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Introduction 

Many problems of physical chemistry belong to the class of inverse problems, in which 

from known experimental data of the object we need to determine some of its properties based 

on a certain model connecting these properties with measured characteristics. Inverse problems 

typically lead to mathematical models that are not well-posed in the sense of Hadamard, i.e. to 

the ill-posed problems. This means that they may not have a solution in the strict sense, solutions 

may not be unique and/or may not depend continuously on the input data. Mathematical 

problems possessing such properties are called ill-posed  problems,  mostly due to the 

nonstability of solutions with respect to data perturbations. The theory of ill-posed problems 

(advanced by A. N. Tikhonov and his scientific school in 1960s) investigates and develops the 

effective stable numerical (regularization) methods for the solution of the ill-posed problems. In 

the background of this theory lies an understanding of the underdetermined character of the ill-

posed problems and a concept of the regularizing operator (algorithm).  

Molecular force fields provide very important information about molecular structure 

and molecular dynamics and may be determined within harmonic approximation from   

experimental data of vibrational (infrared and Raman) spectroscopy by solving the so-called 

inverse vibrational problem. Rapid progress in quantum mechanical calculations of theoretical 

harmonic force fields provides new ways for more accurate interpretation of experimental data as 

well as new possibilities for development of empirical force field calculations. The latter are 

particularly important for the large-size molecules for which accurate ab initio calculations are 

impossible, so that empirical methods based on a solving an inverse vibrational problem still 

remain the best available source of force field parameters.  



Fast progress in the investigation of rather large nanomolecules requires development of 

special approaches for solving inverse vibrational problems moving far beyond traditional 

methods based on the least-squares procedures. Analysis of large molecular systems (when a 

force constant matrix F is constructed from previously evaluated force constants of model 

compounds) runs across difficulties of possible incompatibility of the results determined by 

different authors and by means of different numerical methods within different approximations 

(force field models). These difficulties are related to nonuniqueness and instability of the 

solution of inverse vibrational problem as well as to incompatibility of available experimental 

data with the harmonic model.  

In the course we discuss how a priori model assumptions and ab initio quantum 

mechanical calculations may be used for constructing regularizing algorithms for the calculation 

of molecular force fields. We have proposed a principally new formulation of a problem of 

searching for the molecular force field parameters using all experimental data available and 

quantum mechanical calculation results and taking into account the a priori known constraints 

for force constants. The essence of approach is that we suggest (using given experimental data 

and its accuracy) to find by means of stable numerical methods the approximations to the so-

called normal pseudosolution, i.e. matrix F which is the nearest by chosen Euclidean norm to the 

given force constant matrix F
0
, satisfies the set of a priori constraints D and is compatible with 

experimental data  with regard for the possible incompatibility of the problem.  

Within this approach, the results will tend to be as close to quantum mechanical data as 

the experiment allows. From mathematical point of view, the algorithm should provide 

approximations to the solution that tend to the exact solution when experimental data becomes 

more extensive and accurate. Imposing certain restrictions on the matrix of force constants (in 

our case it is a requirement of the closeness of solution to the matrix F
0
) allows to obtain unique 

solution from the variety of possible choices.  

The course consists of 7 lectures presenting foundations of the modern approaches to 

solving inverse problems arising in vibrational spectra data processing and includes: 

- Classical theory of small vibrations. 

- Molecular force fields and experimental sources of information. Mathematical model 

of molecular vibrations. Formulation of inverse vibrational problem. 

- Generalized coordinates in normal coordinate analysis. 

- Regularizing algorithm for solving the inverse vibrational problem. 



- Constraints on the values of force constants based on quantum mechanical 

calculations.Generalized inverse structural problem. Computer implementation. 

- Examples of molecular force field calculations within different models. 
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Course plan. 

- Lecture 1: Physical models of molecular vibrations. Classical theory of small 

vibrations.  

- Lecture 2: Mathematical model for molecular vibration analysis. Direct and inverse 

problems. 



- Lecture 3: Vibrational problem in internal coordinates. Models of a molecular force 

field. Construction of the auxiliary matrices 

- Lecture 4: The mathematical formulation of the inverse vibrational problem. 

- Lecture 5: Regularizing algorithms for solving the inverse vibrational problems. 

- Lecture 6: Constraints on the values of force constants based on quantum mechanics. 

Generalized inverse structural problem. Computer implementation.. 

- Lecture 7: Joint treatment of ab initio and experimental data in molecular force field 

calculations. 

 

Course problems. 

It is assumed that a student would solve one project.  Computations performed by 

standard accessible software (MATLAB) illustrating the solutions are encouraged for the 

projects. The project includes solving problems connected with vibrational spectroscopy. The 

students should present a written report on the solved problems. 

 

1. PHYSICAL MODEL OF MOLECULAR VIBRATIONS. CLASSICAL THEORY 

OF SMALL VIBRATIONS.  

 

The vibrational spectrum of a substance appears as a result of interaction of infrared 

electromagnetic radiation with the substance. This interaction changes the vibrational component 

of the total molecular energy. The vibrational spectrum of a molecule is a characteristic and 

complicated function of its geometric structure, nuclei masses and electron density distribution, 

i.e., of intramolecular forces. The physical consideration of vibrational spectra and their models 

may use two approaches {classical and quantum mechanical. In other words, molecules belong 

to quantum systems whose behavior in certain cases may be described by classical theory. To 

solve vibrational problems, one can often use simple approximations of classical mechanics. The 

classical theory considers the vibrational spectrum of a molecule to result from small vibrations 

of a system of linked material points. At the same time, some problems of the molecular 

spectroscopy, for example, the intensity of vibrational bands, the appearance of combined 

frequencies and overtones cannot be properly formulated and solved by means of classical 

physics. In these cases, it is necessary to apply the approximations of quantum mechanics. 

It is well known that classical mechanics, generally speaking, is inapplicable to the 

treatment of atoms and molecules because this theory cannot explain the fact of their stability. 



Indeed, a resting or uniformly and linearly moving system of charged particles (nuclei and 

electrons) cannot have a stable equilibrium. On the other hand, a dynamic system of charged 

particles (of the solar system type) also cannot exist because, according to classical 

electrodynamics, accelerating charges have to radiate energy, which immediately leads to falling 

of the electrons into the nuclei. Thus, we may consider atoms and molecules as systems of 

charged material points only in quantum mechanics. 

Nevertheless, some essential peculiarities of vibrational motion of a molecule may be 

derived from the simplified classical analysis. In many cases this analysis yields results which 

coincide with those obtained in quantum mechanics, although more descriptive. In addition, the 

classical analysis allows us to essentially simplify the quantum mechanical consideration. 

So, consider a molecule as a classical system of N material points ("atoms" or "nuclei") 

with the masses NMM ,...,1   placed in a certain force field such that the potential energy of the 

system is a function ),...,( '

0

'

01 NRRU


. Here ),...,1('

0 NiR i 
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 are the radius vectors of material 

points in a certain fixed inertial frame of reference (laboratory system). The force field includes 

electrostatic interaction between nuclei and a certain effective field created by all the electrons of 

the molecule. In this statement of the problem we do not consider individual electrons. The sense 

of the field U will be completely clarified in the quantum mechanical statement. Here we shall 

only note the following.  

1. The potential energy ),...,( '

0

'

01 NRRU


  has to be independent of rotations and motion of the 

coordinate system (it is the corollary of the fact that the field is created by the particles of the 

system themselves). 

2. The equilibrium configuration },...,{ 00

1 NRR


must exist where the potential energy U is 

minimal (this reflects the fact of existence of the stable molecule). 

Further, let us agree to denote the vector by a column of three numbers (its Cartesian 

components), for example 
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We introduce the scalar product of two vectors 
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Where the sign *  denotes transposition (i.e. x* is a row vector), and also, the vector product 
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defined by relations 
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We shall also use vectors of arbitrary dimensions, treating them as columns.  

For consideration of motion of the nuclei we should compose the Lagrange function 
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and solve the Lagrange equations 
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with certain initial conditions. 

In general, equations (2) describe three distinct kinds of nuclear motion: the parallel 

transfer (or translation motion), the rotation of the nuclear system as a whole and the relative 

motions of nuclei. We are primarily interested in considering the vibrations (i.e., the relative 

motions) of nuclei within the molecule. Since we are primarily interested in considering the 

vibrations (i.e. the relative motions) of nuclei, it is convenient to separate, at least approximately, 

the different types of motion in the molecule. For this purpose, we introduce the coordinate 

system connected with the molecule. 

Let the equilibrium configuration of the molecule },...,{ 00

1 NRR


be nonlinear (such 

molecules will be called normal). Introduce the new coordinate system (noninertial, because it 

rotates with the molecule), where the coordinates of the radius vectors are denoted as 

NRR


,...,1 . Since further we shall consider the small vibrations of nuclei near the equilibrium 

positions, it is convenient to introduce the nuclear displacements iR


   so that 

),...,1(0 NiRRR iii 


. 

We shall require that  iR


   does not change, when the molecule is moving or rotating as a 

whole. This leads to the Eckart conditions 

   
i i

iiiii RRMRM 0,,0 0


.         (3) 

The first of these conditions implies the vanishing of the linear momentum of the system 

for vibrational motion. The second equation resembles the disappearance of the angular 

momentum, but is not exactly the same. The difference follows from the impossibility of 

separating the rotational and vibrational motions completely.  

Due to the six conditions  (3) , the relative (vibrational) motion of  nuclei has n = 3N -  6 

degrees of freedom. Since Eqns. (3) are linear, we may introduce n generalized coordinates {

nqq ,...,1 }*   so that 
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Here the matrix A


 with vector elements has to satisfy the restrictions  

which follow from (3) : 
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For the following consideration, it is convenient to choose the axes of coordinates for the 

molecular system so that their origin is at the center of masses of the equilibrium configuration. 

This means the condition 



N

i

iR
1

0 0


, and the inertia tensor of this configuration is diagonal. 

Further we shall assume these conditions to be true. It is convenient to characterize the 

molecule's translation by translation of the center of masses, which has coordinates 
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and the rotation is determined by the Eulerian angles 

},,{ 321  .  

These angles determine the rotational matrix C such that )3,2,1,(),(   ieG
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. 

Here e


 are the basis vectors of the laboratory coordinate system, and i


 are the basis vectors 

of the molecule coordinate system. Thus, instead of 3N Cartesian coordinates  },...,{ ''

1 NRR
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 we 

introduce the new coordinates   }*},...,,{}*,,,{,{},,{ 21321 nqqqRqR 


 . The relations 

between the Cartesian coordinates and the new coordinates are as follows 

))(()(
1

0' 



n

k

kikiii qARCRRCRR


 .            (6) 

To simplify the following discussion, we shall assume that the molecule does not 

participate in either translation or rotation.  This means that instead of (6) we have ii RR
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'
  and 

instead of (1) we have   
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Making the change of variables 
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Here,  V(q) denotes the potential energy ))(),...,(( 1 qRqRU N
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denotes the matrix of the kinetic energy of vibrations . 

For quantum mechanical applications it is convenient to introduce the Hamilton function. 

For this purpose we have to replace kq in (8) by the generalized momenta
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Introduce V(q) as the series  
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Such representation assumes the smallness of the system vibrations near the equilibrium 

position. Since for q1 = … = qn = 0 the potential energy V (q) has a minimum, this series may be 

written in the form  
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Here, the fixed energy shift is omitted as unessential for the further treatment. The matrix F with 

the elements ),...,2,1,(
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is called the matrix of the force constants.  In this case  

 

whence 



 

or 

           (12) 

 

We shall seek for the periodic solutions to this equation. For this purpose, we present 

qk(t) in the form 

                                        (13)  

The substitution of  (13) into (12) leads to the eigenvalue problem 

0)( 2  lEGF                                                     (14)  

where by l is denoted the amplitude vector *},...,,{ 21 nllll  . Thus, the eigenvalues of GF are the 

squares of frequencies of the molecular normal vibrations. 

The eigenvectors of (14) determine the modes of vibrations, i.e., the relative values of 

coordinates in the initial moment and (because of (13)) in any other moment. Since the matrix 

GF has the dimension n  n, it has n eigenvalues, though not all of them are essentially different, 

and some of them may be multiple in accordance with the degeneracy of the vibrational energy 

level. Multiplying equation (14) by G
-1/2

 from the left, we obtain 

02/122/1   lGFlG       or    )())(( 2/122/12/12/1 lGlGFGG   . 

This eigenvalues problem for the symmetrical matrix G
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 has the same eigenvalues as   

(14) and exactly n eigenvectors r
(1)

, … , r
(n)

, which may be chosen orthogonal. Therefore, as 

matrix G is nonsingular, the problem (14) also has n eigenvectors, where 

 

The problem (14) may be interpreted as the problem of simultaneous reduction of two quadratic 

forms to the canonical form. Introduce the matrix L with the columns l
(1)

, … ,  l
(k)

. From the 

above, it follows that L = G
1/2

R, where R is the orthogonal matrix. Making the change of 

variables  

 

we obtain instead of (8) 

 



Taking into account that  

 

i.e., (L*TL)kl = kl, kl is the Kronecker symbol:       

   

and from the equation 

 

it follows that 

 

Finally, we obtain 

 

Introducing the generalized momenta 

 

we obtain the following form for the Hamilton function: 

    

                               (16)  

The Hamilton (or Lagrange) equations of motion lead to the system 

 

the solutions of which are the known functions of the harmonic oscillator in classical mechanics 

 

The coordinates Q1, … , Qn are usually called the normal coordinates. The calculation of 

the molecular vibrations is called the normal coordinate analysis. Thus, the molecular vibrations 

are represented as the superposition of n independent vibrations, each characterized by its own 

frequency k and mode l(k) or by the normal coordinate Qk. Note that in the normal coordinates, 

the kinematic coefficient matrix G and the force constants matrix F are both diagonal. 

Quantum mechanics, in principle, allows us to predict all molecular spectra without any 

experimental information except charges, masses and spins of the particles. It is natural because 

quantum mechanics was created to describe the simplest spectra. At present, when we describe 

more complicated systems, consisting of point particles, it works as well. 



In consideration of a molecule as a quantum system, we restrict ourselves by the 

nonrelativistic Schrodinger equation, and we shall not consider spins of particles (except for 

certain conditions imposed by spins on the parity of wave functions). Such a treatment holds for 

molecules consisting of not too heavy atoms.  

Physical characteristic of molecular system – dynamic variables which characterize the 

molecule are subdivided into two groups complemented each other – space coordinates and time 

from one side and energy and momentums from other side.  Quantum mechanics formalism is 

based on the operator theory.  Associated with each measurable parameter in a physical system is 

a quantum mechanical operator. Such operators arise because in quantum mechanics you are 

describing nature with waves (the wave function) rather than with discrete particles whose 

motion and dynamics can be described with the deterministic equations of Newtonian physics. 

Part of the development of quantum mechanics is the establishment of the operators associated 

with the parameters needed to describe the system.  The main properties of operators: they 

should be linear and self-adjoined (conjugated). Operators should result in real quantities of 

observed values, it means that operators should be Hermitian.  

Table 1.  Operators of some physical values  

Physical value Operator  
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 (m –  particle mass ) 

With every physical observable there is associated a mathematical operator which is used 

in conjunction with the wavefunction. Suppose the wavefunction associated with a definite 
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quantized value (eigenvalue) of the observable is denoted by yn (an eigenfunction) and the 

operator is denoted by Q. The action of the operator is given by 

nnn qQ         (17) 

The mathematical operator Q extracts the observable value nq  by operating upon the 

wavefunction which represents that particular state of the system. This process has implications 

about the nature of measurement in a quantum mechanical system. Any wavefunction n for the 

system can be represented as a linear combination of the  eigenfunctions yn  ( basis set postulate), 

so the operator Q can be used to extract a linear combination of eigenvalues multiplied by 

coefficients related to the probability of their being observed (expectation value postulate). 

Quantum mechanics, in principle, allows us to predict all molecular spectra without any 

experimental information except charges, masses and spins of the particles. The basic equation 

of quantum mechanics or the stationary Schrodinger equation is formulated as the eigenvalue 

problem 

 EH
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                        (18) 

Here, the Hamilton operator H


is obtained from the expression for classical particle energy 

(written by means of coordinates and momenta) by substituting the coordinates and momenta 

with the corresponding operators. For example, for a point electron in the field of a positive 

charge (the nucleus), i.e., for the simplest model of the hydrogen atom, the stationary 

Schrodinger equation has the form 


r

e

m

p
H

22

2




 

Here e, m are the charge and mass of the electron respectively, p


 is the momentum operator, r is 

the distance from the origin (where the positive charge is placed). In coordinate representation, 

the operator of the momentum squared is equal to  22 

p , where ħ is the Planck constant 

(ħ = h/2), and  is the Laplace operator. In Cartesian coordinates it can be written as 

 

and in spherical coordinates as 
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If we impose certain conditions on the function , we obtain the eigenvalue problem for 

the differential operator.  This particular problem was solved in the 1920s. As a result, the 

following energy levels were found 

22

4

2 n

m
E e

n

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In the case of a molecule, when kinetic and potential energies are expressed in the operator form, 

we should solve the Shrodinger equation of the form: 
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where function  depends on the coordinates of all the electrons 
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 denotes differentiating by coordinates of the i-th nucleus. (i=1, …, N).  Mi –is the mass 

of the i-th nucleus. The potential energy U of the system may be represented in the form 
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where  
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the nucleus in electron charge units, i.e. its atomic number),  and 
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  corresponds to the nuclei repulsion. 

It is fundamentally hard to solve equation (19). Even for the case of two electrons (the 

helium atom) this equation cannot be solved analytically. The numerical solution comes across 

many difficulties, too. For example, we may represent a one-dimensional function for a 

numerical calculation either as its values at the grid points, or to define it by means of some 

parameters. 

Let K parameters be introduced. For the helium atom the functionª depends on nine 

arguments (six electron coordinates and three nucleus coordinates); therefore, it will require K
9
 

parameters. Even for small K, say, K = 10, to find 10
9
 parameters is unrealistic even for future 

computers. The molecules, that we are interested in may have dozens of nuclei and several 

hundred electrons. 



So, simplifications are necessary to make the problem solvable. As a result, we may lose 

the accuracy of calculation and the value of such calculation may decrease substantially. 

On the other hand, some molecule characteristics may be determined from experiment, 

using very simple models, which do not require extremely difficult calculations. If we succeed in 

constructing such models, this may also be considered as the spectrum interpretation. Finally, we 

may make a simplified quantum mechanical calculation replacing those values that are most 

difficult to calculate by parameters determined from experiment. 

In practice, all three approaches are used. They are called nonempirical (or ab initio, 

when experimental data are not used), empirical (when the basis of calculation is the 

experimental data), and semiempirical (when the experimental data are used only for estimating 

some of the parameters). 

To construct the mathematical model we have to separate the different types of particle 

motion in the equation (19). Indeed, a molecule may move and rotate in the space as a whole, 

and change its shape because of the intramolecular motion (vibration of the nuclei, etc.) 

Therefore, it is sensible to separate, even approximately, all these motion types. Also we need to 

separate the motion of nuclei and electrons in order to consider, first, more simple models. 

Using this approach, the vibrational energy arises as the component of the total molecule 

energy, represented (with translation energy excluded) in the first approximation as 

E = Ee + Ev + Er. 

Here, Ee is the electron energy, Ev is the vibrational energy, and Er is the rotational energy. The 

orders of these quantities are 1 :  me/M : me/M (me/M = 10
-3

 - 10
-5

), where me is the electron rest 

mass, M is the sum of the nuclear masses of the molecule). Such separation of energy is possible 

if  Ee >> E>> Er. 

Three types of spectra correspond to three energy components.  

1. Rotational spectra arise in the far infrared (IR) and microwave electromagnetic 

spectrum regions, when we have transitions between the rotational levels of the given vibrational 

and given electron states. 

2. Vibrational{rotational spectra arise in IR region of the electromagnetic spectrum, when 

we have transitions from rotational levels of the given vibrational state to the rotational levels of 

another vibrational state, the electron state being fixed.  

3. Electronic spectra or electronic-vibrational-rotational spectra. They correspond to 

transitions from the various rotational and vibrational levels of one electronic state to the diffrent 

rotational and vibrational levels of another electronic state. They are observed in the visible and 

ultraviolet regions. 



Besides these three types of spectra, there are also spectra of electron-spin resonance and 

nuclear-magnetic, nuclear quadruple and gamma-resonance, which are not considered here. 

In an exact treatment, besides electron, vibrational and rotational components of the total 

molecule energy there arise terms connected with electronic-vibrational, electronic-rotational 

and vibrational-rotational interactions. 

We shall consider the simplified quantum mechanical statement of the problem of 

molecular vibrations. Assume that the rotational motions and translations of the molecule's 

nuclei have no influence on vibrations, and electronic motion is taken into account as creating a 

certain equivalent force field. Thus, we are to solve the same problem as was considered above 

but for the quantum mechanical model. Considering this simplified statement is useful since the 

results obtained remain valid in more general cases. 

For stationary vibrational states, the Schrodinger equation is written as follows:  

  EH


 

where the Hamilton operator  is obtained from the expression (10) for classical particle energy 

(written by means of coordinates and momenta) by substituting the coordinates and momenta 

with the corresponding operators. 

The substitution leads to the equation 

 

To solve this equation, it is useful to transfer to the normal coordinates. As a result we obtain 

 

or in other form 
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Here, we have used the representation of V (q) in the form (11): 

. 

Thus, we have to solve n independent problems of harmonic oscillators.  
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where   )( kkk Q  and then to obtain  



 

The solution to each of the problems (22) is well-known. It is expressed as the 

eigenfunctions 

 

where kH  are the Hermite polynomials, 
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the eigenvalues of the energy. The levels of vibrational energy of the molecule are characterized 

by n quantum numbers k =0, 1, …. . kk   , and  k  are eigenvalues of matrix GF. 

The levels of vibrational energy of the molecule in harmonic approximations are 

characterized by n quantum numbers k  (n=3N-6, N – number of atoms in a molecule): 
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The wave function of a molecule is expressed as a product of eigenfunctions of harmonic 

oscillators 
k

 : 


























 



)(
2

1
exp)()(

1

221

1

0
n

k

kk

n

k

kk QQHNQ
kk

 


, 

 

where N is normalizing factor; kH  are the Hermite polynomials, )( 2210

kkkk QQQ  .  

Transitions between different vibrational levels are determined as 
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Where '
iE  is an energy of upper state and "

kE  is an energy of lower state. According to selection 

rules for a harmonic oscillator, the absorption is allowed for transitions with k = 1. Therefore, 

the absorbed frequencies are equal to 
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i.e. they are the same as in the classical case. The transitions between the levels with other   

0 will give overtones or combined frequencies. Within the limits of the simplified quantum 

mechanical approach we may calculate the mean square amplitudes of vibrations for the different 

types of interatomic distances which are very important in investigating molecular structure. 



Choose any pair of nuclei (i; j) in a molecule and consider the squared distance   
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and in the equilibrium configuration  2002
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vibration amplitude we have 
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Finally, after a series of transformations  

      (23) 

where  = diag{1, 2, … n} and the matrix H is determined by the formulas 

       (24) 

and depends only on the geometry of equilibrium configuration of the molecule. 

If consider the full statement of vibrational problem  we should begin from the analysis of 

vibrational-rotational interaction because  the main difference between the complete statement of 

the molecular vibration problem and that considered above is consideration of vibrational-

rotational interaction.  

 

2. MATHEMATICAL MODEL FOR MOLECULAR VIBRATION ANALYSIS. 

DIRECT AND INVERSE PROBLEMS 

 

We consider a mathematical model which connects experimentally determined values 

with the theoretical parameters. In the strict sense, these parameters may contain only charges 

and masses of nuclei and electrons of a molecule. Solving equation (18) we should obtain the 

equilibrium configuration of molecule {R
0
}. For this configuration, we have to construct the 



matrix of kinematic coefficients G and then expand the adiabatic potential by the powers of 

vibrational coordinates  

 

At this stage the following calculations are possible: 

(a) of the frequencies of normal vibrations - as the eigenvalues of the 

GFL=L,     (25) 

(b) of the mean square amplitudes of vibrations of all internuclear  distances 

    (26) 

(c) of Coriolis constants (when we have the degenerate vibrational levels) 

     (27) 

(d) of the centrifugal distortion constants 

     (28) 

 

In all these calculations it is assumed that the nuclear masses, the equilibrium molecular 

configuration, and the force constant matrix F are known. If we need to analyze phenomena 

dependent on the next terms of V (q) expansion, we calculate the corresponding corrections by 

means of perturbation theory methods. 

Since equation (18) cannot be solved directly, we have to simplify this problem. In detail 

these simplifications are considered in the survey of nonempirical (ab initio) and semiempirical 

quantum mechanical methods. The latter use the fitting parameters to determine which 

experimental data are utilized. Using an empirical approach means that we do not solve (18) at 

all; in this case we assume that the equilibrium configuration of a molecule is known (for 

example, from the experimental data). All the elements of the force constant matrix are 

considered as parameters derived from the experimental data. To define them, the equations 

(25)-(28) connecting this data with the elements ijF  are used. Some of these parameters may be 

set a priori from physical considerations or from symmetry conditions. This reduces the number 

of values to be determined. A similar approach consists of approximating the potential V (q) by 

the given functions which contain empirically determined parameters. 



When deducing relations (25)-(28), we have not considered the terms in expansion of V 

(q) of the order higher than second. Thus, the obtained model cannot take into account the 

anharmonicity effects. Besides, we did not consider nonadiabatic effects (in accordance with 

deduction used for approximation). Nevertheless, in most cases this model allows us to obtain 

the force constant matrix F consistent with all experimental data available. 

To a large extent, the value of the empirical approach is determined by the degree of 

universality of the obtained force constants (i.e., if they can be transferred to the similar 

molecules). Such transfer is often possible. This allows us to synthesize the matrix for more 

complicated molecules and to predict their properties related to vibrations.  

During the last 2-3 decades numerous attempts were undertaken to compute the force 

fields directly from Schrodinger’s equation. The use of very restrictive assumptions was (and 

still is) necessary to make such computations technically possible. These restrictions influence 

very strongly on the accuracy of results because an increasing number of atoms in a molecule 

(and correspondingly, of the number of vibrational degrees of freedom for nuclear motion) 

complicates significantly the solution of the problem and decreases the accuracy of calculations. 

In relatively few cases it is feasible to carry out ab initio calculations which can predict 

frequencies within the limits of experimental error (say, e.g., within the 1% errors of the usual 

harmonic approximation). Nevertheless, it is possible to predict the further rapid progress of ab 

initio calculations, and below  we consider some new ways of utilizing even the not-so-accurate 

results of ab initio calculations that are routinely available today. 

The development of ab initio force field calculations in the past decade has been 

extremely rapid. Within the Hartree-Fock (HF) self-consistent-field framework (representing a 

moderate level of nonrelativistic theory), such calculations are routinely possible for rather large 

molecules (say, 10-30 atoms) at moderate basis set levels. But this method does not take into 

account an electron correlation, so the problem of obtaining improved theoretical results (with 

errors comparable to those of experiment) remains a major challenge for theoretical chemists. 

The accuracy of  HF calculations is rather far from experimental limits, and these calculations 

often give rather appreciable errors in geometry (~0.05   in bond lengths, ~5 in bond angles) 

and in molecular force constants (~10% error) determined by the shifts of calculated frequencies 

in a comparison with experimental frequencies.  

Recent rapid progress in the extending force constant calculations to higher levels of 

theory has been associated with the introduction of analytic derivative methods (initially for 

gradients, subsequently for second order and higher derivatives) to replace the older numerical 

methods. Rapid progress in quantum mechanical calculations of  harmonic force fields for  



moderate size molecules with inclusion of electron correlation at MP2 (perturbation theory) and 

DFT (Density Functional Theory)  levels provides fundamental new possibilities for more 

accurate interpretation of experimental data as well as improves methods for empirical force 

field calculations. 

All these ab initio calculations are of great importance for the development of theoretical 

models of molecular structure and dynamics, and they have additional practical importance in a 

view of the joint treatment of theoretical and experimental data. Recent years have demonstrated 

rapid development of quantum-chemistry calculation techniques and the powerful QM software 

packages (GAUSSIAN, QChem, Gamess, etc.) have opened new ways to mass-scale quantum 

chemical calculations of polyatomic molecules, their potential surfaces, and quadratic force 

fields. Ab initio quantum-mechanical calculations ensure obtaining information that has a clear 

physical meaning. When performed at a high theoretical level (taking into account electron 

correlation, etc.), such calculations are capable of satisfactorily reproducing patterns of 

experimental structural and vibrational spectroscopy data. However, in a case of large molecular 

systems the best ab initio results significantly differ from experimental values, and this makes 

one use special empirical corrections (so-called scale factors. This reduces ab initio calculations 

to the level of semiempirical approximations and causes the loss of important physical 

information. An approach that guarantees obtaining solutions which reflect the most important 

properties of ab initio potential surfaces is therefore preferable.  

Since we cannot solve (18) directly, we have to simplify this problem. The question 

arises how to find the main parameters characterizing the molecule without complicated 

calculations of the wave functions and energy levels, using instead the data obtained from 

experiment. Let us first define the requirements concerning these parameters using the above 

considerations. 

When deducing the equations of motion for a molecule we have seen that the main role is 

played by the force field V (q1 , ... , qn) obtained from the eigenvalue equation (23). Due to the 

fact that solving this equation is usually hard, we may set a problem for determining V (q1 , ... , 

qn) from the experiment. It should be noted that the determination of all the force field is not a 

solvable problem, since the spectral properties are related only to some characteristics of V (q). 

On the other hand, since the function V (q) is required only for prediction of spectral (and 

geometric) properties of the molecule, it suffices to determine only essential characteristics of V 

(q) for this problem. 

The essential property of the potential function V (q) is that the position of its global 

minimum determines the equilibrium configuration of the molecule's nuclei. Further, as follows 



from equation (23), the frequencies of the small vibrations of the nuclei (in harmonic 

approximation) may be determined using the matrix of the second derivatives in the equilibrium 

configuration - the force constant matrix F with elements: 
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where q
0
 stands for the equilibrium configuration. This matrix allows us to calculate the 

vibrational-rotational and centrifugal corrections to spectra and the mean square amplitudes of 

nuclear vibrations.  

Note that the representation of the molecule as a set of harmonic oscillators allows us to 

determine thermodynamical properties of the substance as well. For this purpose we do the same 

as when deducing the formula for the mean square amplitudes. The thermodynamic functions 

depend on the frequencies of molecular vibrations and, therefore, may be calculated if the matrix 

of force constants is known. 

Thus, to determine the geometry and the vibrational properties of the molecule it suffices 

to know only the principal characteristics of V (q): its minimum and the second derivatives at the 

point of minimum. Long before computers were invented, which allowed us to calculate more 

complicated molecules than hydrogen molecule, attempts had been undertaken to model the 

potential V (q) in order to describe the properties of molecular spectra. The simplest method of 

such simulation is setting the function V from a priori concepts (based on experience and 

intuition) and then fitting the empirical parameters to obtain correspondence with the  

experimental results. 

Assume that the molecule consists of balls connected by springs (mechanical model). In 

this case, the parameters will be the rigidity coefficients of the springs. In the more complicated 

model, we may add springs between springs and so on (in order to account for the noncentral 

forces). The best models are those based on assumptions taken from experience, for example: 

1. The valence bonds have (for each given pair of atoms, accounting for the distribution of 

valence units and enclosure) approximately constant length. The potential for them is more rigid 

than for the other structure parameters. 

2. The interactions of nonbonded atoms are essentially weaker (usually they are simulated by 

empirical potentials which describe the interaction of the free atoms). 

3. For each bonded atom in a certain valence state there exist admitted ideal values of valence 

bond angles. The deviations of real angles from these values lead to an increase in the energy.  

Simple models of the force field are meaningful if the potentials functions used in them 

are uniform and the number of empirical parameters is not too large. Besides, we would prefer 

that the parameters preserve their values for a certain class of molecules. In this case, evaluating 



the parameters for sufficiently simple molecules, we may predict the structure and the force 

fields for more complicated molecules. 

Further, we shall assume that the equilibrium geometrical configuration of the molecule 

is known. The force field, may be represented as a Taylor series at the minimum point of V (q
0
): 
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In this expression, we have omitted the term of zero order with respect to q1, … ,  qn. It is 

an insignificant constant shift of energy levels. The terms of the first order are absent because the 

expansion is taken at the minimum point. The terms of higher orders are responsible for the 

vibration anharmonicity. As we have seen from the above analysis, the corrections to the energy 

due to anharmonicity have the order of Mm / relative to the energies of the vibrational 

spectrum. Here, m and M are the masses of an electron and a nucleus respectively. Numerically 

this value alters from 2% for the hydrogen atom down to fractions of one percent for other 

atoms, which is substantially greater than the error of measuring vibrational frequencies. For 

example, anharmonicity of C-H bond stretching vibrations leads to the frequency shift of ~ 100 

cm
-1

 (the frequency itself is of the order of 3000 cm
-1

); at the same time the measurement errors 

are by far less than 1 cm
-1

. Rigorous accounting for the vibrational anharmonicity is a 

complicated problem and requires special analysis. We shall not do such accounting, considering 

the measured vibrational frequencies harmonic and therefore limiting ourselves to finding a 

certain effective harmonic force field.  

To analyze the vibrational spectra, it is necessary to construct the force constant matrix F 

using experimental data. Indeed, in this case, we may determine the vibrational frequencies and 

their modes, i.e. (in the classical analogy) the vectors of the nuclear displacements from the 

equilibrium states for each normal vibration. 

Note once more that the matrix F may be useful to predict the vibrational properties of a 

molecule only if its elements more or less preserve their values in similar structural fragments of 

different molecules. In this case, we may use the known elements of the force constant matrix 

(obtained, for example, from analysis of simple molecules), to construct the corresponding 

matrix for a complicated molecule and determine its vibrational properties. Since characteristic 

frequencies do exist, it appears that at least for some molecules, some elements of the force 

constant matrix really possess the required transfer properties. 



The experimental data may be insufficient for complete determination of the force 

constant matrix. Indeed, we have n = 3N- 6 nuclear coordinates (N is the number of atoms); 

therefore, the matrix F contains at most n(n + 1)/2 unknown elements (because the matrix is 

symmetrical). Note that for symmetrical molecules the number of force constants is less and is 

determined by the type of symmetry.  For large molecules, the number of force constants is quite 

large. Therefore, to construct matrix F, we must take into account some a priori concepts based 

on experience. The most important of these concepts are the choice of internal generalized 

coordinates, and the properties of the force constants in this coordinate system (including 

transfer properties). These problems will be considered later. 

The most direct method which uses all the available experimental data to determine F is 

solving the nonlinear operator equation  

AF=                                 (29) 

where  is a set of all the experimentally measured values; A is the operator which puts into 

correspondence to each symmetric matrix F the set of calculated values, corresponding to these 

data (according to formulae (25)-(28) and so on). The operator A is completely determined by 

nuclei masses and the equilibrium geometric configuration of the molecule. Note that the set of 

experimental data may contain information on many isotopic species of the molecule, since in 

the approximation considered, F does not depend on atomic masses. 

From (25)-(28) it follows that the relation between F and calculated parameters  is quite 

complicated and, at any rate, requires us to solve the eigenvalue problem (14). As a result, even 

the solution of direct problem (25), i.e. the calculation of vibrational spectrum characteristics 

with the known matrix F, is practically impossible without using computers. 

These difficulties are even greater for the inverse problem. Moreover, practically always, 

the problem of determining F from (29) is either underdetermined or incompatible, or both. 

Equation (29) may be incompatible for two reasons: 

a) the inconsistency of the harmonic approximation model, since the real molecular vibrations 

are always more or less anharmonic; 

b) using approximate experimentally measured values  and the parameters of molecular 

equilibrium configuration. 

As a result, instead of (29) we need to set the problem of finding  

AF
F

min                            (30) 

Where || . ||  is a norm in the space of vectors , for example 
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and pk > 0 are some weights. This means that instead of a solution of (29) we have to seek its  

pseudosolution. 

Underdeterminancy of the problem and (related to it) instability of the solution with 

respect to small perturbations of input data lead to the necessity of using the approaches 

developed in the theory of ill-posed problems. To avoid the instability, it is possible to introduce 

the physically stipulated a priori constraints. These may either narrow down the set of matrices 

F, where the value AF  is being minimized, or help to formulate the principle for choice 

from the set of admissible solutions of (30). 

We shall use the following formulation of the inverse problem: let, instead of the exact 

values A and , we are  given their approximations A
~

 and 
~

 (the measure of approximation 

will be defined later), and the accuracy estimates for these approximations be characterized by 

the parameter . It is required to construct the approximations F to the exact solution F : 

}min,:{,min 0 


AfAFDFFQFF
DfFQF

      (31) 

such that FF 
  when 0 . 

Here || . |F|   is a norm in the space of symmetric matrices F; D is the set of a priori 

constraints; F
0
 is an a priori given matrix. 

Note that if (29) is uniquely solvable then matrix F  is its solution. 

We shall perform the analysis of the problem of determining F using the experimental 

data in several stages, since introducing each kind of experimental data, generally speaking, 

changes the properties of operator A. 

When considering certain problems of vibrational spectroscopy we shall show the cases 

of underdeterminancy and incompatibility of these problems; therefore, the statement in the form 

(31) (determined by D and the matrix F
0
 in the problem setting), the problem of choosing the 

generalized coordinates is a unique challenge. This question is closely related to the force fields 

models which are widely used in the calculations of molecular vibrations in order to reduce the 

underdeterminancy of the problem. 

It should be noted, however, that extreme narrowing of the set D, where we seek the 

solution to problem  (31), leads to growing incompatibility of the problem, i.e. (29) is satisfied 

less and less. More details on mathematical model and statements of problems arising in data 

processing of vibrational spectra will be considered in the following discussions. 

 



3. VIBRATIONAL PROBLEM IN INTERNAL COORDINATES. MODELS OF A 

MOLECULAR FORCE FIELD. CHOICE OF GENERALIZED COORDINATES. 

 

We have already shown that solution of the Schrodinger equation and finding the 

adiabatic potential (or force field) of a molecule encounter substantial difficulties. These 

difficulties increase even further when we move on from small (2-5 atoms) to large polyatomic 

molecules. Even nowadays, basic information on force fields with satisfactory accuracy may be 

obtained only from experimental data. However, in this case, the complete force field within the 

simplest model usually used (purely harmonic vibrations, adiabatic approximation) cannot in 

general be obtained, even if additional data (Coriolis constants, centrifugal distortion constants, 

mean vibrational amplitudes, etc.) is available. Therefore, the force field is usually approximated 

by a certain (not very numerous) set of parameters which should be determined from 

experimental data. The analysis and choice of the models, which give results consistent with the 

experiment may clarify the atomic interaction in molecules. 

Let us consider briefly the main force field models used in molecular vibrations analysis. 

The simplest approximation is the central-force field model, where the forces act along the lines 

connecting each pair of atoms, depend only on internuclear distances, and satisfy the Hooke law. 

Even without any assumptions on the character of dependency of V (q) on coordinates, it is easy 

to show that for the simplest molecule, for example, the molecule of water H2O, two parameters 

characterizing interactions H-O and H-H in the equilibrium state are insufficient to reproduce all 

three vibrational frequencies of the molecule. Besides, for certain molecules there exist 

deformations that do not lead to changes in any interatomic distances (to within the terms of the 

second order). Such an example is the linear molecule CO2.For this molecule , the OCO angle 

bending leads to very slight change in the O-O interatomic change. Such vibrations must be 

considered as having potential function of the form (R
4
), and their frequencies should have 

higher order of smallness with respect to bond stretching vibrations. Practice shows, however, 

that the frequencies of stretching and bending vibrations do not differ significantly. Nevertheless, 

the central force field model may be successfully applied to ionic compounds. 

A more realistic model is the valence force field model. Here we assume that the forces 

which act on the nuclei prevent the interatomic distances between bonded atoms from changing, 

and, also, keep bond angles constant and prevent torsion around the bonds. 

If we introduce the internal coordinates as deviations of the mentioned distances and 

angles from their equilibrium values, the force constant matrix would take the diagonal form. 

Such a model describes all forms of molecular vibrations, but its accuracy is unsatisfactory. It is 

easy to see from the example of H2O for which both described models are equivalent (since the 



bond angle H-O-H is uniquely determined by three interatomic distances). We cannot find such a 

diagonal force field which satisfactorily reproduces the vibrational spectrum of the water 

molecule. 

But if we admit the assumptions (used in the valency force model) on which distortions 

of the equilibrium molecular configuration have most influence on its energy, then the force 

constant matrix in the introduced internal coordinates has to be close to a diagonal matrix. The 

following elaboration of this model considers small off-diagonal elements in the force constant 

matrix. We shall refer to such approximation of the potential function as a modified (or 

generalized) valence force field. 

Which off-diagonal elements are to be considered as non-zero is determined both by 

physical considerations and intuition. For example, a large distance between two structural 

fragments of a molecule gives a good reason for neglecting corresponding off-diagonal elements 

in the force constant matrix. The existence of characteristic vibrational frequencies for certain 

atomic groups (for example, fragments CH2, CH3, etc.), if the equilibrium geometry of this group 

is preserved, indicates that the off-diagonal elements of force constant matrix F, which describe 

the interaction of vibrations of these fragments with the vibrations of the rest of the molecule, are 

small. 

We may also assume that the force constants of separate molecular fragments should be 

preserved in similar molecules. This follows from the basic assumptions of the classical theory 

of chemical structure, involving concepts of bonded and non-bonded interactions, bond orders, 

monotone changes of physicochemical properties in a series of related molecules (Tatevskii, 

1973). If force constants do not change significantly when the corresponding structural fragment 

is transferred from one molecule to another, we speak of transferability of the force constants. 

Note that transferability does not always take place, and should be used very cautiously in 

practical calculations. 

If we do not impose a priori conditions on the elements of the matrix F, the obtained 

model of general harmonic force field in essence ceases to be a model because the only 

remaining assumption is the applicability of adiabatic approximation and of the vibrational 

harmonicity related to it. In this case, each set of linearly independent internal coordinates (note 

that they must be linear with respect to atomic displacements) would lead to equivalent results. 

The force field models considered above are most popular in practical calculations of 

force fields and analysis of normal vibrations of polyatomic molecules. But there are many other 

models involving modified simple force fields. The best known are the force fields of Urey-

Bradley and Urey-Bradley-Shimanouti which consider both simple valence force field (i.e., they 

introduce diagonal force constants of bonds stretch and bond angle deformations) and central-



type forces. The off-diagonal constants of such generalized force field are defined by the 

interactions of unbounded atoms. 

Note that the force constant matrix (in the independent coordinates), as well as the 

adiabatic potential, may be (in principle) determined uniquely. Therefore, if we had a sufficient 

set of experimental data or if we might perform sufficiently accurate theoretical calculations, the 

introduction of the above model assumptions would become unnecessary. 

However, in most cases, the experimental information is insufficient to determine the 

force constants matrix uniquely. This leads to introduction of the various model assumptions. 

The order of magnitude of the matrix F coefficients, their transferability and other properties are 

subject to experimental verification and may be used as a basis for the described models. The 

further accumulation of both experimental information and the results of theoretical research 

may alter the view on the validity of a particular model. 

As was shown earlier, to solve the problem of molecular vibrations, we need to introduce 

n = 3N- 6 (or n = 3N- 5 for linear molecules) independent coordinates. We shall not limit 

ourselves to exactly n coordinates but consider the sets of nf  n coordinates (which, 

nevertheless, are always assumed to contain exactly n independent coordinates). The problem of 

excluding the redundant coordinates will also be analyzed. Generally speaking, the choice of 

coordinates has no principal significance because each set of coordinates should yield the same 

energy levels and vibrational frequencies. However, this choice begins to play an important role 

when underdetermined inverse problems are considered.  

Indeed, let us formulate the problem of determining the force constant matrix F with the 

elements
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 or, which is the same, the quadratic term of adiabatic potential  
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As a rule, for polyatomic molecules, we cannot determine in a unique way all n(n+1)/2 

elements  due to the lack of experimental data. The symmetry of molecules reduces the number 

of parameters to be found, but, simultaneously, it diminishes the number of independent 

expermentally determined values. Therefore, in this situation, it is natural to solve the inverse 

problem for the narrow subset of matrices F which satisfy certain physical constraints. For this 

reason, it is desirable that the elements of the force constant matrix should have a more or less 

simple physical meaning, and the chosen generalized coordinates be connected with really 

existing interactions in the molecule. For this reason, it is desirable that the greatest part of 

potential (32)  would be concentrated in a narrow set of expansion terms (in order that the 



remaining terms might be either omitted or determined as  corrections to the principal terms, 

etc.).  

This ideology leads to construction of the so-called internal coordinate system closely 

related to the molecular structure. If the coordinate system reflects the peculiarities of 

intramolecular forces, then the main role in producing the vibrations will be played by relatively 

few elements of F. 

For example, in chemistry, it is well known that there is a significant difference between 

interaction energies of bonded and remote atoms, and that bond angles tend to preserve their 

ideal values (within the accuracy of the used model and experimental errors) for common 

functional groups in a large number of compounds. 

The internal coordinate system (or internal displacement coordinates) should therefore 

include the following elements: 

1) changing the bond lengths (i.e. the distances between the nuclei for bonded atoms), 

2) changing the bond angles (the so-called bending coordinates),  

3) changing the angles between a bond and the plane of the pair of other bonds (or the atomic 

triple connected by this pair of bonds): the so-called out-of plane bending, 

4) changing the dihedral angles between the atomic triple planes (bond pairs planes), or torsion. 

Sometimes certain combinations of the above-mentioned coordinates 1-4 are also used as 

internal coordinates. Different types of internal coordinates are illustrated for some molecules. 

As a rule the internal displacement coordinate system is widely used  in normal 

coordinate analysis. Besides, it is possible to consider the alternative coordinate systems: 

a) the system which includes the changes of all internuclear distances: 

their number is C
2
N= N(N-1)/2, while the number of independent coordinates is still 3N - 6. The 

exclusion of dependent coordinates may be done by accounting for geometric constraints, 

b) the Cartesian coordinate system, which consists of 3N displacements of all the nuclei along 

the axes x, y, z in a certain Cartesian coordinate system. In this system, 6 coordinates are to be 

excluded because the molecule does not rotate or translate as a whole. 

Note that both the internal coordinates and the coordinates of changing internuclear 

distances are nonlinear with respect to the Cartesian displacements of nuclei, whereas for 

simplicity of analysis it is convenient to use the linear coordinates, as was done above. 

Therefore, instead of the introduced internal coordinates it is convenient to use the linear terms 

of their expansion with respect to the Cartesian displacements of nuclei. For small vibrations, 

such an approach is equivalent to using the nonlinear coordinates. In case of anharmonic 

vibrations, there is no such equivalence. However, questions related to anharmonicity are not 



considered here. Everywhere below we assume that the internal coordinates are linear with 

respect to nuclear displacements. 

 

4. CONSTRUCTION OF THE AUXILIARY MATRICES. THE MATRIX OF 

KINEMATIC COEFFICIENTS. 

When considering the theory of molecular vibrations it was shown that, together with the 

force constant matrix F, the main role in vibrational motion is played by the matrix of kinematic 

coefficients G = T
-1

, where T is defined by formula (9) : 

 ),( ilikikl AAMT


.          (33) 

The matrix G has a direct physical sense: it is the matrix of kinetic energy of a molecule in the 

momentum representation. Calculation of G is even simpler than that of matrix T. Earlier we 

have introduced the matrix A


 connecting the Cartesian components of nuclear displacements 

from the equilibrium state with the generalized coordinates q 

    (34) 

Evidently, the inverse transformation also exists and is linear: 
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Due to the independence of generalized coordinates q1, … , qn , the following equality  
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holds and is obtained by substitution of  (34) into (35). 

We must impose constraints on the matrix B


 because when the molecule is translated  

(i.e. when NRRR


 ...21  ) and is rotated as a whole around any axis (i.e. when 

],[ 0

0RRi


  for an arbitrary vector ) the coordinates q do not have to be changed. It is 

easy to show that these constraints may be written as follows: 

       (37) 

i.e. they are somewhat simpler than conditions on A


  (5)  since they do not depend on atomic 

masses. Conditions (36) and (5) must completely define the matrix A


 through the known matrix 

B


 satisfying conditions (37). 



Since B


 is independent of the atomic masses (relations (35) and (37) which determine  B


 are 

purely geometrical) it may be applied more widely than A


. For different reasons, the using the 

matrix G is also more convenient than using T. 

Kinetic energy of nuclei movement can be written as scalar  
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If we use the internal coordinates { nqq ,...,1 } then 
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So, if we know the equilibrium configuration of a molecule the elements of matrix G can be 

calculated on a base of geometry relations. The formulas for calculations of B


 and G matrix 

elements are presented in textbooks on molecular vibrations. We consider an example of 

constructing matrix G  and some other matrices.  

In Cartesian coordinates matrix G has the diagonal form with reciprocal atomic masses 
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};,...,2,1{    ;                          (40)  

mi – mass of  i-th atom, i=1,2, …, N;  N is a number of atoms in a molecule. 

Matrix G is symmetrical and positively definite matrix. 

Consider the relation between matrices A and B which allows us to determine the matrix 

G directly. We shall seek for this dependence as 
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where X is an arbitrary matrix to be determined. In this case, conditions (5) immediately follow 

from (37). To determine X, substitute A into (36): 
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 where E is a unit matrix of nxn dimension. 

Substitution of A


 into (33) gives 

XXXBBXAAT   **** 1


 ,  

whence GTXBB   11*
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. So, for calculating the matrix G, we 



have the next expression *BBG
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And for calculating the matrix A


 through matrix B


  the next formula can be written 
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Since elements of matrix B


 are independent of the atomic masses (relations (37) and 

(39)) which determine B


 are purely geometrical) it may be applied more widely than A


. For 

different reasons, the use the matrix G is also more convenient than T.  

All the previous analysis was performed under the assumption that the relative 

displacements of nuclei NRR


 ,...,1  are described by n = 3N-6 (or by 3N-5 for a linear 

molecule) independent internal coordinates { nqq ,...,1 }. In certain cases the use of only 

independent coordinates is inconvenient (in particular, for the transfer of force constants to the 

other molecules, when we are dealing with linear combinations of force constants and, also, 

when we use the symmetry coordinates). So in many cases the redundant coordinates are 

preferable.  

In a case of using the redundant coordinates, there arise two main questions concerning 

a) the physical sense of matrices of kinetic and potential energy in redundant systems of 

coordinates; and 

b) the possibility of solving the problems on molecular vibrations immediately in a redundant 

coordinate system (without excluding the redundant coordinates). 

We define the force constant matrix  in redundant coordinates for the given molecule as 

matrix F for which  the quadratic form 1/2(q, Fq) is equal to the corresponding quadratic form in 

independent coordinates, if among the coordinates q1, … ,  qnf    in the quadratic form for 

molecular potential energy 
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there are only n independent coordinates and redundant coordinates are excluded. 

The number of redundancies between coordinates is equal ot m=nf-n and these 

redundancies can be written in a form  
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The symmetry of quadratic form 1/2(q, Fq) corresponds to the symmetry of the molecule 

for all (not only those allowed by conditions (42) virtual increments of coordinates. 

Note that the matrix F in the redundant coordinates is not defined uniquely. 

Symmetry properties play a significant role in the theory and calculations of molecular 

vibrations. The analysis of symmetry allows us to classify the vibrations, to determine the 

degenerate energy levels (or multiple frequencies), to clarify the activity of various vibrations in 

infrared and Raman spectra, to substantially simplify the so-called normal coordinate analysis 

(calculations of vibrational frequencies and modes), and to solve certain inverse problems of 

vibrational spectroscopy. 

Each molecule can be characterized by the set of space rearrangements transforming it 

into itself. Such rearrangements are called symmetry transformations or symmetry operations. 

Later, we shall consider the symmetry of equations and functions. Therefore, it is convenient to 

define the symmetry transformations as the corresponding coordinate transformations. For 

example, for the water molecule the symmetry transformations are 

a) rotation about the axis Oz through the angle 180 (C2), 

b) reflection in the plane Oxy (), 

c) reflection in the plane Oyz (the axis Ox is orthogonal to the plane of ( '

 ). 

We should also mention the identical transformation, which does not change the coordinates. 

This is evidently a symmetry transformation for any molecule. 

The set of all molecular symmetry operations, including the identical transformation, 

constitute the so-called symmetry point group to which the given molecule belongs. The actions 

of such sets of symmetry transformations or corresponding coordinate transformations are 

described by mathematical group theory. 

 

5. THE MATHEMATICAL FORMULATION OF THE INVERSE VIBRATIONAL   

PROBLEM. 

We consider the equilibrium configuration of the molecule which satisfies the relation 

    




U

q
 0 , 

and if we define coordinates { q1, q2, ..., qn } so that  q1 = q2 = ... = qn = 0  in the equilibrium 

configuration, the following expansion is valid:   
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where U0 is a certain constant, and the force constants  
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constitute a positive definite matrix F determining all the molecular characteristics connected 

with small vibrations. 

Mathematically, the concept of the force field may be obtained through the adiabatic 

theory of perturbations with the use of a small parameter related to the ratio of electron mass to 

the mass of nuclei, and it can be shown that in a certain approximation the nuclei may be treated 

as particles moving in the force field determined by the potential energy function (2). 

There are two main purposes for using a molecular force field: (a) to check validity of 

various model assumptions commonly used by spectroscopists for approximation of the potential 

function; (b) to predict the vibrational properties of certain molecules (including those not yet 

observed) using fundamental properties of the force field such as its isotopic invariance and the 

approximate transferability of specific force constants in a series of related compounds.  

The spectral frequencies i are the main type of experimental data on molecular 

vibrations. They are connected with the matrix of force constants F by the eigenvalue equation 

    GFL = L       (44) 

where   diag{ ,..., } 1
2 2

n  is a diagonal matrix consisting of the squares of the molecular 

normal vibrational frequencies, and G is the kinetic energy matrix in the momentum 

representation which depends only on nuclear masses and the equilibrium configuration 

(assumed to be known within specified limits of error). The matrix L characterizes the form of 

each normal vibration, i.e., the relative amplitudes of vibrations in terms of classical mechanics. 

While  (44)  is the main source of  data determining  the force constants, it is evident that 

(except for diatomic molecules) the n(n+1)/2  parameters of F cannot be found from n  

frequencies 1, ..., n. This has led, on the one hand, to attempts to use certain model 

assumptions concerning the structure of the matrix F, and, on the other hand, to introduction of 

additional experimental data. Within the approximations considered, the force field of the 

molecule is independent of the nuclear masses, and hence for the spectra of m molecular isotopic 

species we have, instead of (44), the system 

    (GiF)Li = Lii,  .     (45) 



where the subscript i = 1,2, ..., m indicates the isotopomers. Usually, the introduction of 

isotopomers leads to a limited number of independent equations in system (24), thus leaving the 

inverse problem underdetermined. Important additional information on the molecular force is 

provided by Coriolis constants  which characterize the vibrational-rotational interaction in the 

molecule. They are connected with matrix F in terms of the eigenvectors L of the problem (34): 

      
1

2M
L L* *A AM      (46) 

where  is a matrix with vector elements consisting of the Coriolis constants, M is a diagonal 

matrix consisting of the nuclear masses, M is the sum of nuclear masses of the molecule, and A 

is a matrix with transpose A* connecting the Cartesian displacements of atoms with coordinates 

q, which can be found from the equilibrium configuration of the molecule. In a similar manner 

we can write the dependencies of other measured values on the matrix F, such as the mean-

square amplitudes of the vibrations (obtained from gas-phase electron diffraction) which may be 

calculated from the eigenvalues and eigenvectors of (23). The above-mentioned experimental 

quantities (frequencies of isotopomers, Coriolis constants, mean-square amplitudes), while not so 

easily obtainable, are particularly important because their values do not depend on additional 

unknown parameters of any kind (unlike, e.g., the calculation of intensities in vibrational 

spectra). 

The mean square amplitudes of vibrations of all internuclear distances are also 

determined by molecular force field.   
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where L is the eigenvector matrix for (44),  = diag {k}, 
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and matrix H is completely determined by the equilibrium configuration; In all these calculations 

it is assumed that the nuclear masses, the equilibrium molecular configuration, and the force 

constant matrix F are known. 

We shall consider (44) - (47), or some part of them, depending on the available 

experimental data, as a single operator equation  

     AF        (48)  

where the nonlinear operator A maps the real symmetrical matrix F to the set of eigenvalues of 

(44)  (or (45)), the Coriolis constants, , (46), the mean square amplitudes, etc.. This set of data 



may be represented as a vector in the finite-dimensional space R
l
, where l is a number of known 

experimental data. Also,   we consider the matrix F as a vector in the finite-dimensional space Z, 

consisting either of the elements of the matrix F or of the quantities by means of  which this 

matrix can be parametrized.  

  F Z  R
n(n+1)/2

 (Z is a set of possible solutions) is the unknown force constant matrix 

(real and symmetrical), R
m
 represents the set of available experimental data (vibrational 

frequencies, etc.) determined within  error level: ||-||  . A is a nonlinear operator which 

maps matrix F on the .  

Note that (48) in general does not satisfy any of the conditions of the well-posedness of 

the problem considered above. 

1) Solvability. 

It is possible to shoe that, for example, system (45) (determined for different molecular 

isotopomers) is compatible only when the condition       
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is satisfied (m is the number of  isotopomers). This may be violated both by virtue of errors in 

measurement of the i, and due to inaccurate specification of the molecular geometry Gi, or, 

when exact experimental data are not available, because of the anharmonicity of the vibrations 

ignored by the operator of (48). Therefore, a matrix F reproducing the frequencies of all 

isotopomers within the limits of experimental errors does not exist. 

2) The uniqueness of the solution of the problem. 

If we know only the vibrational frequencies of one isotopomer of the molecule, (48) 

reduces to the inverse eigenvalue problem; hence, when G is not singular it follows that as 

solution of (48) we may take any matrix of the form  

   F G C CG  1 2 1 2/ * /      (50) 

where C is an arbitrary orthogonal matrix (for example it may be chosen as rotation matrix in the 

next form.  
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To choose a definite solution it is necessary to use additional information or to take into 

account some model assumptions. 

 

3) The stability of the solution with respect to the perturbations of  and A. 

An example of such instability may be easily constructed for a system of the form (45). 

Note that (48)  in general does not satisfy any of the conditions of the well-posedness of 

the problem considered above. 

This problem belongs to the class of nonlinear ill-posed problems (it does not satisfy 

any of three well-posedness conditions by Hadamard) and in the general case (except the 

diatomic molecules) may have non-unique solution or no solutions at all (incompatible problem), 

solutions may be unstable with respect to the errors in operator A and set of experimental data . 

The theory of regularization methods for nonlinear problems was developed in the last two 

decades and applied to the inverse problems of vibrational spectroscopy.  

The difficulties which arise during the force field calculations (which are related to the 

nonuniqueness of solutions and the instability of the solution with respect to the perturbations of 

experimental data) have been discussed earlier and various special model assumptions have been 

proposed based on the intuition of the investigator. The absence of stability and uniqueness of 

the solution has often led to significant differences in the force field parameters of the same 

molecule. This has caused difficulties in the comparison and transferability of the force fields in 

series of related compounds and has made the physical interpretation of the experimental data 

much more obscure.  



The molecular force field plays an important role in determining the properties of a 

molecule, in particular its vibrational spectrum. Many approximations have been proposed for 

the calculation of a complete quadratic force field and many computational programs have been 

created and used in practice. Usually, the ill-posed character of inverse vibrational problems has 

led to some degree of subjectivity, related basically to constraints imposed on the solution to 

ensure physically meaningful results. In this way various models of the molecular force fields 

have been proposed and a great number of force field matrices have been calculated for various 

series of compounds. These matrices are chosen to satisfy either experimental data or a priori 

known, but not explicitly formulated, criteria of the physically meaningful solution. 

As a result, a situation exists  (in particular,  for complicated polyatomic molecules) 

when various so-called spontaneous methods  for solving inverse problems lead to inconsistent 

force fields due to different criteria for the physical feasibility of  solutions used by various 

investigators, and to the instability (with respect to small perturbations in the input information) 

of numerical methods used to solve the inverse problem. 

It is very important in the elucidation of any arbitrariness in the calculated force constants 

to use stable solutions of the inverse vibrational problem which have some specific properties. 

What is meant by "specific properties" of the force constants or, in other words, what additional 

limitations on the values of force constants can be imposed while solving the inverse problem? 

In practice, chemists and spectroscopists often use certain model assumptions, arising 

from the classical theory of chemical structure, involving the monotonic changing of the 

physico-chemical properties in a series of related molecules and the preservation of the 

properties of separate molecular fragments in the various compounds, taking into account  

nearest surrounding. It is the transferability of the force constants which related to these 

properties.  

The most important idea of regularization theory is that every time we find that 

experimental data is insufficient for the unique and stable determination of some (or all) 

molecular parameters, we should employ some kind of external knowledge or experience. In 

some cases it is desirable to formulate these considerations as explicit additional restrictions on 

the set of possible solutions. When it is impossible, a more flexible approach is to choose the 

solution that is in a certain sense nearest to some a priori defined parameter set. This set may not 

necessarily conform to the experiment, but should be based on data complementary to the 

experiment. 

This external evidence may be derived from the general ideas (for example, molecular 

force field models, or data on similar molecular structures), or, preferably, be based on ab initio 

calculations. An inverse vibrational problem is formulated as a problem of finding the so-called 



normal solution (or normal pseudo-(quasi-)solution in the case of incompatibility of input data) 

of a nonlinear operator equation (48). 

Now we consider possible ways of the formalizing these model considerations to use 

them in the force-constant calculation. For example, model assumptions may be taken into 

account a priori by choice of a given matrix F
0
 (see below). In the framework of the so-called 

valence force field some off-diagonal elements of the matrix F may be taken to be equal to zero, 

reflecting the assumption of insignificance of some intramolecular interactions. For related 

molecules we can introduce some in-pair equalities of force constants for similar fragments, 

some elements of F may be known from preliminary calculations, etc.. Therefore, we can 

formulate the inverse vibrational problem in the following way. 

We need to find, among the set of force constant matrices satisfying (48), the matrix 

which will be the nearest to some a priori given matrix F
0 

(i.e., to find the   so-called normal 

solution). In the case of an inconsistent problem (within harmonic approximation, this may 

happen in the joint treatment of the spectra of isotopomers, or including additional experimental 

data) it is possible to find the matrix F for which the distance from AF to   is minimal, i.e., to 

find the so-called pseudosolution of the problem. When the pseudosolution is also nonunique, we 

must proceed as in the case of nonuniqueness of the solution - i.e., we choose from all possible 

pseudosolutions the one which is nearest to the given force field F
0
  (the normal pseudosolution).  

We now arrive at the following formulation of the inverse problem taking into account 

the principle formulated above for choosing the solution. Suppose, we are given  (48) and the 

operator A which maps the symmetric, and positive definite matrix F to the set of molecular 

vibrational frequencies squared (possibly including data for isotopomers of the molecule), and of 

the mean vibrational amplitudes, Coriolis constants etc., which may be taken from experiments. 

The dimension of the vector  is determined by the number of experimental data. Since the 

symmetric matrix F is determined by n(n+1)/2 elements  we can consider the unknown force 

constants as a vector of dimension n(n+1)/2. Then the operator A acts from the Euclidean space 

R
n(n+1)/2

 into the Euclidean space R
l
. In these spaces we can introduce the following norms:  

  F f ij
ij

n
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 , 

where k  > 0 are the positive weights, fij  are the elements of matrix F, k (k= 1,...l) are the 

components of . 

The operator A is continuous for all problems considered. However, (48) may have 

nonunique solutions, or no solution at all, due to the anharmonicity of vibrational frequencies. 



Suppose, we are given the matrix F
0
 (vector of dimension n(n+1)/2). It is necessary to find the 

normal pseudosolution of (48):  

that is, we find an element  F =Fn  for which min ||F - F
0
||  is reached provided that ||AF 

- || = ,  where   


inf
F D

AF   and D is the closed set of a priori constraints  on  the values 

of the force constants. If no constraints are imposed, then D = R
n(n+1)/2

. 

The element F
0
 should be specified from a priori considerations of the possible solutions, 

including both the approximate quantum mechanical calculations and other ideas (for example, 

the transferability of the force constants among similar fragments in a series of related 

compounds). 

The desired solution is a matrix F

  Z that reproduces experimental data within given 

error level and is the nearest in the Euclidean metrics to some given matrix F
0
. All necessary 

model assumptions (explicit and implicit) concerning the form of force field may be taken into 

account by the choice of some given a priori matrix of force constants F
0
 and a pre-assigned set 

D of a priori constraints on values of the force constants. This set defines a form of matrix F in 

the framework of the desired force field model (i.e., with specified zero elements, equality of 

some force constants, etc.). If no a priori data constrains the form of solution, then D coincides 

with the set Z.  

Let us denote the solution (vector) to be found as Fn, if this vector is nonunique then a 

set of such vectors will be denoted as {Fn }. It is easy to see that if (48)  is solvable then  = 0, 

and it remains to find the solution of (48)  which is the nearest to the given vector F
0
.  But we do 

not know the exact form of either the vector  or operator A (the matrix G or matrices Gi). We 

only have the vector , determined from experimental data such that  ||  ||   (where  > 

0 is the experimental error) and the operator Ah approximates the operator A, h  0 is a parameter 

characterizing the proximity of Ah  to A. The uncertainty in operator A is related to errors of 

determination of the matrix G (or Gi) calculated using experimental data on the geometrical 

parameters of the equilibrium configuration quoted with errors. Therefore, the problem of the 

solution of (48) arises when we do not know exact forms of  A and , but only their 

approximations  Ah  ,   , and their errors (h, ) and it is necessary to find the vector Fh, 

approximating the exact solution Fn.  The difficulties in solving this problem are related to its 

ill-posed character. 

The modern theory of solving ill-posed problems was founded by A.N.Tikhonov and 

developed by many. When one designs stable methods for solving ill-posed problems there 

should be the understanding that ill-posed problems are generally underdetermined. To solve 



such problems one has to use additional information and formulate the criteria for choosing 

approximate solutions. If such criteria are formulated and mathematically formalized, it is 

possible to construct stable methods of solving ill-posed problems - so-called regularizing 

algorithms. We shall attempt to explain what the construction of a regularizing algorithm means, 

beginning with the example of solving a system of linear algebraic equations. 

6. WHAT IS THE REGULARIZING ALGORITHM? 

We have found that the inverse vibrational problem is ill-posed, and have formulated a 

criterion for choosing the solution from among the set of possibilities - the normal 

pseudosolution (in the general case). Now the problem arises of constructing a stable numerical 

method (regularizing algorithm) for the given problem. 

For clearer analysis of the difficulties which arise while solving nonlinear problems such 

as (48) , we start with the simpler problem of solving a system of two linear algebraic equations. 

Using this problem we shall find out what the words "to find the normal solution 

(pseudosolution)" mean. 

Let us consider the system 

    
x y

x y

 

 





1

1.
                                               

 The normal solution for this system is the nearest one to the center of coordinates. It is 

easy to find that the normal solution is (1/2 , 1/2).  

This system may be written in standard form 

    Az u        (51) 

where u is a given vector, z is the vector sought  and  A  is the matrix 

  A = {aij }, i = 1,...,m, j = 1,...,n. 

That is, for system (51) 

  A z u n m








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1

1
2, , , .                                      

The problem of searching for the normal solution is formulated as the problem of 

minimizing z on the set of solutions 



   { z:  Az = u }. 

In 1801-1806 Gauss and Legendre independently proposed the least-squares method for 

solving systems of linear equations. Instead of solving (51) it is possible to find the minimum of 

the function (z) =  A z  u 
2
.  Such a problem is always solvable. If min(z) =  = 0  then the 

vector z on which the minimum  is reached  is  obviously the solution of  (51) ,  and,  conversely,  

any solution of  (51)  is  the minimum of (z)  with  = 0. To find the minimum of (z) it is 

necessary to calculate the derivatives of (z) with respect  to  the components of z, and to equate 

them to zero. This yields the system of   so-called normal equations: 

   A* Az = A* u      (52) 

where A* is the adjoint of the matrix A. This system has a solution for any  u. 

For system (51)  

 A A A A A u* * *, , 
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and we obtain the system 

    

2 2 2

2 2 2

x y

x y

 
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

 ,

  

which is equivalent to system (51).  

The normal solution of the system (51) may be found using the method of 

pseudoinversion of Moore-Penrose, where the pseudoinverse matrix A is determined as 

 A A A E A

 

 lim



0

1( ) .* *
 

Let us calculate the value of this limit for system (51). First we find that 

  det (A*A + E) =  (4+). 

Next,  
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and hence 
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The normal solution of the system (51) is 

   z A u A 
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So, in solving the system of linear equations with the exactly given matrix A it is possible 

to use the pseudoinversion method to obtain the normal solution. 

Note that (z) has only global minimum. The case is possible when  > 0 and system 

(51) has no solutions. Then it is necessary to formulate the problem of searching for the solution 

in terms of the least-squares method. The problem of finding the pseudosolution uses the vector 

z, on which the minimum of (z) is reached:  

  z Az u A Az A u   argmin
2 * * . 

If this equation has a nonunique solution then the problem is formulated as the problem 

of finding the normal pseudosolution, i.e. the pseudosolution nearest to the origin of the 

coordinate system. The problem of finding the normal pseudosolution may be written as to find  

min z , while  Az - u  =  = min Az - u , or (equivalently) A
*
Az = A

*
u. This problem may be 

solved (if we know the matrix A exactly) by the pseudoinversion method yielding z = A+u. Note 

that, if det(A*A)  0 then   A+=(A*A)-1A*. If system (51) has a unique solution then this 

solution is the normal pseudosolution, and the pseudoinverse matrix coincides with the inverse 

A+=A-1. 

Let us consider the system (51) with the same matrix A and the right hand side 

    u 


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1
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.                                                           



This system has no solutions but it is easy to see that the normal equations (52)  for the 

system are the same as we considered above. So the normal pseudosolution of this system is 

z 




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


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
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1
2

1
2
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and may be found as above. 

Were these the only difficulties, our problems would be solved and for construction of 

the normal pseudosolution of system (51) it would be sufficient to use the pseudoinversion 

method. If the system has a solution then the normal solution would be reached, if the solution 

were unique then this is the solution that would be found. However, the pseudoinversion has 

very unpleasant properties which were discovered soon after the method was proposed. 

It was found that the pseudoinversion method is unstable with regard to errors in matrix 

A. What would happen if the coefficients of x and y (i.e., the matrix A) were not known exactly, 

but only with some errors? This means that instead of the exact matrix A the matrix Ah with 

elements {aij+hij} is known, hij being the errors in the entries of the matrix Ah. Consider system 

(51). Suppose, for example, 

   A hh 










  

1 1

1 1 
, .22 0    

Then Ah is a non-singular matrix and the corresponding system of equations is 
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For   0 the unique solution of (53) is 
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For this square nonsingular matrix  A Ah h
  1 ,  so the pseudoinversion method gives the same 

solution, and this solution does not tend to the normal solution of the exact system 
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when h tends to zero. It is clear that the negligible deviation in one of the system coefficients of 

(51) has led to a completely different normal solution. Thus, the problem of finding the normal 

solution (or pseudosolution) of  the perturbed system is unstable with regard to errors in the 

matrix A, and such errors naturally occur if the matrix A is obtained from experiments or is 

calculated on a computer. 

This is an example of an ill-posed problem. The problem of constructing a stable 

algorithm for finding the normal solution of the perturbed system (53) arises, such an algorithm 

must guarantee the convergence of the solutions obtained to the exact normal solution of the 

unperturbed system (51) when errors tend to zero. Algorithms of this type can be constructed by 

means of the Tikhonov regularization method. Let us write the problem in the following form: 

    Ah z = u,       (54) 

   A - Ah  h, u - u  ,           

where A and u are the exact matrix and vector of the right-hand part, and h 0, >0 are the errors. 

To simplify notation, designate  = (h, ). We wish to construct a stable method for solving 

system (54) using approximate data Ah, u and , that is, we wish to find an approximate 

solution z , such that zzn when   0, wherezn is the exact normal solution 

(pseudosolution) of system (51). Such stable method is called a regularizing algorithm. In 

general one can determine the regularizing algorithm in the following way: R(Ah,u,h,) is the 

regularizing algorithm (or regularizing operator) for solving (51) if R is defined for any vector u 

, matrix Ah , nonnegative numbers , h , and 

   z R( A u h zh
o

n 


 


, , , ) .      (55) 

where (Ah,u,h,) represents the minimal necessary information for the construction of the 

regularizing algorithm. For finite dimensional problems it is possible to neglect the error, but 

construction of regularizing algorithms without knowledge of h is impossible. If some additional 

information about the solution is known it is useful to include it in the formulation of the 

problem, and this will generate another regularizing algorithm, or even the problem could 

become well-posed (in this case it could be solved without knowledge of errors , h). For 

example, if from a priori considerations the rank of the matrix A or A+ (that is, the number of 

non-zero eigenvalues of the matrix A+ or, equivalently, the singular values of the matrix A) is 



known, this knowledge may be used for the construction of the regularizing algorithm. In 

practice the rank of A is usually unknown.  

We shall proceed in the following way. First we give the description of the whole set of 

approximate solutions of (54) and then formulate the criteria for selecting the definite 

approximate solution from this set. Consider first the case when  h = 0  (this means that the 

matrix A is given exactly) and  = 0 (which means that the system is consistent). Then the set of 

approximate solutions of (54) can be determined as a set of vectors for which the inequality   

Ahz  u   is satisfied.  Let us designate this set as   Z.  (Obviously zn Z,wherezn  is 

the exact normal solution of (54)). If we choose from this set a vector z , deviating minimally 

from zero, it can be proved that z zn  when        0.  In the general case for h  0 and   

0, the determination of the set of approximate solutions is somewhat more complicated:  z  Z  

if z is compatible with the inequality 

   A z u h zh      ~ ,         (56) 

where ~  is an upper estimate for , such that ~   , ~    when     0. ~  may be 

calculated, for example, in the following way : 

    ~ .     min h z A z uh  

Now a new problem emerges: find z Z  such that 

   z z z Z  argmin ,          (57) 

that is, choose a vector which is nearest to zero and satisfies the inequality  (56). Such a vector 

exists and is unique. The choice of the vector z  in this way is called the generalized 

discrepancy method. It may be proved that z zn   when  0 . 

Consider another way of stable constructing the normal pseudosolution of (54). The 

following function is the so-called Tikhonov's functional: 

 M z A z u zh


   
2 2

          (58) 

(>0 is the regularization parameter). The first part of  M z
 is the discrepancy which shows 

how well the vector satisfies the equation A z uh   . The second part estimates the deviation 

of solution from zero (the so-called “stabilizer” of Tikhonov's functional). Let us consider the 



extreme problem of finding min  M z . The solution of this problem exists for any >0 and is 

unique.  We shall denote it as z
 . 

To find the extremum z
  known methods for the minimization of the quadratic 

functionals in finite-dimensional spaces may be used, for example, the method of conjugate 

gradients. Or we can calculate the gradient of  M z :  

      M z A A z z A uh h h




  2 * *

     (59) 

and get an equation for the extreme z
  as a stationary point of the functional  M z : 

      M z ' , 0                  

or, equivalently, 

   A A E z A uh h h
* * .            (60) 

The solution of this equation is 

    z A A E A uh h h


 
* * .

1
 

This is similar to the pseudoinversion method but  is not decreased to zero in an 

arbitrary manner, its value must be connected with h and . Taking into account the specific 

character of the matrix  A A E*    (it is symmetric and positive definite) effective numerical 

methods may be used to invert it. It is necessary to make value of the parameter  dependent on 

the errors in a way that such that z zn
   when 0. This may be done in various ways, we 

shall consider only one of them. For the extremals of functional (58) we shall define the function  

      


 ( ) ~ ( ).    A z u h zh     (61) 

This function is called the generalized. Let 

   u   ~ .                 (62) 

In the opposite case, z , which is the approximate normal pseudosolution of (51), must 

naturally be put equal to zero. 



It turns out that      is continuous when  > 0, increases monotonically, and its 

values fill the interval       , ~u . Therefore the equation  

        0        (63) 

has a unique root. Let us call this root  ( ) . Well-known methods for solving such 

transcendental equations with monotone continuous functions of one variable may be used to 

find this root, (for example, the method of bisection, the method of the golden section or other 

methods).  

It can be proved that 
 

z zn
 

  when   0, so that the constructed algorithm is a 

regularizing in the sense of Tikhonov. Such a strategy for choosing the parameter of 

regularization is called the generalized discrepancy principle.  If we recall the generalized 

discrepancy method (57), it turns out that the solution of the problem (57), i.e., z , is equal to 

z
 ( ) , which is the extreme of Tikhonov's functional with the value of parameter  chosen by 

means of the generalized discrepancy principle. That is, the generalized discrepancy method and 

the generalized discrepancy principle are equivalent. 

 

7. NONLINEAR ILL-POSED PROBLEMS 

In this section we consider nonlinear ill-posed problems in the finite-dimensional (for 

simplicity) case. We begin with the following example the main problem for us is an operator 

equation 

   Az u z D Z u U   , , ,      (64) 

where D is a set of constraints,  Z and U are metric spaces. Let D = Z = U = R, where R is the 

space of real numbers with the norm  z  = | z |. Fix positive numbers 0, z0, u0 and define the 

continuous nonlinear operator A:  ZU: 
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Consider (64) with the data (A, u). It has the unique solution z z 0 . We introduce Tikhonov's 

functional 

    M a z  Az u   a  z ,  z D Z,  a     2 2 0,          (66) 

and consider the variational problem: for fixed >0,  find an element z D   such that 

      M z M z z D   inf : .       (67) 

Then problem (67)  with data (A, u0) from (65)has the solution  

  z ={z0  for 0 <  < 0, [0, z0] for  = 0,  0  for  > 0}. 

Hence, the discrepancy  

   
 

 
  







Az u
u0

0

0 0

0        for 0 < < ;

 for .
 

and the equation 

      ( )         (68) 

for choosing the regularization parameter    by the discrepancy principle has no solution in the 

ordinary sense for any , satisfying 0 <  < u0.  

This example shows that the discrepancy principle generally gives no possibility of 

choosing the value of the regularization parameter for nonlinear problems. Similar difficulties 

arise in other strategies involving an a posteriori choice of the regularization parameter. These 

difficulties are connected with the nonuniqueness of the solution of (67) for the nonlinear case. 

This nonuniqueness leads to another difficulty. Let us assume that the regularization parameter 

    0 is chosen and problem (67) has more than one minimizer for     . The question 

is whether it is possible to take an arbitrary element 
 

z
 

 as an approximate solution or if a 

special choice of such an element is needed. Our example shows that if we choose     as a 

solution of  (68) in general sense, i.e., as a "jump" point of a monotone function      over  , 

then the "unsuccessful" choice of  
   

z z   : 0 ,  from the set of the extremals 

corresponding to this () can result in the approximate solutions 
 

z 
 not converging to the 



exact solution z z 0 . Thus, the algorithm for Tikhonov's regularization method of solving 

nonlinear problem (64) should in general contain along with the rule for choosing the parameter 

    also a rule for selecting 
 

z   from the set of solutions of (67) for     . 

Let us give the general formulation of Tikhonov's scheme of constructing a regularizing 

algorithm for solving the main problem: for the operator (64) on D find  z D*   for which 

             

         Az u Az u z D* , ,  inf :         (69) 

(  is the distance in the metric space U). We call such a z
*

 a quasisolution for problem (64). In 

the case D = Z problem (69) gives a pseudosolution of (64). If the measure of incompatibility is 

equal to zero, then the solutions of (69) are the solutions of (64) on the set D. The quasisolution 

problem (69) may be ill-posed. Namely, problem (69) may not be solvable, and if a solution of 

(69) exists, it may be nonunique or unstable (with respect to perturbations of the data (A, u)) in 

the metric of Z. 

We assume that to some element u u  there corresponds a nonempty set Z
*
  D of 

quasisolutions and that Z
*
 may consist of more than one element. Furthermore, we suppose that a 

functional (z) is defined on D and bounded below: 

       ( ) inf  : 0z z z D   * .   

The -optimal quasisolution problem for (64) is as follows: find z Z *
such that  

         z z z Z  inf  : * .     (70) 

We denote the set of -optimal quasisolutions of (64) by  Z . If D = Z, then Z  is the set 

of the -optimal pseudosolutions of (64). For simplicity we use only the term "pseudosolution" 

below. 

We suppose that, instead of the unknown exact data  A u,  , we are given approximate 

data  A uh ,   which satisfy the following conditions: 

       u U u u A Az A z h z z Dh h         ,    , , , , , .A   

Here the function  represents the known measure of approximation of the precise operator A by 

the approximate operator Ah , and  Ah A , a class of admissible operators. We are given also 



numerical characterizations h,   0 of the "closeness" of (Ah, u) to (A, u).  The  main  problem 

is  to construct  from  the   approximate data  (Ah, u ,h ) in (64) an element 

 z z A u h Dh    , , ,  which converges to a member of the set Z  of -optimal solutions as 

   h,  0 .  

Let us formulate our basic assumptions: 

1) The class A consists of the operators A continuous from D to U. 

2) The functional  (z) is lower semicontinuous (for example, continuous) on D: 

       


z D z D z z z zn n
n

n0 0 0,  :  lim inf ( ) ( )  . 

 3) If K is an arbitrary number such that K * , then the set     

     K z D z K  : ( )    

is compact in Z. 

 4) The measure of approximation ( , )h   is assumed to be defined for   h  0, *  , 

to depend continuously on all its arguments, to be monotonically increasing with respect to   

for any h > 0, and to satisfy the equality(0 ) 0   , , *     .  

Conditions 1) - 3) guarantee that Z  is nonempty. Tikhonov's scheme for constructing of 

a regularizing algorithm is based on using the smoothing functional  

        M z f A z u z z Dh


     , , ,   0      (71) 

in the conditional extreme problem (67). Here f(x) is an auxiliary function. A common choice is 

f x x mm( ) ,  2 . 

We denote the set of extremals of (67) which correspond to a given  > 0 by Z
. Again, 

conditions 1) - 3) imply that Z
is nonempty. The scheme of constructing an approximation to 

the set Z  includes: (i) the choice of the regularization parameter       A u hh , , , , (ii) 

the specification of the set Z
  corresponding to  , and a special selection of an element 

z
  in this set. We take the element z

 chosen in this way as a solution of the main problem. 



Procedures (i), (ii) must be accomplished so as to guarantee the convergence  z Z
   as  

 0 . Thus, Tikhonov regularizing algorithms differ from each other by the method of 

choosing    and by the method of selecting z
 . Sometimes the latter procedure is not 

necessary, and one can take an arbitrary element  z
  from Z


 as an approximate solution. 

In this case we say that the corresponding Tikhonov algorithm is simple. 

It is in this way that the generalized analogs of a posteriori parameter choice strategies 

are used. For their formulations we define some auxiliary functions and functionals for  0 , 

and z Z  : 

   
          

      




          


( )

, ,

 






   










( ),  ( ) = f  ,   ,

f  ,

z Ahz u I z

M z h z

 

                  z  ,         (72)

 
                     









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const 0 1

   

Here             inf  :A z u h z z Dh , ,  is a generalized measure of 

incompatibility for nonlinear problems having the properties:      ,   as   0 . 

All the functions (72) (except ) are generally many-valued. They have the following properties. 

Lemma . If the functions     , , , ,  are single-valued and continuous everywhere for 

 > 0 except perhaps for a countable set of their common points of discontinuity of the first 

kind, which are points of multiple-valuedness, then there exists at least two elements z


and 

z


in the set  Z
  such that 

                          0 ,   0 ,   0  z z z  

The functions   , ,  are monotonically nondecreasing and  ,  are nonincreasing. The function 

  is single-valued, continuous, and nondecreasing. 

The generalized discrepancy principle (GDP) for nonlinear problems consists of the 

following steps.  



(i) The choice of the regularization parameter as a generalized solution   > 0 of the 

equation 

        0       (73) 

Here and afterwards we say that  is the generalized solution of (73) for a monotone function   

if   is the ordinary solution or if is the "jump"-point of this function over 0. 

(ii) An approximate solution z
  from the set Z

  is selected by means of the 

following rule: let q >1 and C>1 be fixed constants, 


1 q  and   2  q  are auxiliary 

regularization parameters, and let  z1   and  z2  be extremals of (67)  for   1,2 . If the 

inequality 

         I z C z C f 


2 1   1       (74) 

holds for  z1  and  z2 , then any elements  z Z 1  , subject to the condition 

  z
  0  can be taken as the approximate solution. For instance we can take z z

    . 

But if 

          z C z C f 


2 1  1     (75) 

then we choose z


 so as to have   z
  0 , for example,  z z

 
  .  

Note that we do not need any selection rule if    is an ordinary solution of (73). In this 

case the equality     z


   0  holds, and an arbitrary element  z Z
   can be 

taken as an approximate solution.  

Theorem  

 Suppose that for any quasisolution  z D*   of (64) the inequality  

         z z z D* *  inf :                  

holds. Then (a) (73) has a positive generalized solution, (b) for any sequence    n n nh ,  

such that  n  0  as n , the corresponding sequence  zn  of approximate solutions, 

which is found by GDP has the following properties:  z Z zn
n ,    as n . 



In many practical cases it is very convenient to take    z z
r

  (r is a constant, r 

>1). If it is known in addition that (64) has a solution on D, then the value    can be omitted.  

It can be shown that the GDP in linear and nonlinear cases has a number of optimal.  

 

8. REGULARIZING ALGORITHMS FOR SOLVING THE INVERSE VIBRATIONAL 

PROBLEM 

The inverse vibrational problem under investigation is nonlinear. Let us consider again 

(48) in the standard form 

  AF F R Rn(n )/ l   , , .1 2
         (76)   

The existence of the normal (relative to a given a priori estimate F
0 

)  pseudosolution Fn   

of the exact problem (76) may be guaranteed if the operator A includes the operator of the direct 

vibrational problem for a single molecule. The uniqueness of Fn  cannot be guaranteed. 

How may the error of the approximate operator Ah be estimated? The estimation 

A A hh   is impossible because the nonlinear operators have no norm. It is obvious that for 

the operator of the inverse vibrational problem this error is related to errors of the G matrix. It is 

possible to obtain an estimate in the form  

      AF A F h Fh   , ,         

where   is a known continuous function, which approaches 0 as the errors of the equilibrium 

geometry of the molecule decrease to zero. In particular, the estimates may be obtained in the 

form  

           h F h F h F h A Fh, , ; , .     

The error in the right part of (74) is determined as previously. 

We arrive to the following formulation of the inverse problem. 

Problem I. Suppose we are given (76) where F D Z U  , ,  Z and U  are finite-

dimensional spaces, D  is a closed set of a priori constraints of the problem, and A  is a nonlinear 

operator continuous in D. It is required to find an approximate solution of  (74)  when  instead of  

A and  ,  we are given their approximations  Ah and   such that 



       , ,AF A F h Fh   for F  D, here  (h, F) is a known continuous function, 

which approaches zero as h0  uniformly for all   F D S R  0, , where  S R0,  is a closed  

ball  with center at F = 0 and an arbitrary radius R. The error in specifying the operator A  

involves an error in  determining the  equilibrium configuration of the molecule, the parameters 

of which  can be found  experimentally. Note that Problem I satisfies none of the conditions of 

correctness of the problem.  

We shall consider now the problem of constructing a normal pseudosolution of Problem I 

with exact right side and operator. 

Problem II. It is required to obtain 

F F F F F D AFn     argmin  ,    :    ,    ,0    

 where     inf ,AF F D . 

The element F Z0   should be specified from a priori requirements on the solution, 

using both approximate quantum mechanical calculations and other ideas (for example, the 

transferability of the force constants to similar fragments of molecules).  

In the case when a unique solution of (74) exists, it is clear that its normal pseudosolution 

is identical with the solution itself. Taking all the above mentioned into account we can 

formulate the following problem. 

Problem III. Suppose we are given (74),  it is required from the  approximate data 

 A hh , , ,   to obtain approximations F D    to  the  solution Fn  of  Problem II such that  

    F Fn


0

 

i.e., the algorithm for finding F should be Tikhonov regularizing.  

 Now we shall consider the simplest formulation of Problem I.  

Problem I'. The vibrational spectrum of a single molecule is known, and in (74)  the 

operator A corresponds to the vector F Rn(n 1 2)/
  which is made up of the elements of the 

symmetric matrix F of order n,  the ordered set of eigenvalues of the matrix GF. We shall use the 

ordered set of squares of the molecular vibrational frequencies as the right-hand side R l
. 

Problem II'. It is required to find the normal solution 



   F F F F F AFn    argmin  :0 , ,  

since Problem I is always solvable, and, furthermore, solutions are nonunique (apart from the 

case when n = 1 ). 

Since the operator A in (74) is completely defined by the specification of the matrix G, 

we shall estimate the deviation of the approximately specified operator Ah (corresponding to 

certain G ) from the exact operator A (corresponding to G) by the error in specifying matrix G. 

We suppose that in a certain matrix norm G G   .  

In the space Rl  of the right-hand sides we shall introduce the Euclidean norm with 

positive weights, while in Rn(n1 2)/  we use the Euclidean norm. Suppose that instead of the 

accurate value of the right-hand side  we specify  , such that     . 

The following theorems on the stability of Problems  I’ and II’  hold. 

Theorem 1. Problem I’  is stable in the Hausdorff metric with respect to the perturbations 

of the operator and the right-hand side. 

Here the Hausdorf distance (metrics), (A,B), is determined in the following way: for any 

closed set A and B in normed space 

  ( , ) sup inf sup inf .A B x y x y
x A y B y A x B

   
   

 

Theorem 2. If Problem II’  has a unique solution, then it is stable to perturbations of the 

operator and the right-hand side. 

Most existing methods of solving inverse problems in vibrational spectroscopy are 

intended for (44) and (45), i.e., for the cases when only the frequencies of the vibrations of the 

molecules are used as experimental data. As regards the inverse vibrational problem for one 

molecule, i.e., solutions of (44), it follows from (50) that the choice of the unique solution from 

their set corresponds to the choice of a certain orthogonal matrix C. Such selection can be made 

from a priori considerations (for example, we can use as C the unit matrix or the matrix of 

eigenvectors of G). This approach suffers from the following drawbacks: 

(a) it is impossible to take into account the a priori limitations imposed on the elements 

of the matrix  F, 



(b) the results of the calculations are almost never transferable to isotopic varieties of the 

molecule. 

The least-squares method which consists of minimizing  A Fh  
2

 on a set of a priori 

constraints is the one most often encountered. However, in the view of the ill-posed nature of the 

problem, this method cannot be applied directly to solving problems with approximate data. 

Rather, the method must be regularized by taking into account the possible inconsistency of the 

problem and also the nonuniqueness of its solutions. If we attempt to find the normal 

pseudosolutions (with respect to a certain F
0
 ) we arrive at the formulation of the problem 

described above.  

What regularizing algorithms can be proposed for finding a normal pseudosolution? One 

of them (the generalized discrepancy principle) we described above. Many other approaches one 

can find in different publications. We have also proposed a modification of the generalized 

discrepancy principle based on the possibility of estimating the error of the operator in the form  

   AF A F h A F hh h  , ,1              (77) 

which corresponds to specification of the relative error AF and is a more convenient estimate for 

the problem considered than the monotone function  . 

Suppose  F


  is an extremum (possibly nonunique) of Tikhonov's functional 

   M F A F F Fh


    
2 0 2

       (78) 

in the set D. The existence of an extreme can be proved. We shall introduce the function      

         


    


 A F
h

k hh  
1

1
       

where k > 1 is a constant and 

        


inf
F D

h hA F h A F     

If the condition 

 A F
h

k hh
0  


 







    
1

1
        (79) 



is satisfied, then the equation     0  has a generalized solution    0  (i.e.,   is such  

that     0  when       ; 0  when   ).  If   is a point of continuity of  

   ,  we have      0 . This assertion follows from the monotonicity of     and the 

limit relations (as  0  and    ). 

We shall formulate the algorithm for finding approximations to the normal 

pseudosolutions of (76). If condition (79) is not satisfied, we take F F  0  as an approximate 

solution, in the contrary case we find    0  (the generalized solution of the equation  

    0), and assume F F
 . If the extreme of the functional (78) is non-unique, we 

choose the one for which  

       A F
h

k hh


    


  
1

1
  . 

 

Theorem 3. The algorithm formulated above is Tikhonov regularizing.  

For versions of  Problem I  in which the estimate of the error of the operator cannot be 

written in the form (77),  but the requirements of  Problem I are satisfied we can use the 

following version of the generalized discrepancy method. 

Problem IV. It is required to obtain  

 
    

inf

 :    

F F

F F F D A F h F Ah h



      

0 ,

, ,  ,F     
 

 where the estimate of the measure of incompatibility of the exact problem from above is 

    , .      


inf
F D

hA F h F  

Lemma 1. Suppose the conditions of Problem I are satisfied. 

Then    , and     


inf
F D

AF   as  0 . 

Lemma 2. Problem IV is solvable for any  U  such that      and for a 

continuous operator A such that  A F AF h Fh    ,  . 



The proof of this lemma relies on the fact that for all  > 0, the set F  is nonempty  

(since  Fn F ), closed and bounded.  

Theorem 4. The algorithm defined by the extremal Problem IV, is Tikhonov regularizing 

for Problem I. 

 

9. CONSTRAINTS ON THE VALUES OF FORCE CONSTANTS BASED ON 

QUANTUM MECHANICAL CALCULATIONS.  

In the Tikhonov’s regularizing procedure, one can increase the stability and accuracy of 

the calculated solution F

 by using  

a) an extended set of experimental data (including, e.g., Coriolis constants, mean square 

amplitudes, frequencies of isotopomers or related compounds, etc.),  

b) an improved choice of the stabilizer matrix F
0
,  

c) an improved choice of the constraint set D.  

As a particularly effective choice of stabilizer, we have proposed to use an ab initio 

quantum mechanical F
0 

matrix in the regularizing procedure. This leads to the concept of 

regularized quantum mechanical force field (RQM FF), defined as the force constant matrix that 

is nearest to a corresponding quantum mechanical matrix F
0
 and reproduces experimental 

frequencies within given error level. 

The correct choice of constraint set D is also extremely important. Physically stipulated 

limitations may either decrease the range of acceptable matrices F, or provide criteria for 

selecting a concrete solution from a set of tolerable ones. An incorrect choice of constraints may 

lead to increasing incompatibility of the inverse problem, eventually resulting in a 

pseudosolution having no physical meaning. A set of a priori constraints may arise from several 

types of limitations on force constant values, e.g. : 

1. some force constants may be stipulated on a priori grounds to be a zero, 

2. some force constants may be stipulated to satisfy inequalities aij fij bij , where aij, bij are 

certain known values, 

3. some force constants may be stipulated to be equal in a series of related molecules (or 

conformers), 

4. the final solution may be stipulated to conform to Pulay’s scaled force constant matrix, which 

may also be considered as a kind of constraint.  



During the last 30 years numerous attempts were undertaken in the development of 

quantum mechanical methods for the evaluation of molecular structure and molecular dynamics 

of polyatomic molecules directly from Schrodinger’s equation. The use of very restrictive 

assumptions was (and still is) necessary to make such calculations computationally realizable. At 

present, direct calculations of vibrational spectra by quantum mechanical calculations at different 

levels of theory are very important and widely used for the interpretation of experimental data, 

especially in case of large molecules.  

Among different approaches, the Hartree-Fock (HF) level calculations are routine and 

available even for very large (consisting of up to hundreds of atoms) systems. But the quality of 

these calculations is insufficient for the direct comparison of theoretical vibrational frequencies 

with experimental ones. As a rule, the HF frequencies are overestimated (up to 15%), and these 

errors have a systematic character for the related compounds. The wide use of quantum 

mechanical calculations of vibrational spectra and harmonic force fields of polyatomic molecules 

induced the necessity of making empirical corrections to theoretical data for compatibility with 

experiment. The most popular approach is the so-called scaling procedure proposed by P. Pulay 

where the disagreement between experimental and theoretical frequencies was eliminated by 

introducing a finite (not very large) number of scaling factors. This approach also can be 

formulated in a form of a priori constraints mentioned above as type 4. 

In this approach we can specify the set D as: D = {F: F = BF
0
B}, B = diag{1,...,n} 

(where i are the scaling parameters).  

Though this scaling procedure (mathematically, it is imposing rather strict limitations 

on the molecular force field) often does not provide enough freedom to eliminate all 

discrepancies between calculated and observed data, it has certain advantages that follow from 

the comparatively small number of adjustable parameters and, consequently, moderate 

computational resources required to perform force-field refinement. Indeed, it is very attractive 

to find a limited number of scaling factors for a series of model molecules  (assuming their 

transferability), and use them for correction of the quantum mechanical force constants of more 

complicated molecular systems. The most popular numerical procedure for calculation 

(optimization) of scaling factors is the least-squares procedure, but there are a few publications 

indicating at the non-convergency and instability of this numerical procedure while solving an 

inverse scaling problem. It is explained by the impossibility of using the traditional numerical 

methods for solving the nonlinear ill-posed problems.  



The following strict mathematical formulation of the inverse scaling problem has been 

proposed: the problem of finding scaling factors on the base of experimental data is treated as an 

operator equation similar to (4):  

 )(AF        (80) 

where  are scaling factors. Let the following norms in the Euclidean space be introduced: 

   , 

where k > 0 are certain positive weights, fij are the elements of matrix F,  k (k = 1, ..., m) are 

the components of . 

Since problem (5) is also ill-posed, we have to regularize it. We formulate the problem 

as a requirement to find a solution of (80) , ,nF , that is nearest (by Euclidean norm) to the 

quantum mechanical matrix F
0
, satisfies experimental data within a given error level   (

   ||))((|| FA ) and has a special form proposed by Pulay. If we consider this problem 

taking into account its possible incompatibility (within harmonic model), we come to the 

following formulation: 

to find 

0

, minarg FFFn   

where 

    AFBFBFFDFFF ,:: 21021
.   (81) 

Here B is a diagonal matrix of scaling factors I, and  is a measure of incompatibility of 

the problem. It may arise due to the possible anharmonicity of experimental frequencies or the 

crudeness of the chosen model. 

Finding such a solution may be provided by minimization of the Tikhonov functional 

  (82) 

where F = F(), and regularization parameter  is chosen in accordance with the generalized 

discrepancy principle.  

As a rule, the assumed limitations on the values of force constants of polyatomic 

molecules cannot be strictly proved. Nevertheless, numerical quantum mechanical results on 
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molecular force fields can provide useful guidance in choosing realistic force field models for 

different types of molecules. 

The simplicity of the scaling procedure made it extremely popular in recent years. It has 

been shown that for many molecular fragments scale factors (within a given level of quantum-

mechanical method) are approximately constant in a wide range of similar molecules. Force 

constant scaling factors have been obtained for different sets of coordinates and quantum-

mechanical methods, which in most cases allow to approximate experimental frequencies with a 

reasonable degree of accuracy.  

 However, the regularized scaling procedure has initially been suggested for the force 

fields defined in the internal or symmetry (local symmetry) coordinate systems. In the course of 

spectroscopic and structural research, introduction of the complete system of internal coordinates 

is the most tedious and time-consuming procedure, especially for the large molecular systems. 

From quantum chemistry we usually obtain force constant matrix in Cartesian coordinates. 

Therefore we have proposed the procedure to scale ab initio force field matrix in Cartesian 

coordinates which allows to avoid introducing internal coordinates.  

Within this approach scaling is still given by (81), however, we are not assuming the 

matrix B to be diagonal. Force field matrix in Cartesian coordinates is not automatically 

independent of the molecular position and orientation as in a case of using internal coordinates. 

Physically meaningful force constant matrix should therefore satisfy a number of constraints that 

would eliminate translational and vibrational degrees of freedom in the expression for the 

potential energy.  

Let the force field matrix in Cartesian coordinates is represented as an array of 3x3 

submatrices corresponding to each atom: 
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where N is the number of atoms in a molecule. Independence of potential energy of the 

transltions and rotation of a molecule as a whole leads to the following requirements: 
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where 3x3 submatrices Vi are defined as 



























0

0

0

00

00

00

ii

ii

ii

i

XY

XZ

YZ

V , 

and 
000 ,, iii ZYX  are Cartesian components of the i-th atom equilibrium position.  

Imposing constraints (84) reduces the rank of matrix F to 3N-6 (or 3N-5 for linear 

molecules), thus leaving only vibrational degrees of freedom. 

When scaling procedure (81) is applied to the matrix F in Cartesian coordinates, we may 

assume that a priori matrix F
0
 satisfies the requirements (84). However, this does not necessarily 

mean that the scaled matrix also satisfies these requirements. To ensure that scaled matrix also 

contains only vibrational degrees of freedom, the scale matrix B should also satisfy certain 

conditions: 

1) Matrix B similarly to force field matrix in Cartesian coordinates (4) consists of the 33  unit 

submatrices multiplied by certain factors ij (i, j, = 1, …, N): 
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2) The factors ij are subject to the following constraints: 

     jiij   , 





N

i

Ni

N

i

i

N

i

i S
11

2

1

1 const...  .     (85) 

It is easy to see that conditions (85) allow matrix B to be diagonal only when all ii are 

equal. If there exist any extra constraints due to the symmetry or model assumptions, they should 

be used in addition to (85). In general, matrix B contains N(N-1)/2+1 independent parameters, 

since all diagonal elements may be represented as 





ij

ijii S  . 

On this way we come to the formulation of inverse vibrational problem in a form (81) 

where a set of a priori constraints D on the molecular force field includes conditions (85). The 

solution (a set of scaling factors) can be found by minimization of functional (83). Additionally, 



a set D can include the constraints such as equality of some off-diagonal factors to zero, in-pair 

equalities of factors, symmetry constraints etc.  

There is a lot of publications describing application of numerical methods to solution of 

the inverse vibrational problem on the base of the least squares procedure. Very often, as 

criterion of minimization, the authors choose the “best” agreement between experimental and 

fitted vibrational frequencies. However, there is a doubt if the “best” agreement criterion is 

meaningful. We should like to note that this criterion is insufficient due to the ill-posed nature of 

the inverse vibrational problem. Even in the case of a single molecule, it is a well-known fact 

that there exist an infinite number of solutions, which exactly satisfy any given set of the 

experimental frequencies. Addition of the expanded experimental information on frequencies of 

the isotopomers or related molecules may lead to incompatibility of the mathematical problem 

and result in no solution at all within the conventional harmonic model. This means that, using 

any minimization procedure for solving the inverse vibrational problem, it is necessary to apply 

some additional criteria (that can be mathematically formulated) in the minimization procedure 

to select the unique solution.  

   

  10.  GENERALIZED INVERSE STRUCTURAL PROBLEM 

More complicated procedure was proposed for solving the generalized inverse structural 

problem (GISP) in the case of joint treatment of the experimental data obtained by different 

physical methods (vibrational spectroscopy, electron diffraction (ED) data and microwave (MW) 

spectroscopy).  

To implement an integrated procedure of simultaneous refinement of the force field and 

equilibrium geometry, a dynamic model of a molecule has been created. Based on the general 

approximation of small vibrations, the model has been extended to include cubic and quartic 

anharmonic potential terms for proper description of the large-amplitude motion. Within this 

approach, a molecule is described using a set of equilibrium geometry parameters R, and a 

molecular force field F represented by the matrices of quadratic, cubic and possibly quartic force 

constants defined in the framework of a certain nonlinear system of internal coordinates. Both 

parameter sets R and F can be considered as finite-dimensional vectors. 

The model is used to predict experimentally measured values, such as vibrational 

frequencies ω, electron diffraction intensity M(s), rotational constants {A, B, C} obtained from 

microwave molecular spectra, etc. All of these values are functions of geometric (R) and force 

field (F) parameters. With experimental data and parameters represented as elements of 

normalized finite-dimensional spaces, we can formulate the problem of simultaneous refinement 

of the force field and equilibrium geometry of the molecule as a system of non-linear equations 



       (86) 

on a set of predefined constraints FDF, RDR. This system can be extended to include 

additional experimental evidence when available (for example, data for isotopic species of a 

molecule sharing the same force field and equilibrium geometry). 

Due to experimental errors, lack of experimental data and model limitations, this system 

of equations (that can be also treated as a finite-dimensional non-linear operator equation) 

usually fails to define unique solution, often proves to be incompatible and does not provide 

stability with respect to the errors of input data. To avoid these unfavorable features 

characteristic to the ill-posed problems, it is necessary to implement a regularizing algorithm for 

its solution. 

We suggest using a regularizing algorithm based on optimization of the Tikhonov's functional 

    (87) 

where in the last ("stabilizer") term F
0
 and R

0
 represent parameters of ab initio force field and 

equilibrium geometry, respectively. With the appropriate choice of regularization parameter  

(that depends on the experimental errors characterized by some numerical parameter ), it proves 

possible to obtain approximations converging to a normal pseudosolution of the system (87) 

when experimental errors tend to zero. These approximations are obtained as extremals 

{F,R}of functional (87). 

Now it is appropriate to give a brief summary of the features distinguishing the given 

approach from the various previously used attempts to solve the similar inverse problem. 

1. The approach is aimed at a simultaneous determination of the geometry and force field 

parameters of a molecule. It combines techniques previously used in IR spectroscopy and 

ED data analysis. In particular, it allows to use more flexible force field models when 

fitting ED data, far beyond the usually employed scaling of the ab initio force field. 

2. Ab initio data (or any other external data) is automatically “weighed” so as to serve an 

additional source of information when data supplied by the experiment proves 

insufficient. There is no need to supply ab initio data with some kind of assumed errors, 

etc. 

3. Molecular geometry is defined in terms of equilibrium distances thus allowing 

compatibility with spectroscopic models and ab initio calculations. Besides, the self-
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consistency of geometrical configuration is automatically maintained at all stages of the 

analysis. 

The complexity of molecular models used in the analysis strongly depends on the availability 

and quality of the experimental data. Since in most cases vibrational spectra and ED patterns 

reveal the vibrational motion in a molecule resulting from small deviations of the atoms from 

their equilibrium positions, most molecular models are based on the assumption of small 

harmonic vibrations. In some cases of solving GISP within the scaling approximation, it is 

necessary to include the cubic part of the force field. Similarly, in order to get a set of more 

reliable cubic force constants it is undoubtedly beneficial to improve empirically the ab initio 

values, e.g. for simplicity by the use of the Pulay harmonic scale factors. Two schemes of cubic 

constant scaling are generally feasible. Let the ab initio quadratic force constant 
0

ijf  defined in 

natural internal coordinates be scaled as follows: 

21210)scaled( jiijij ff    ,                                      

where i and j  are the harmonic scale factors. Then, reasoning by analogy, the cubic constants 

scaling mode can be formulated  as  

2121210)scaled( kjiijkijk ff   

or, alternatively, 

3131310)scaled( kjiijkijk ff   , 

 

where 
0

ijkf  are the unscaled theoretical cubic constants. Both scaling schemes reduce the 

vibrational problem to the determination of a much smaller number of parameters  

The most important step in solving the inverse vibrational problem is formulating a 

priori constraints on the solution, which are taken from quantum mechanical calculations. 

Plausible constraints for the force field matrix followed recommendations discussed elsewhere.  

 

11. COMPUTER IMPLEMENTATION  

 On the basis of the regularizing algorithms described above we have compiled a package 

of programs for processing spectroscopic data on a computer which has been revised and now 

has the structure shown below. 



The package contains 3 distinct software units. One of them, intended for graphic illustrations 

of the 3D models of molecules, has no direct output. It shows a rigid molecule rotating in space. 

At present we plan to extend it to display vibrational modes. 

 Another program, the symmetry analyzing routine, is not absolutely necessary for 

vibrational calculations but has proved extremely useful when working with molecules including 

dozens of atoms and possessing relatively high symmetry (for example, C60 with icosahedron 

symmetry). The version of symmetry analysis implemented in our package has following 

capabilities: 

 1. Given the equilibrium configuration (Cartesian coordinates of atoms) and masses of 

the atoms, it defines the symmetry point group of the molecule. In the other mode, when the 

symmetry group is given a priori, the Cartesian coordinates may be adjusted (if necessary) to 

correspond to given symmetry properties, 

 2. The number of normal frequencies of each symmetry is calculated, 

 3. If the set of internal coordinates is described in the input, then the symmetry 

coordinates based on this set are constructed. The resulting set of symmetry coordinates is 

analyzed (e.g., numbers of independent and redundant coordinates of each symmetry are 

calculated) and outputted to be used in solving direct or inverse vibrational problems. 

The main software package known as SPECTRUM has recently undergone important 

modifications and the current version takes advantages of 64-bit processing and virtual memory 

management that leads to increases in both the processing rate and in the allowable size of 

molecules. Progress in these areas has made the processing of molecules of more than 100-200 

atoms possible in a reasonable amount of time. 

Further improvements were concerned with allowing the input of more kinds of data and 

the imposition of more and different constraints on the solution of the inverse problem. The 

general flow of data processing within the program is shown in the following table. 

 

 

 

 

 

 

 



Software package SPECTRUM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now software SPECTRUM is a part of information system  ISMOL, the general scheme 

of these database is performed below. 

Input 

 

 

 

 

 

 

 

 

 

 

 

 

Spectroscopic  

frequencies of vibrations k 

Electron diffraction  

intensities sM(s) 

Microwave rotational  

constants {A,B,C} 

Model assumptions  

based on ab initio optimization results 
 

 
1. Assumed initial equilibrium 

geometry (R0) 

2. Geometry constraints (R  DR) 

1. Initial approximation for the 

harmonic force field (matrix F0) 

2. Constraints (DF) imposed on the 

elements of searching F matrix  

(including Pulay scale factors)   

F  DF 

 
Anharmonic terms in the force field 
1. Non-linear coordinate 

transformation 
2. Dynamic anharmonicity 
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Optimization procedure 

Output 
1. Geometrical parameters, correlation coefficients and standard errors. 
2. Mean square amplitudes. 
3. Quadratic force field (matrix F), vibrational frequencies and eigenvectors of GF 

matrix. 
4. Graphic representation of molecular geometry and vibrations 
 



 

     Figure 1.  Hybrid type information system ISMOL 

 

Data processing sequence 

 

1. Conversion of input matrices given in Cartesian or internal coordinates to matrices in 

symmetry coordinates. Verification of matrix symmetry (adjusting,if necessary). 

2. Creating, preprocessing and applying specified constraints on matrix F. 

3 (Inverse problem only). Minimizing Tikhonov functional for the problem with the specified 

numerical method and appropriate choice of regularization parameter. 

4. Solving direct problem for resulting matrix in symmetry coordinates. 

5. Constructing force field matrix in internal coordinates. 

6. Solving direct problem in internal coordinates. 

7. Calculating additional characteristics of interest, such as mean square amplitudes of vibrations 

and potential energy distribution. 



It should be noted that the package allows the processing of more than one molecule at a 

time (each of them possessing several isotopic species). This is a sensible approach when the 

model considerations require equivalence between certain force matrix elements. With this kind 

of constraint specified, these elements are held equivalent throughout the whole process of 

optimization. This option is of special value for verifying transferability properties of force 

constants. Additional features of the package include the following: all constraints are applied to 

matrices in internal coordinates, all the algorithms throughout the package allow internal 

coordinates to be redundant, redundancy conditions are taken into account automatically, and the 

regularization parameter is chosen in accordance with the generalized discrepancy principle.  

Note also that conversion from Cartesian to internal coordinates may be not unique if 

coordinates are redundant. In this case, the software package allows two choices: 

a) to generate a canonical matrix F (that is, with minimal rank sufficient to represent all 

vibrational degrees of freedom, 3N-6 where N is number of atoms), 

b) to generate a matrix F with the minimal off-diagonal norm (this is a commonly used 

model assumption). 

   


