that the distributional derivatives ∂αf also are integrable for all
|α| ≤ n. Then f is a bounded continuous function and

‖f‖∞ ≤
∑
|α|≤n

‖∂αf‖1 . (17.4)

If furthermore ∂αf are integrable for all |α| ≤ n+k, then f is a Ck-function.

Proof. We start with the case n = 1 where we shall show that

‖f‖∞ ≤ ‖f‖1 + ‖f ′‖1 . (17.5)

If ϕ ∈ C∞0 , then

|ϕ(x)| =
∣∣∣∣∫ x

−∞
ϕ′(t)dt

∣∣∣∣ ≤ ∫ x

−∞
|ϕ′(t)|dt ≤

∫ ∞
−∞
|ϕ′(t)|dt .

This implies that
‖ϕ‖∞ ≤ ‖ϕ′‖1 . (17.6)

This inequality is sharper than (5), but we have obtained it asssuming two
strong extra conditions, C∞ and compact support. (The function 1 shows
that (6) can not be true in general.)

If f ∈ C∞ is not compactly supported, we choose a sequence of cut off
functions χn ∈ C∞, with χn = 1 as |x| ≤ n and ‖χ′n‖∞ ≤ 1. If we apply (6)
to ϕ = χnf ,we get

‖χnf‖∞ ≤ ‖(χnf)′‖1 ≤ ‖χ′nf‖1 + ‖χnf ′‖1 ≤ ‖f‖1 + ‖f ′‖1 .

Since n is arbitrary, (5) is proved for C∞-functions.
If f is not C∞, we let φδ be an approximative identity. Then fδ =

φδ ∗ f ∈ C∞ and we can apply (5) to fδ. We get, as ‖φδ ∗ f‖1 ≤ ‖f‖1 och
‖(φδ ∗ f)′‖1 = ‖φδ ∗ f ′‖1 ≤ ‖f ′‖1, that

‖φδ ∗ f‖∞ ≤ ‖f‖1 + ‖f ′‖1 .
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But φδ ∗ f → f a.e. and we have proved (5) in the general case.
To finish the proof, we apply (5) to f − fδ, to obtain

‖f − fδ‖∞ ≤ ‖f − φδ ∗ f‖1 + ‖f ′ − φδ ∗ f ′‖1 → 0, δ → 0 .

Thus fδ → f uniformly, and f is a continuous function.
The last claim follows by applying this argument to the functions ∂if ,

i = 1, 2, . . . , k.
The argument when n ≥ 2 is similar. The case n = 2 shows how but

without too cumbersome notation. If ϕ ∈ C∞0 , we now get

|ϕ(x, y)| =
∣∣∣∣∫ x

∞

∫ y

∞
∂(1,1)ϕ(s, t)dsdt

∣∣∣∣ ≤ ∫ ∞
∞

∫ ∞
∞
|∂(1,1)ϕ(s, t)|dsdt

and hence

‖ϕ‖∞ ≤ ‖∂(1,1)ϕ‖1 .

When we apply this to χnf , f ∈ C∞, we get, as ∂(1,1)(χnf) = ∂(1,1)χn f +
∂(1,0)χn∂

0,1f + ∂(0,1)χn∂
1,0f + χn∂

(1,1)f , that

‖f‖∞ ≤ ‖f‖1 + ‖∂1,0f‖1 + ‖∂0,1f‖1 + ‖∂(1,1)f‖1, f ∈ C∞ .

The rest of the argument works exactly the same as in the case n = 1.

Remark 17.3. The proof shows that it is enough to consider α = (α1, . . . , αn),
where each αi is either 0 or 1, in the sum (4). 2

The Sobolev L2-inequality Let f ∈ D ′(Ω), where Ω is an open set
in Rn, and let r and k ≥ 0 be integers. If ∂αf ∈ L2

loc for all α, 0 ≤ |α| ≤ r
where r > k + n

2
, then f ∈ Ck(Ω).

Proof when n = 1 and k = 0.
The assumption means that f ∈ L2

loc and f ′ ∈ L2
loc. Let ω be an open

set, ω ⊂⊂ Ω, and take χ ∈ C∞0 (Ω) with ‖χ‖∞ ≤ 1, ‖χ′‖∞ ≤ 1 and χ = 1 in
a neighborhood of ω. Define F (x) = Fω(x) = χ(x)f(x). (F = 0 outside the
support of χ.) Since F ∈ L2(R) and F ′ = χ′f + χf ′ ∈ L2(R), the Parseval
identity implies that∫

R
|F̂ |2dξ <∞ and

∫
R
ξ2|F̂ |2dξ <∞ .
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Hence ∫
R
(1 + |ξ|)2|F̂ |2dξ <∞ .

The Cauchy-Schwartz inequality implies(∫
R
|F̂ |dξ

)2

=

(∫
R
(1 + |ξ|)|F̂ | dξ

1 + |ξ|

)2

≤
∫
R
(1 + |ξ|)2|F̂ |2dξ

∫
R

dξ

(1 + |ξ|)2
<∞ .

Thus F̂ is integrable and hence F is continuous. As ω is an arbitrary open
subset of Ω, it follows that f ∈ C(Ω).

The general case.

If n = 1 and k = 1, we also know that F ′′ ∈ L2. Thus ξ2F̂ (ξ) ∈ L2

and we have

∫
R
(1 + |ξ|)4|F̂ |2dξ < ∞. By the Cauchy inequality, this gives∫

R
(1+ |ξ|)|F̂ |dξ <∞. In particular, ξF̂ (ξ) is integrable and F ′ is continuous.

The case for arbitrary k follows in the same way.

If n > 1, the condition on ∂αf implies that ξliF̂ (ξ) ∈ L2, l ≤ r. Using the
inequality (1 + |ξ|)2l ≤ Cl(1 + ξ2l

1 + . . .+ ξ2l
n ), and the Cauchy inequality, we

obtain (1 + |ξ|)kF̂ ∈ L1 and hence F ∈ Ck.

Sobolev spaces
Let us abstract the ideas in the proof of the L2-inequality. We saw that

if f and its derivatives up to order r are in L2, then (1 + |ξ|)rf̂ ∈ L2 or

equivalently (1 + |ξ|2)r/2f̂ ∈ L2. In this condition, r may be an arbitary real
number, and we can make the following definition.

Definition 17.4. A distribution f ∈ D ′(Rn), is in the Sobolev space Hs(Rn),
s ∈ R, if

‖f‖Hs = ‖(1 + |ξ|2)s/2f̂(ξ)‖L2 < +∞

Proposition 17.5. If f ∈ Hr(Rn), where r > s+ n
2
, then

(1 + |ξ|)sf̂ ∈ L1(Rn).

Remark 17.6. If s = k is a non-negative integer, this implies that f ∈ Ck.
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Proof. We have (1 + |ξ|2)r/2f̂(ξ) ∈ L2. Hence, by the Cauchy inequality, we
get ∫

Rn
(1 + |ξ|2)s/2f̂(ξ)dξ

=

∫
Rn

(1 + |ξ|2)r/2f̂(ξ)
dξ

(1 + |ξ|2)(r−s)/2 ≤ C‖f‖Hr ,

as (1 + |ξ|2)−(s−r) is integrable when r − s > n
2
.

17.5 Minkowski’s theorem

Let B be a convex set in Rn that is symmetric at the origin. If |B| ≥ 2n,
then B contains more than one lattice point.

Proof. We assume that 0 is the only lattice point in B, and show that this
implies that |B| < 2n. Let f = χB ∗ χB. Since B is symmetric, χ̂B is real.

Hence f̂ = (χ̂B)2 = |χ̂B|2.
We observe that if f(2k) 6= 0, ie.

f(2k) =

∫
χB(2k − x)χB(x)dx 6= 0 ,

then there is x ∈ B with 2k−x ∈ B. But then we have k = 1
2
(2k−x)+1

2
x ∈ B,

as B is convex. Hence if f(2k) 6= 0 we have k = 0. Furthermore

f(0) =

∫
χB(−x)χB(x)dx =

∫
|χB|2dx = |B|.

The Poisson summation formula, applied to the lattices (2Z)n and (πZ)n,
gives ∑

j∈Zn
f(2j) = 2−n

∑
j∈Zn

f̂(πj) .

Hence

|B| = f(0) =
∑
j

f(2j) = 2−n
∑
j

f̂ (πj)

= 2−n
∑
j

|χ̂B (πj)|2 = 2−n

(
|B|2 +

∑
j 6=0

|χ̂B (πj)|2
)
.

If we can show that ∑
j 6=0

|χ̂B (πj)|2 > 0,
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we obtain |B| > 2−n|B|2, or |B| < 2n, and we are done.
But if χ̂B(πj) = 0 when j 6= 0, then

χ(x) =
∑
j

χB(x+ 2j)

is constant. This follows from the Poisson summation formula since

χ(x) =
∑
j

τ−xχB(2j) = 2−n
∑
j

eiπxjχ̂B(πj) = 2−nχ̂B(0).

But this is a contradiction as

χ(0) = 1 6= 0 = χ(1, 0, . . . , 0).

Exercise 17.3. The proof is ”wrong”. Why? Correct it!
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