The Hegselmann-Krause model of opinion dynamics

Peter Hegarty
(with the help of: Edvin Wedin, Anders Martinsson, Mattias Danielsson, Jimmie Ekström, Jesper Johansson and Gustav Karlsson)

Department of Mathematics, Chalmers/Gothenburg University

Talk at University of Bristol, 6 Dec. 2016

Work in Progress: Typical behaviour of random configurations

A beautiful result is that, if $G = \mathbb{Z}$ and initial opinions are i.i.d. in $[0, 1]$, then

(i) If $\theta > 1/2$ then, for any μ, almost surely all opinions converge to $1/2$.

(ii) If $\theta < 1/2$ then, for any μ, almost surely disagreement persists.
Graph G, whose nodes are the opinionated agents.
Graph G, whose nodes are the opinionated agents.
Opinions are real numbers in $[0, 1]$.
Graph G, whose nodes are the opinionated agents.

- Opinions are real numbers in $[0, 1]$.
- At discrete time steps, a random pair of neighbors in G “meet and discuss”.

Parameters $\theta \in [0, 1]$ and $\mu \in (0, 1/2]$ such that, if agents with opinions (a, b) meet, then afterwards their opinions will have changed to

\[
\begin{cases}
(a + \mu(b - a), b - \mu(b - a)), & \text{if } |a - b| \leq \theta, \\
(a, b), & \text{if } |a - b| > \theta.
\end{cases}
\]

A beautiful result is that, if $G = \mathbb{Z}$ and initial opinions are i.i.d. in $[0, 1]$, then

(i) If $\theta > 1/2$ then, for any μ, almost surely all opinions converge to $1/2$.

(ii) If $\theta < 1/2$ then, for any μ, almost surely disagreement persists.
Graph G, whose nodes are the opinionated agents.

- Opinions are real numbers in $[0, 1]$.
- At discrete time steps, a random pair of neighbors in G “meet and discuss”.

Parameters $\theta \in [0, 1]$ and $\mu \in (0, 1/2]$ such that, if agents with opinions (a, b) meet, then afterwards their opinions will have changed to
Graph G, whose nodes are the opinionated agents.

Opinions are real numbers in $[0, 1]$.

At discrete time steps, a random pair of neighbors in G “meet and discuss”.

Parameters $\theta \in [0, 1]$ and $\mu \in (0, 1/2]$ such that, if agents with opinions (a, b) meet, then afterwards their opinions will have changed to

\[
\begin{align*}
(a + \mu(b - a), b - \mu(b - a)), & \quad \text{if } |a - b| \leq \theta, \\
(a, b), & \quad \text{if } |a - b| > \theta.
\end{align*}
\]
Graph G, whose nodes are the opinionated agents.

- Opinions are real numbers in $[0, 1]$.

- At discrete time steps, a random pair of neighbors in G “meet and discuss”.

- Parameters $\theta \in [0, 1]$ and $\mu \in (0, 1/2]$ such that, if agents with opinions (a, b) meet, then afterwards their opinions will have changed to

$$
\begin{cases}
(a + \mu(b - a), b - \mu(b - a)), & \text{if } |a - b| \leq \theta, \\
(a, b), & \text{if } |a - b| > \theta.
\end{cases}
$$

A beautiful result is that, if $G = \mathbb{Z}$ and initial opinions are i.i.d. in $[0, 1]$, then
Graph G, whose nodes are the opinionated agents.

Opinions are real numbers in $[0, 1]$.

At discrete time steps, a random pair of neighbors in G “meet and discuss”.

Parameters $\theta \in [0, 1]$ and $\mu \in (0, 1/2]$ such that, if agents with opinions (a, b) meet, then afterwards their opinions will have changed to

$$\begin{cases} (a + \mu(b - a), b - \mu(b - a)), & \text{if } |a - b| \leq \theta, \\ (a, b), & \text{if } |a - b| > \theta. \end{cases}$$

A beautiful result is that, if $G = \mathbb{Z}$ and initial opinions are i.i.d. in $[0, 1]$, then

(i) If $\theta > 1/2$ then, for any μ, almost surely all opinions converge to $1/2$.

Peter Hegarty (with the help of: Edvin Wedin, Anders Martinsson, Mattias Danielsson, Jimmie Ekström, Jesper Johansson and Gustav Karlsson) Department of Mathematics, Chalmers/Gothenburg University
Graph G, whose nodes are the opinionated agents.

Opinions are real numbers in $[0, 1]$.

At discrete time steps, a random pair of neighbors in G “meet and discuss”.

Parameters $\theta \in [0, 1]$ and $\mu \in (0, 1/2]$ such that, if agents with opinions (a, b) meet, then afterwards their opinions will have changed to

\[
\begin{cases}
(a + \mu(b - a), b - \mu(b - a)), & \text{if } |a - b| \leq \theta, \\
(a, b), & \text{if } |a - b| > \theta.
\end{cases}
\]

A beautiful result is that, if $G = \mathbb{Z}$ and initial opinions are i.i.d. in $[0, 1]$, then

(i) If $\theta > 1/2$ then, for any μ, almost surely all opinions converge to $1/2$.

(ii) If $\theta < 1/2$ then, for any μ, almost surely disagreement persists.
Work in Progress: Typical behaviour of random configurations

A finite number, n, say, of agents, indexed by the integers $1, 2, \ldots, n$. Time is discrete: $t = 0, 1, \ldots$. A real number $x_i(t)$ represents the opinion of agent i at time t. There is a confidence bound $r > 0$, which is the same for all agents. Opinions are updated synchronously according to $x_i(t+1) = 1/|N_i(t)| \sum_{j \in N_i(t)} x_j(t)$, where $N_i(t) = \{j: ||x_j(t) - x_i(t)|| \leq r\}$. The dynamics are unaffected by rescaling (update rule is linear), so WLOG $r = 1$.

Peter Hegarty (with the help of: Edvin Wedin, Anders Martinsson, Mattias Danielsson, Jimmie Ekström, Jesper Johansson and Gustav Karlsson) Department of Mathematics, Chalmers/Gothenburg University

The Hegselmann-Krause model of opinion dynamics
Finite number, \(n \) say, of agents, indexed by the integers 1, 2, \ldots, \(n \).
Finite number, \(n \) say, of agents, indexed by the integers \(1, 2, \ldots, n \).

Time is discrete: \(t = 0, 1, \ldots \)
Finite number, n say, of agents, indexed by the integers $1, 2, \ldots, n$.

- Time is discrete: $t = 0, 1, \ldots$
- A real number $x_i(t)$ represents the opinion of agent i at time t.

There is a confidence bound $r > 0$, which is the same for all agents.

Opinions are updated synchronously according to

$$x_i(t+1) = \frac{1}{|N_i(t)|} \sum_{j \in N_i(t)} x_j(t),$$

where $N_i(t) = \{j: ||x_j(t) - x_i(t)|| \leq r\}$.

The dynamics are unaffected by rescaling (update rule is linear), so WLOG $r = 1$.

Peter Hegarty (with the help of: Edvin Wedin, Anders Martinsson, Mattias Danielsson, Jimmie Ekström, Jesper Johansson and Gustav Karlsson) Department of Mathematics, Chalmers/Gothenburg University

The Hegselmann-Krause model of opinion dynamics.
Finite number, \(n \) say, of agents, indexed by the integers 1, 2, \ldots, \(n \).

Time is discrete: \(t = 0, 1, \ldots \).

A real number \(x_i(t) \) represents the opinion of agent \(i \) at time \(t \).

There is a confidence bound \(r > 0 \), which is the same for all agents.
Finite number, \(n \) say, of agents, indexed by the integers 1, 2, \ldots, \(n \).

Time is discrete: \(t = 0, 1, \ldots \)

A real number \(x_i(t) \) represents the opinion of agent \(i \) at time \(t \).

There is a confidence bound \(r > 0 \), which is the same for all agents.

Opinions are updated synchronously according to

\[
x_i(t + 1) = \frac{1}{|\mathcal{N}_i(t)|} \sum_{j \in \mathcal{N}_i(t)} x_j(t),
\]

where

\[
\mathcal{N}_i(t) = \{ j : \| x_j(t) - x_i(t) \| \leq r \}.
\]
Finite number, n say, of agents, indexed by the integers $1, 2, \ldots, n$.

Time is discrete: $t = 0, 1, \ldots$

A real number $x_i(t)$ represents the opinion of agent i at time t.

There is a confidence bound $r > 0$, which is the same for all agents.

Opinions are updated synchronously according to

$$x_i(t + 1) = \frac{1}{|\mathcal{N}_i(t)|} \sum_{j \in \mathcal{N}_i(t)} x_j(t),$$

where

$$\mathcal{N}_i(t) = \{j : ||x_j(t) - x_i(t)|| \leq r\}.$$
The Hegselmann-Krause model of opinion dynamics

Figure: Evolution for 5 equally spaced agents, initially placed at 0, 1, 2, 3, 4.
The Hegselmann-Krause model of opinion dynamics
The model makes sense if opinions are drawn from any set V with enough structure to make sense of the command to:
The model makes sense if opinions are drawn from any set \(V \) with enough structure to make sense of the command to:

“Move to the average of a finite collection of points within distance one of your present location.”
The model makes sense if opinions are drawn from any set V with enough structure to make sense of the command to:

“Move to the average of a finite collection of points within distance one of your present location.”

Example 1. Higher dimensional Euclidean space $V = \mathbb{R}^k$.
The model makes sense if opinions are drawn from any set V with enough structure to make sense of the command to:

“Move to the average of a finite collection of points within distance one of your present location.”

Example 1. Higher dimensional Euclidean space $V = \mathbb{R}^k$.

Interpretation: There are k issues, and two agents must be close on all issues for compromise to occur.
The model makes sense if opinions are drawn from any set V with enough structure to make sense of the command to:

“Move to the average of a finite collection of points within distance one of your present location.”

Example 1. Higher dimensional Euclidean space $V = \mathbb{R}^k$.

Interpretation: There are k issues, and two agents must be close on all issues for compromise to occur. Note that a priori no reason to favour L^2-norm over any other in this interpretation.
The model makes sense if opinions are drawn from any set V with enough structure to make sense of the command to:

“Move to the average of a finite collection of points within distance one of your present location.”

Example 1. Higher dimensional Euclidean space $V = \mathbb{R}^k$.

Interpretation: There are k issues, and two agents must be close on all issues for compromise to occur. Note that a priori no reason to favour L^2-norm over any other in this interpretation. However, it gives the most natural geometrical interpretation, and is the one used in robotics applications (multi-agent rendezvous).
The model makes sense if opinions are drawn from any set V with enough structure to make sense of the command to:

“Move to the average of a finite collection of points within distance one of your present location.”

Example 1. Higher dimensional Euclidean space $V = \mathbb{R}^k$.

Interpretation: There are k issues, and two agents must be close on all issues for compromise to occur. Note that a priori no reason to favour L^2-norm over any other in this interpretation. However, it gives the most natural geometrical interpretation, and is the one used in robotics applications (multi-agent rendezvous).

Example 2. The circle $V = \mathbb{T}^1$, of diameter greater than 2.
The model makes sense if opinions are drawn from any set V with enough structure to make sense of the command to:

"Move to the average of a finite collection of points within distance one of your present location."

Example 1. Higher dimensional Euclidean space $V = \mathbb{R}^k$.

Interpretation: There are k issues, and two agents must be close on all issues for compromise to occur. Note that a priori no reason to favour L^2-norm over any other in this interpretation. However, it gives the most natural geometrical interpretation, and is the one used in robotics applications (multi-agent rendezvous).

Example 2. The circle $V = \mathbb{T}^1$, of diameter greater than 2.

Interpretation: Imagine, for example, that the issue under discussion is the time of day or year for holding some event.
Convergence in \mathbb{R}:

- Very easy to show that opinions converge to limiting values (general nonsense, Banach Fixed Point Theorem blah blah ...)
- In fact quite easy to show that opinions freeze, i.e.: there is always some $T > 0$ such that $x_i(t) = x_i(T)$ for all i and all $t \geq T$.
- Still quite easy to show that the freezing time is bounded by a universal polynomial function of the number of agents: \Rightarrow Can get a bound of around $O(n^5)$ from general theory of Markov chains on graphs.
- \Rightarrow Best to date is $O(n^3)$. Elementary argument which considers the behaviour of the extremal agents (Bhattacharyya et al, 2013).
Convergence in \mathbb{R}:

- Very easy to show that opinions converge to limiting values (general nonsense, Banach Fixed Point Theorem blah blah ...)

\Rightarrow Best to date is $O(n^3)$. Elementary argument which considers the behaviour of the extremal agents (Bhattachrya et al, 2013).
Convergence in \mathbb{R}:

- Very easy to show that opinions converge to limiting values (general nonsense, Banach Fixed Point Theorem blah blah ...)
- In fact quite easy to show that opinions freeze, i.e.: there is always some $T > 0$ such that $x_i(t) = x_i(T)$ for all i and all $t \geq T$.
Convergence in \mathbb{R}:

- Very easy to show that opinions converge to limiting values (general nonsense, Banach Fixed Point Theorem blah blah ...)
- In fact quite easy to show that opinions freeze, i.e.: there is always some $T > 0$ such that $x_i(t) = x_i(T)$ for all i and all $t \geq T$.
- Still quite easy to show that the freezing time is bounded by a universal polynomial function of the number of agents:
Convergence

Convergence in \mathbb{R}:

- Very easy to show that opinions converge to limiting values (general nonsense, Banach Fixed Point Theorem blah blah ...)
- In fact quite easy to show that opinions freeze, i.e.: there is always some $T > 0$ such that $x_i(t) = x_i(T)$ for all i and all $t \geq T$.
- Still quite easy to show that the freezing time is bounded by a universal polynomial function of the number of agents: \Rightarrow Can get a bound of around $O(n^5)$ from general theory of Markov chains on graphs.
Convergence in \mathbb{R}:

- Very easy to show that opinions converge to limiting values (general nonsense, Banach Fixed Point Theorem blah blah ...)

- In fact quite easy to show that opinions freeze, i.e.: there is always some $T > 0$ such that $x_i(t) = x_i(T)$ for all i and all $t \geq T$.

- Still quite easy to show that the freezing time is bounded by a universal polynomial function of the number of agents:
 - Can get a bound of around $O(n^5)$ from general theory of Markov chains on graphs.
 - Best to date is $O(n^3)$. Elementary argument which considers the behaviour of the extremal agents (Bhattachrya et al, 2013).
Lower bounds on a universal freezing time first studied in any seriousness by Wedin and myself [WH2, HW].
Lower bounds on a universal freezing time first studied in any seriousness by Wedin and myself [WH2, HW].

- Easy to see that n agents placed distance one apart will take time $\Omega(n)$ to freeze.
Lower bounds on a universal freezing time first studied in any seriousness by Wedin and myself [WH2, HW].

Easy to see that n agents placed distance one apart will take time $\Omega(n)$ to freeze. We proved [HW] that this configuration evolves periodically, with groups of 3 agents breaking loose at each end every 5th time step.
Lower bounds on a universal freezing time first studied in any seriousness by Wedin and myself [WH2, HW].

- Easy to see that \(n \) agents placed distance one apart will take time \(\Omega(n) \) to freeze.

We proved [HW] that this configuration evolves periodically, with groups of 3 agents breaking loose at each end every 5th time step.

In particular, the freezing time is \(5n/6 + O(1) \).
Lower bounds on a universal freezing time first studied in any seriousness by Wedin and myself [WH2, HW].

- Easy to see that n agents placed distance one apart will take time $\Omega(n)$ to freeze. We proved [HW] that this configuration evolves periodically, with groups of 3 agents breaking loose at each end every 5th time step. In particular, the freezing time is $5n/6 + O(1)$.

- We were surprised to discover a configuration which takes time $\Omega(n^2)$ to freeze: **Dumbbell graph**
Lower bounds on a universal freezing time first studied in any seriousness by Wedin and myself [WH2, HW].

- Easy to see that \(n \) agents placed distance one apart will take time \(\Omega(n) \) to freeze.

 We proved [HW] that this configuration evolves periodically, with groups of 3 agents breaking loose at each end every 5th time step.

 In particular, the freezing time is \(5n/6 + O(1) \).

- We were surprised to discover a configuration which takes time \(\Omega(n^2) \) to freeze: **Dumbbell graph**

- We believe that the freezing time is always \(O(n^2) \), but this remains open.
Figure: Schematic representation of the configuration \mathcal{D}_n. Each dumbbell has weight n.
Convergence in \mathbb{R}^k, $k > 1$:
Convergence in \mathbb{R}^k, $k > 1$:

- Opinions still freeze in finite time: this just requires a “convexity argument”, which works in any Euclidean space.

The Hegselmann-Krause model of opinion dynamics
Convergence in \mathbb{R}^k, $k > 1$:

- Opinions still freeze in finite time: this just requires a “convexity argument”, which works in any Euclidean space.
- Method of Bhattachrya et al does not generalize.
Convergence in \mathbb{R}^k, $k > 1$:

- Opinions still freeze in finite time: this just requires a “convexity argument”, which works in any Euclidean space.
- Method of Bhattachrya et al does not generalize.

Moral: The jump from one to two dimensions is key.
Convergence in \mathbb{R}^k, $k > 1$:

- Opinions still freeze in finite time: this just requires a “convexity argument”, which works in any Euclidean space.
- Method of Bhattachrya et al does not generalize.

Moral: The jump from one to two dimensions is key.

- Instead, state-of-the-art for $k > 1$ is an energy reduction argument.
Convergence in \mathbb{R}^k, $k > 1$:

- Opinions still freeze in finite time: this just requires a “convexity argument”, which works in any Euclidean space.
- Method of Bhattacharya et al does not generalize.

Moral: The jump from one to two dimensions is key.

- Instead, state-of-the-art for $k > 1$ is an **energy reduction argument**.

The **energy** of a Hegselmann-Krause system $\mathbf{x} = (x_1, \ldots, x_n)$ is given by

$$
\mathcal{E}(\mathbf{x}) = \sum_{i,j=1}^{n} \max\{1, \|x_i - x_j\|^2\}.
$$
Convergence in \mathbb{R}^k, $k > 1$:

- Opinions still freeze in finite time: this just requires a “convexity argument”, which works in any Euclidean space.
- Method of Bhattachrya et al does not generalize.

Moral: The jump from one to two dimensions is key.

- Instead, state-of-the-art for $k > 1$ is an energy reduction argument.

The energy of a Hegselmann-Krause system $x = (x_1, \ldots, x_n)$ is given by

$$
\mathcal{E}(x) = \sum_{i,j=1}^{n} \max\{1, \|x_i - x_j\|^2\}.
$$

Basic Result: The dynamics always decrease the energy.

$$
\mathcal{E}(x(t)) - \mathcal{E}(x(t + 1)) \geq 4 \cdot \sum_{i=1}^{n} \|x_i(t) - x_i(t + 1)\|^2.
$$
Convergence in \mathbb{R}^k, continued:
Convergence in \mathbb{R}^k, **continued:**

- Martinsson [M, 2015] proved a bound of $O(n^4)$, valid in all dimensions.
Convergence in \mathbb{R}^k, continued:

- Martinsson [M, 2015] proved a bound of $O(n^4)$, valid in all dimensions. His result is in a sense best-possible. No better bound can be obtained using just the energy reduction technique.
Convergence in \mathbb{R}^k, continued:

- Martinsson [M, 2015] proved a bound of $O(n^4)$, valid in all dimensions. His result is in a sense best-possible. No better bound can be obtained using just the energy reduction technique.

- **N.B.** The above only works for the L^2-norm.
Convergence in \mathbb{R}^k, continued:

- Martinsson [M, 2015] proved a bound of $O(n^4)$, valid in all dimensions. His result is in a sense best-possible. No better bound can be obtained using just the energy reduction technique.

- **N.B.** The above only works for the L^2-norm.

- For lower bounds, n agents placed equidistantly around a circle will also require time $\Omega(n^2)$ to freeze.
Convergence in \mathbb{R}^k, continued:

- Martinsson [M, 2015] proved a bound of $O(n^4)$, valid in all dimensions.
 His result is in a sense best-possible. No better bound can be obtained using just the energy reduction technique.

- **N.B.** The above only works for the L^2-norm.

- For lower bounds, n agents placed equidistantly around a circle will also require time $\Omega(n^2)$ to freeze. This is a genuinely 2-dimensional example. Also, in contrast to the dumbbell, this configuration reaches consensus.
Convergence in \mathbb{R}^k, continued:

- Martinsson [M, 2015] proved a bound of $O(n^4)$, valid in all dimensions. His result is in a sense best-possible. No better bound can be obtained using just the energy reduction technique.
- **N.B.** The above only works for the L^2-norm.
- For lower bounds, n agents placed equidistantly around a circle will also require time $\Omega(n^2)$ to freeze. This is a genuinely 2-dimensional example. Also, in contrast to the dumbbell, this configuration reaches consensus.
- We believe that the freezing time is $O(n^2)$ in all dimensions.
Convergence on \mathbb{T}^1: In contrast to the Euclidean case, configurations no longer need to freeze in finite time. Moreover, in a frozen configuration, no cluster need be isolated. E.g.: agents spaced equally around the circle at distance one. However, there are even non-periodic frozen configurations. Hendrickx et al (2009) asked if opinions must always converge on the circle. Proven by us [HMW]. Proof uses both the energy reduction technique and a modification of the idea in Bhattachrya et al, both suitably modified for the circle. The influence digraph can change at most $O(n^4)$ times. However, it can take arbitrarily long for these changes to occur. Can also prove convergence in \mathbb{T}^k for all $k \geq 1$ (technical).
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
- Moreover, in a frozen configuration, no cluster need be isolated.
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
- Moreover, in a frozen configuration, no cluster need be isolated.
 E.g.: agents spaced equally around the circle at distance one.
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
- Moreover, in a frozen configuration, no cluster need be isolated.

 E.g.: agents spaced equally around the circle at distance one.

 However, there are even non-periodic frozen configurations.
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
- Moreover, in a frozen configuration, no cluster need be isolated.
 E.g.: agents spaced equally around the circle at distance one. However, there are even non-periodic frozen configurations.
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
- Moreover, in a frozen configuration, no cluster need be isolated.
 E.g.: agents spaced equally around the circle at distance one. However, there are even non-periodic frozen configurations.
 Proven by us [HMW].

Proof uses both the energy reduction technique and a modification of the idea in Bhattachrya et al, both suitably modified for the circle.

The influence digraph can change at most $O(n^4)$ times. However, it can take arbitrarily long for these changes to occur.

Can also prove convergence in \mathbb{T}^k for all $k \geq 1$ (technical).
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
- Moreover, in a frozen configuration, no cluster need be isolated.
 E.g.: agents spaced equally around the circle at distance one. However, there are even non-periodic frozen configurations.
 Proven by us [HMW]. Proof uses both the energy reduction technique and a modification of the idea in Bhattachrya et al, both suitably modified for the circle.
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
- Moreover, in a frozen configuration, no cluster need be isolated.
 E.g.: agents spaced equally around the circle at distance one. However, there are even non-periodic frozen configurations.
 Proven by us [HMW]. Proof uses both the energy reduction technique and a modification of the idea in Bhattachrya et al, both suitably modified for the circle.
- The influence digraph can change at most $O(n^4)$ times.
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
- Moreover, in a frozen configuration, no cluster need be isolated.

 E.g.: agents spaced equally around the circle at distance one. However, there are even non-periodic frozen configurations.

 Proven by us [HMW]. Proof uses both the energy reduction technique and a modification of the idea in Bhattacharya et al, both suitably modified for the circle.

- The influence digraph can change at most $O(n^4)$ times. However, it can take arbitrarily long for these changes to occur.
Convergence on \mathbb{T}^1:

- In contrast to the Euclidean case, configurations no longer need to freeze in finite time.
- Moreover, in a frozen configuration, no cluster need be isolated.
 E.g.: agents spaced equally around the circle at distance one.
 However, there are even non-periodic frozen configurations.
 Proven by us [HMW]. Proof uses both the energy reduction technique and a modification of the idea in Bhattachrya et al, both suitably modified for the circle.
- The influence digraph can change at most $O(n^4)$ times.
 However, it can take arbitrarily long for these changes to occur.
- Can also prove convergence in \mathbb{T}^k for all $k \geq 1$ (technical).
In the simplest case, initial opinions are drawn *independently* from some probability distribution with compact support.
In the simplest case, initial opinions are drawn *independently* from some probability distribution with compact support.

Two basic principles, if applicable here, would together lead us to expect typical **phase transition** behaviour.
In the simplest case, initial opinions are drawn independently from some probability distribution with compact support.

Two basic principles, if applicable here, would together lead us to expect typical phase transition behaviour.

▶ **Monotonicity:**
In the simplest case, initial opinions are drawn independently from some probability distribution with compact support.

Two basic principles, if applicable here, would together lead us to expect typical phase transition behaviour.

▶ Monotonicity: Dilating the opinion space without changing the “relative distribution” of opinions should always make consensus less likely.
In the simplest case, initial opinions are drawn \textit{independently} from some probability distribution with compact support.

Two basic principles, if applicable here, would together lead us to expect typical \textit{phase transition} behaviour.

- **Monotonicity:** Dilating the opinion space without changing the “relative distribution” of opinions should always make consensus less likely.

- **Zero-One Law:**
In the simplest case, initial opinions are drawn independently from some probability distribution with compact support.

Two basic principles, if applicable here, would together lead us to expect typical phase transition behaviour.

- **Monotonicity**: Dilating the opinion space without changing the “relative distribution” of opinions should always make consensus less likely.

- **Zero-One Law**: Suppose initial opinions are chosen independently from some fixed distribution with compact support. As $n \to \infty$, the probability of reaching consensus should go to 0 or 1, i.e.: there should be a “typical behaviour”.
In the simplest case, initial opinions are drawn independently from some probability distribution with compact support.

Two basic principles, if applicable here, would together lead us to expect typical phase transition behaviour.

► **Monotonicity:** Dilating the opinion space without changing the “relative distribution” of opinions should always make consensus less likely.

► **Zero-One Law:** Suppose initial opinions are chosen independently from some fixed distribution with compact support. As $n \to \infty$, the probability of reaching consensus should go to 0 or 1, i.e.: there should be a “typical behaviour”.

Nothing is yet proven. Indeed, evidence against monotonicity is the fact that increasing the confidence bound r can sometimes destroy consensus.
Simulations:

Work in Progress: Typical behaviour of random configurations

Simulations:

Many simulations performed in [DEJK, 2015] for uniform distributions of agents in regions of \mathbb{R}^1 and \mathbb{R}^2.

In \mathbb{R}^1 there is only one “region”, namely an interval. Simulations give evidence for existence of a critical length, slightly above 5.

Consensus for different lines and number of agents

Consensus for different lines and number of agents
Simulations:

- Many simulations performed in [DEJK, 2015] for uniform distributions of agents in regions of \mathbb{R}^1 and \mathbb{R}^2.
Simulations:

- Many simulations performed in [DEJK, 2015] for uniform distributions of agents in regions of \mathbb{R}^1 and \mathbb{R}^2.
- In \mathbb{R}^1 there is only one “region”, namely an interval.
Simulations:

- Many simulations performed in [DEJK, 2015] for uniform distributions of agents in regions of \mathbb{R}^1 and \mathbb{R}^2.
- In \mathbb{R}^1 there is only one “region”, namely an interval. Simulations give evidence for existence of a critical length, slightly above 5.
Simulations:

- Many simulations performed in [DEJK, 2015] for uniform distributions of agents in regions of \mathbb{R}^1 and \mathbb{R}^2.
- In \mathbb{R}^1 there is only one “region”, namely an interval. Simulations give evidence for existence of a critical length, slightly above 5.
In any case, one approach is to study exhaustively a simpler class of configurations and then develop some approximation/interpolation theory.
In any case, one approach is to study exhaustively a simpler class of configurations and then develop some approximation/interpolation theory.

There exist two basic ideas here:
In any case, one approach is to study exhaustively a simpler class of configurations and then develop some approximation/interpolation theory.

There exist two basic ideas here:

Idea 1: Go to the limit of a continuum of agents.
In any case, one approach is to study exhaustively a simpler class of configurations and then develop some approximation/interpolation theory.

There exist two basic ideas here:

Idea 1: Go to the limit of a continuum of agents.

Idea 2: Study configurations of equally spaced agents.
Idea 1: The Continuous Agent Model (CAM)
Idea 1: The Continuous Agent Model (CAM)

- **Basic Idea:** Instead of drawing opinions independently from a (continuous) distribution $f(x)$, consider a continuum of agents with $f(x)$ describing an opinion density function.
Idea 1: The Continuous Agent Model (CAM)

- **Basic Idea:** Instead of drawing opinions independently from a (continuous) distribution $f(x)$, consider a continuum of agents with $f(x)$ describing an opinion density function.

- **Simplest example:** Uniformly independent opinions on $[0, L]$ corresponds to the opinion function $x_0 : [0, 1] \to \mathbb{R}$, $x_0(\alpha) = L\alpha$.
Idea 1: The Continuous Agent Model (CAM)

- **Basic Idea:** Instead of drawing opinions independently from a (continuous) distribution $f(x)$, consider a continuum of agents with $f(x)$ describing an opinion density function.

- **Simplest example:** Uniformly independent opinions on $[0, L]$ corresponds to the opinion function $x_0 : [0, 1] \rightarrow \mathbb{R}$, $x_0(\alpha) = L\alpha$.

- **The dynamics:**

$$x_{t+1}(\alpha) = \frac{1}{\mu(N_t(\alpha))} \int_{N_t(\alpha)} x_t(\beta) \, d\beta,$$

where $N_t(\alpha) = \{\beta : \|x_t(\beta) - x_t(\alpha)\| \leq 1\}$ and μ is Lebesgue measure.
Idea 1: The Continuous Agent Model (CAM)

- **Basic Idea:** Instead of drawing opinions independently from a (continuous) distribution $f(x)$, consider a continuum of agents with $f(x)$ describing an opinion density function.

- **Simplest example:** Uniformly independent opinions on $[0, L]$ corresponds to the opinion function $x_0 : [0, 1] \rightarrow \mathbb{R}$, $x_0(\alpha) = L\alpha$.

- **The dynamics:**

 $$x_{t+1}(\alpha) = \frac{1}{\mu(\mathcal{N}_t(\alpha))} \int_{\mathcal{N}_t(\alpha)} x_t(\beta) \, d\beta,$$

 where $\mathcal{N}_t(\alpha) = \{\beta : ||x_t(\beta) - x_t(\alpha)|| \leq 1\}$ and μ is Lebesgue measure.

- **Approximation between DAM and CAM:** Hendrickx et al (2009) have results which are probably strong enough for most purposes.
Idea 1: The Continuous Agent Model (CAM)

- **Basic Idea:** Instead of drawing opinions independently from a (continuous) distribution \(f(x) \), consider a continuum of agents with \(f(x) \) describing an opinion density function.

- **Simplest example:** Uniformly independent opinions on \([0, L]\) corresponds to the opinion function \(x_0 : [0, 1] \rightarrow \mathbb{R} \), \(x_0(\alpha) = L\alpha \).

- **The dynamics:**

\[
x_{t+1}(\alpha) = \frac{1}{\mu(\mathcal{N}_t(\alpha))} \int_{\mathcal{N}_t(\alpha)} x_t(\beta) \, d\beta,
\]

where \(\mathcal{N}_t(\alpha) = \{\beta : \|x_t(\beta) - x_t(\alpha)\| \leq 1\} \) and \(\mu \) is Lebesgue measure.

- **Approximation between DAM and CAM:** Hendrickx et al (2009) have results which are probably strong enough for most purposes. So it remains to study the CAM-model.
However, this doesn’t seem to be at all straightforward. Not clear if we’re really simplifying things with CAM.
However, this doesn’t seem to be at all straightforward. Not clear if we’re really simplifying things with CAM.

It is not even known in general if a configuration of opinions in CAM always converges to something (Hendrickx et al, 2009).
However, this doesn’t seem to be at all straightforward. Not clear if we’re really simplifying things with CAM.

It is not even known in general if a configuration of opinions in CAM always converges to something (Hendrickx et al, 2009).

Wedin and I [WH1] gave the first example of a **regular** opinion function (piecewise differentiable, with positive lower and upper bounds on the derivative) which never reaches consensus.
However, this doesn’t seem to be at all straightforward. Not clear if we’re really simplifying things with CAM.

It is not even known in general if a configuration of opinions in CAM always converges to something (Hendrickx et al, 2009).

Wedin and I [WH1] gave the first example of a regular opinion function (piecewise differentiable, with positive lower and upper bounds on the derivative) which never reaches consensus. Even this is a non-trivial task.
However, this doesn’t seem to be at all straightforward. Not clear if we’re really simplifying things with CAM.

It is not even known in general if a configuration of opinions in CAM always converges to something (Hendrickx et al, 2009).

Wedin and I [WH1] gave the first example of a regular opinion function (piecewise differentiable, with positive lower and upper bounds on the derivative) which never reaches consensus. Even this is a non-trivial task.

Our example is a kind of double-S.
However, this doesn’t seem to be at all straightforward. Not clear if we’re really simplifying things with CAM.

It is not even known in general if a configuration of opinions in CAM always converges to something (Hendrickx et al, 2009).

Wedin and I [WH1] gave the first example of a regular opinion function (piecewise differentiable, with positive lower and upper bounds on the derivative) which never reaches consensus. Even this is a non-trivial task.

Our example is a kind of double-S.

Problem remains open for linear functions (those corresponding to a uniform distribution of opinions).
Idea 2: Equally spaced agents

Recall that in [HW] we proved that a configuration of \(n \) agents, with initial opinions \(0, 1, \ldots, n-1 \), evolves periodically, with groups of 3 agents breaking loose at each end every 5th time step.

It is conceptually easier to consider a semi-infinite configuration of equally spaced agents, with initial opinions at all non-negative integers. The first (and main) step in [HW] was to prove that this configuration evolves periodically, with a group of 3 agents breaking loose on the left after every 5th time step.

Now one should consider a general inter-agent spacing \(d \in (0, 1] \) - ultimately we are interested in letting \(d \to 0 \).
Idea 2: Equally spaced agents

Recall that in [HW] we proved that a configuration of n agents, with initial opinions $0, 1, \ldots, n - 1$, evolves periodically, with groups of 3 agents breaking loose at each end every 5th time step.
Idea 2: Equally spaced agents

- Recall that in [HW] we proved that a configuration of n agents, with initial opinions $0, 1, \ldots, n-1$, evolves periodically, with groups of 3 agents breaking loose at each end every 5th time step.

- It is conceptually easier to consider a semi-infinite configuration of equally spaced agents, with initial opinions at all non-negative integers.
Idea 2: Equally spaced agents

- Recall that in [HW] we proved that a configuration of n agents, with initial opinions $0, 1, \ldots, n - 1$, evolves periodically, with groups of 3 agents breaking loose at each end every 5th time step.

- It is conceptually easier to consider a semi-infinite configuration of equally spaced agents, with initial opinions at all non-negative integers. The first (and main) step in [HW] was to prove that this configuration evolves periodically, with a group of 3 agents breaking loose on the left after every 5th time step.
Idea 2: Equally spaced agents

- Recall that in [HW] we proved that a configuration of \(n \) agents, with initial opinions 0, 1, \ldots, \(n - 1 \), evolves periodically, with groups of 3 agents breaking loose at each end every 5th time step.

- It is conceptually easier to consider a semi-infinite configuration of equally spaced agents, with initial opinions at all non-negative integers. The first (and main) step in [HW] was to prove that this configuration evolves periodically, with a group of 3 agents breaking loose on the left after every 5th time step.

- Now one should consider a general inter-agent spacing \(d \in (0, 1] \) - ultimately we are interested in letting \(d \to 0 \).
The previously described behaviour actually occurs for any \(d > 72/79 \).
The previously described behaviour actually occurs for any $d > 72/79$.

We don’t know any value of d where the evolution does not appear to be *ultimately* periodic.
The previously described behaviour actually occurs for any \(d > 72/79 \).

We don’t know any value of \(d \) where the evolution does not appear to be *ultimately* periodic. We can prove that this is always so when \(d > 1/2 \),
The previously described behaviour actually occurs for any $d > 72/79$.

We don’t know any value of d where the evolution does not appear to be *ultimately* periodic. We can prove that this is always so when $d > 1/2$, where basically only 12 different “kinds of behaviour” are possible, though a system may jump from one kind to another before settling down (hence an ultimately periodic, but not periodic evolution).
The previously described behaviour actually occurs for any $d > 72/79$.

We don’t know any value of d where the evolution does not appear to be ultimately periodic. We can prove that this is always so when $d > 1/2$, where basically only 12 different “kinds of behaviour” are possible, though a system may jump from one kind to another before settling down (hence an ultimately periodic, but not periodic evolution).

Wedin is working on developing an appropriate approximation/interpolation theory.
The previously described behaviour actually occurs for any $d > 72/79$.

We don't know any value of d where the evolution does not appear to be *ultimately* periodic. We can prove that this is always so when $d > 1/2$, where basically only 12 different “kinds of behaviour” are possible, though a system may jump from one kind to another before settling down (hence an ultimately periodic, but not periodic evolution).

Wedin is working on developing an appropriate approximation/interpolation theory.

Most intriguingly, simulations suggest a possible triple phase transition!