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Figure: Evolution for 6 equally spaced agents, intitally placed at
0, 1, 2, 3, 4, 5.
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Hegselmann-Krause (HK) model
Deffuant-Weisbuch (DW) model

Freezing/Convergence
Equally spaced configurations (in R1)

Random configurations

I Finite number, n say, of agents, indexed by the integers
1, 2, . . . , n.

I Time is discrete: t = 0, 1, . . .
I A real number xi (t) represents the opinion of agent i at time

t.
I There is a confidence bound r > 0, which is the same for all

agents.
I Opinions are updated synchronously according to

xi (t + 1) =
1

|Ni (t)|
∑

j∈Ni (t)

xj(t),

where
Ni (t) = {j : ||xj(t)− xi (t)|| ≤ r}.

I The dynamics are unaffected by rescaling (update rule is
linear), so WLOG r = 1.
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Salient features of the model:

1. Bounded confidence/influence is the mechanism which can
lead to fragmentation instead of consensus.

2. The dynamics are deterministic.

3. Interactions are global - there are no “geographical”
restrictions.

We’ve presented the model with discrete time. One can also study
a continuous-time version, but it’s more technical.

The most famous model which incorporates #1 but neither #2 nor
#3 is the Deffuant-Weisbuch model.
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I Graph G = (V , E ) of bounded degree. The nodes are the
opinionated agents.

I ηt(v) ∈ [0, 1] denotes the opinion of node v ∈ V at time t.

I Each edge e ∈ E is equipped with a Poisson clock of rate 1.

I There are fixed parameters θ ∈ [0, 1] and µ ∈ (0, 1/2] such
that, whenever the clock on an edge e = (u, v) rings, the
agents u and v “consult” and update their opinions according
to
Case 1: If |ηt−(u)− ηt−(v)| ≤ θ, then

ηt+(u) = ηt−(u) + µ(ηt−(v)− ηt−(u)),

ηt+(v) = ηt−(v) + µ(ηt−(u)− ηt−(v))).

Case 2: Otherwise, (ηt+(u), ηt+(v)) = (ηt−(u), ηt−(v)).
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The energy of a Hegselmann-Krause system x = (x1, . . . , xn) is
given by

E(x) =
n∑

i , j=1

max{1, ||xi − xj ||2}.

Basic Result: The dynamics always decrease the energy.

Alt. 1: E(x(t))− E(x(t + 1)) ≥ 4 ·
n∑

i=1

||xi (t)− xi (t + 1)||2.

Alt. 2: E(x(t))− E(x(t + 1)) ≥ (1− λ2t )Eactive(x(t)),

where
Eactive(x) =

∑
i∼j
||xi − xj ||2,

λt = max{|λ| : λ 6= 1 is an eigenvalue of Pt , where xt+1 = Ptxt .}
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I Using the “standard estimate”

λt ≤ 1− 1

n2diam(Gt)
,

Martinsson (M, 2015) proved that a configuration of n
opinions in any Euclidean space will freeze after O(n4) time
steps.

I We (HMW, 2016) proved that opinions always converge on
T1, though note that they don’t always freeze in this case.
Our proof shows that the influence graph Gt can change at
most O(n4) times. However, it can take arbitrarily long for
these changes to occur.

Regarding lower bounds on the freezing time in Euclidean space ...
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I n agents at distance one apart on a circle will reach consensus
at the centre after Θ(n2) steps (Bhattacharya et al, 2013).

I Non-trivial to find an example in R1 which takes quadratic
time to freeze (HW 2015):

Figure: The “dumbbell” configuration Dn. Each dumbbell has weight n.

Proof relates the time evolution of this configuration to
properties of a certain random walk on a path graph.
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Hegselmann-Krause (HK) model
Deffuant-Weisbuch (DW) model

Freezing/Convergence
Equally spaced configurations (in R1)

Random configurations

Open Problem 1: Does every configuration of n agents in
Euclidean space freeze in time O(n2) ?

Note that R1 is special, since an elementary argument
(Bhattacharya et al, 2013) improves the upper bound to O(n3).

Open Problem 2: Prove (or disprove) convergence for the
heterogenous Hegselmann-Krause models, where different agents
can have difference confidence or influence radii.

Note that, in the heterogenous case(s), freezing isn’t guaranteed.

In R1, an additional complication is that, in contrast to the
homogeneous case, agents can cross.
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Freezing/Convergence
Equally spaced configurations (in R1)

Random configurations

I Easy to see that n agents placed distance one apart will take
time Ω(n) to freeze.

We proved (HW, 2016) that this configuration evolves
“periodically”, with groups of 3 agents breaking loose at each
end every 5th time step, until there are 5 or fewer agents left
in the middle. In particular, the freezing time is 5n/6 + O(1).

The key idea here is to first study the semi-infinite
configuration E∞ = (1, 2, 3, . . . ). Here the evolution really is
periodic, with a groups of 3 agents disconnecting on the left
after every 5th time step.

I Open Problem 3: Is the evolution of every semi-infinite
sequence of equally spaced opinions ultimately periodic ?
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First, go back to the multiagent rendezvous problem.

Suppose we initially place the n agents uniformly and
independently at random in a disc of radius R.

Natural (?) to expect that, for any R, as n→∞ the HK
rendezvous procedure will a.a.s. succeed. This remains open,
though supported by simulations (if you believe them).

Also seems reasonable (?) to conjecture that, for any fixed shape
in S ⊆ R2, other than a disc, there will be a critical scaling factor
rc ∈ (0, ∞) such that, if n agents are placed uniformly and
independently in the region rcS then

I r < rc ⇒ P(reach consensus)→ 1
I r > rc ⇒ P(reach consensus)→ 0.

To get started: In R1 is there a critical length Lc for a.a.s.
consensus ?
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Simulations:

I Simulations (DEJK, 2015) of uniformly random configurations:
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I Equally spaced configurations are easier to simulate. As the
inter-agent spacing d → 0, it seems that the diameter of the
first cluster to break off tends to a limit of around 2.38.
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There is a rigorous result for the DW model on Z:

Theorem (Lanchier 2011, Häggström 2012):

(i) If θ < 1/2 we have a.s. that for all x ∈ Z, the limiting value
η∞(x) = limt→∞ ηt(x) exists. The limiting configuration is a.s.
not a consensus but satisfies |η∞(x)− η∞(x + 1)| ∈ {0} ∪ [θ, 1]
for all x ∈ Z.

(ii) If θ > 1/2 we have a.s. that η∞(x) = 1/2 for all x ∈ Z.

I Häggström’s proof relates the DW process to a deterministic,
discrete time process on Z called Sharing a Drink (SAD). It is
crucial for his argument that any possible SAD configuration
is unimodal. For this reason, it remains open whether the
above theorem holds even for µ ∈ (1/2, 1).

I Also open what happens at θ = 1/2.
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What we think we know for one-dimensional HK:

I Can prove a.a.s. consensus for L ≤ 5.
- Approximate with equally spaced configurations and
estimate how approximation errors grow with time.
- Simulate a large, but fixed, number of equally spaced agents
for a grid of L-values. If consensus is always achieved in
bounded time, then one has sufficient control over the
approximation errors above.

I Cannot prove the existence of a critical Lc this way, however.
As L ↑ Lc , typically semistable configurations appear which
take a long time to freeze. Thus, one loses control over the
approximation errors.

I However, the most intriguing finding is that it seems that
consensus reappears for value of L ≈ 6, and we can prove
a.a.s. consensus for some L-values in this region.
⇒ There seems to be a triple phase-transition !
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