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Abstract
Motivated by the Cauchy-Davenporttheorem for sumsetsijtariaterpretation in terms of
Cayley graphs, we prove the following main result : There im#ersal constart > 0
such that, if4 is a connected, regular graph arvertices, then either every pair of vertices
can be connected by a path of length at most three, or the mwhpairs of such vertices
is at leastl + ¢ times the number of edges . We discuss a range of further questions to
which this result gives rise.

1. Introduction and Statement of Results

Let A be a subset of an abelian groGyp written additively, anch a positive integer. The
h-fold sumset A is defined as

hA={geG:g=ay+ -+ a,forsomeay,...,a, € A}. (1.1)

We say thatA is abasisfor G if hA = G for someh. The cardinality of a sef will
be denotedS|. The following is a (special case of a) fundamental resuthimtheory of
sumsets :

Theorem 1.1. (Cauchy-Davenpor) Letp be a prime and4 a subset oZ,. Then
|hA| > min{p, h|A| — (h —1)}. (1.2)

There is a well-known generalisation of this result to agrif abelian groups, due to
Kneser [3], but that is not what is of primary interest to usshénstead, we are interested
in interpreting the Cauchy-Davenport result in terms ofpdpa First, recall the following
definition :

Definition 1.2. LetG be an abelian group and a subset ofy. TheCayley graph¥ =

IThroughout this paper, the lettér will be reserved to denote an abelian group and graphs willdveted by
the scripted lette7.
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¢(G, S)is the directed graph whose vertices are the elemen@safd whose edges consist
of the ordered pairgg1, g2) such thatys — g; € S.

Note that the grapt# (G, S) is strongly connected if and only ¥ is a basis foiG. For
simplicity, let us assume this, plus that the Sés symmetric, i.e.:5 = —S, and contains
the identity element off. Then we can think of the Cayley graph as being undirectett, wi
a loop at every vertex. In this case, #}(G, S) be the part of/(G, S) with all the loops
removed. For the rest of the paper, we shall only deal withineated, loopless graphs.
Now consider the following definition :

Definition 1.3. Let¥ be a graph on the vertex st and/ a positive integer. We denote
by h¥ the graph on vertex séf such that{v,, v2} is an edge imh¥ if and only there is a
path joiningv; to v, in ¢ of length at mosk. We shall callh% the h-fold sumgraph of ¢
and denote its set of edges by = & (h¥).

Then the following is an immediate consequence of the Calldenport
theorem :

Theorem 1.4. Letp be a prime and le# be a subset df,, such tha) € AandA = —A.
Let¥ = %(Z,, A) be the Cayley graph af,, minus all loops. Then for every positive

integerh,
h&| 2min{< ’2) ) ,h|é”|}. (1.3)

The question which motivated this paper is whether anyttikey this result is true
for more general connected graphs. More precisely, theifeaif Theorem 1.4 that we
are interested in generalising is the fact that the (edgelssof the graphé¥ grow at
least linearly inh, as long as? isn’t already too dense. As we shall show below, it is
hopelessly optimistic to hope for anything like this phemoon in arbitrary connected
graphs. However, Cayley graphs have the very importantetgphat they are regular.
Our main result is the following partial generalisation dfébrem 1.4 :

Theorem 1.5. There is a universal constaat> 0 such that if¢ is a regular, connected
graph onn vertices, then

36| > min{( g ) ,(1+e)|£|}. (1.4)

2This definition is well-known in the literature, though it$sandard to use multiplicative notation instead,
which is natural when one thinks in terms of the adjacencyimat the graph. So what we are calling thefold
sumgraphh¢/ is usually referred to as the-th power of¢ and denoted?”. Observe that if we add a loop at
each vertex of7 and letA be the adjacency matrix of the resulting graph, th&(#")| is just half the number
of non-zero off-diagonal entries iA".

For the remainder of this note we shall retain our additiveation and terminology for graphs so as to empha-
sise the connection to sumsets. The reader should also lve,dwsvever, that the terfsum graph’ (two words)
has also been used in a different context by F. Harary [2].
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In fact, we can take to be the unique positive root of the equation

e= 11—V, (L5)

i.e.. e~ 0.087....

We were surprised by the simplicity and elegance of thisltesthich is why we consid-
ered it worth mentioning. Of course, it is unsatisfactoryriany respects so some detailed
remarks are in order :

1. The obvious problem with our result is that it cannot beduserursively to obtain
estimates for the growth df-fold sumgraphs for arbitrari. This is because, even if the
graph¥ is regular, then the graphis4 need not be, for anj > 1 (note that regularity

is preserved for Cayley sum-graphs). Thus it remains toiolsaeneralisation of Theo-
rem 1.5 toh-fold sumgraphs for arbitrarjt. Note that, for fixed degree, the sumgraphs
h$ grow at least linearlyon average’ until the graph becomes complete. This is aatrivi
observation, but a more precise result is contained in tlkepreposition. Recall that the
diameterof a graph is the smallest> 0 such that any pair of vertices are connected by a
path of length at most. In the notation of Definition 1.3, the diameter of a graglon n
vertices is the smalleét such thaty = K,,, the complete graph. Now we have

Proposition 1.6. Let¥ be a connected graph anvertices and of minimal degrek Then

. 3n—(d+3)

(1.6)
2. However, the growth of sumgraphs can certainly be ir@guh particular, and this

is the most natural thing to ask about, there is no constant0 such that the analogue of

Theorem 1.5 holds fa2-fold sumgraphs. To see this consider the following

example :

Example 1.7. Fix d > 0 and letn be a multiple ofi+ 1, sayn = m(d+1). Let¥ = 9, ,,,
be the following graph om vertices : Partition the vertex sét into m disjoint subsets of
sized + 1, sayVi, Vs, ..., V. For eachi = 1, ..., m pick two vertices;, v;2 € V;. Now
the graph¥;, ,,, contains the following dges :

(i) for eachi = 1,...,m, insert all edges among the vertices1gf except the edge
{Uih 'UiQ}-

(ii) for eachi = 1,...,m — 1, insert the edgdv;1,v(;+1),2}, and then finally add the
edge{vml, ’012}.

Clearly, this graph is connected amdregular, so

(G| = <§) n. (1.7)
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However, one easily checks that

2d -1

|2@@d,m\@@d,m| = ( dr1 ) n, (18)

so that|2&y, | = (1 + 04(1))|é4,m|. Note also that for this graph one may check that
d*+4

Eam\Eim| = , 1.9

|3 a,m \Ea,m| (d—i—l)n (1.9)

so that|3&.m| = (3 — 04(1))|En.m|-

Considering this example naturally leads one to asking fanemprecise extremal results.
We believe that the graplig; ,,, are essentially extremal f@-fold sumgraphs, but these
latter objects are still somewhat mysterious to us. Moguaty (1.8), we are prepared at
this stage to conjecture the following :

Conjecture 1.8. Letd, n be positive integers. ¥ is a d-regular, connected graph on
vertices, then eithe?9 = K, or

[26\&| > (2 — 0q(1)) n. (1.10)

Note that, in the notation of this conjecturenif> d + 2 then trivially |26\&| > n/2,
since every vertex is connected to at least one non-neidghbapath of length two. Hence
there is a factor of four separating (asymptotically) thedl lower bound for|2£\&| and
what we conjecture to be the truth.

Neither is it clear to us whether the grap#is,,, are essentially extremal f@rfold sum-
graphs. The question here is what is the best-possible elobihe constantin Theorem
1.57? By (1.9), we cannot take> 2. Indeed, the same conclusion could be drawn by
considering the Cayley graph of an arithmetic progression.

Also, note that the grapl4; ,,, are certainly not close to being extremal sumgraphs in
general. This is because it is easy to seetha}, has diametem +1 = 5 + 1, whereas
from the proof of Proposition 1.6 we will easily be able to stnct examples which show
that the upper bound in (1.6) is essentially best-posséven for regular graphs (see Re-
mark 3.1). Hence, we suspect that the extremal problem fagsaphs in general might be
quite hard.

3. Finally, note that there doesn’t seem to be any hope ofimbtameaningful gener-
alisations of our results to graphs which are not regular. é&@mple, let, be a positive
integer and le,, be the graph om vertices which is the union of a complete subgraph on
|n3/%| vertices and a path of length— |n%/4| which is joined to the complete subgraph
at one vertex. This graph is connected and cont@ig’/?) edges but, for any fixed, the
h-fold sumgraph contains only,,(n) additional edges.

The rest of the paper is organised as follows. Sections 2 zare 8evoted to the proofs
and discussion of Theorem 1.5 and Proposition 1.6 respgti8ection 4 contains a quick
recap of unresolved issues.
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2. Proof of Theorem 1.5

Notation. If ¢ is a graph and{ C V(¥¢), thenN (X)) will denote the set of all neighbors
of the vertices inX. If X is a singleton set, sa}¥ = {z}, then we simply writeV (z).

Let d, n be positive integers and lét be a connectedi-regular graph om vertices. Let
e > 0 be the solution of (1.5) and suppose tiaf| < (1 + €)|£€|. We must show that
39 = K,,. Since2& C 3&, we can first of all deduce th&it&'| < (1 + €)|&|. We present
the argument in a sequence of steps.

STEP1: Sete; := \/e. Foreachy € V(¥), let

Ty :={w e V(4): {v,w} € 26\&} (2.1)
and let
Vi={veV(¥):|Ty| <ed} (2.2)
Since, by assumption,
edn > 2 x 26\ = [T, (2.3)
it follows easily that
Vil > (1 —€1)n. (2.4)

STEP2: Letv € V4. SetA, := N(v), B, := N(N(v)) andC, := B,\({v} U A4,). Ifthe
setC,, were empty then, since the graph is connected, it would irtiyaltd (¢) = {v}UA,
and hence th&¥ = K,. So we may assume th@t, is non-empty. It € C, then there is
apathv — a — cin ¢, for somea € A,, hence{v, ¢} € 2&. By definition of the set;,
it follows that

|Cv| < €1d. (25)

SetD, = V(9)\({v} U A4, UC,). Suppose this set were empty. Siiés connected, it
would imply thatV (¢) = {v} U A, UC,,. We claim that, in this cas8¥ = K,,. We need

to show that any two vertices ifw} U A, U C, can be connected by a path of length at
most 3. This is obvious unless both vertices li€in Consider a pair of such vertices, say
¢1 andc,. Our assumptions say that(c;) U N(e) C A, U C,. But by (2.5),d-regularity
and the fact that; < 1/2 (see the statement of Theorem 1.5), it follows thatndc,
must have a common neighborh,. Hence{cy, c2} € 2&, in fact.

So we may now assume that the g&tis non-empty. There must be at least one edge
betweenC, and D,. For any such edge, sdy,,d,}, we know by (2.5) that at least
(1 — €1)d of the neighbors of, liein A, U D,. Let%, be the set of vertices iv,, with at
least one neighbor i, and set

1-— €1

oy = ——— xmax{|N(co) N Au| 1 0 € G} (2.6)
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In the steps to come, we consider the following two casegaat lone of which must obvi-
ously apply :

Case 1. For at least half of all € V7, one hasy, <
Case 2 For at least half of all € V4, one hasy, >

[SIE ST

STEP 3 : SupposeCase lholds. LetVs; := {v € V] : a, < %}. For eachw € V5,
pick any vertexc, € %,. Then there are at Ieaét(l — €1)d choices for an edgéc,,, d, }
such that/, € D, . Notice that, for any choice af,, there is a path — a,, — ¢, — d,, in
¢, for somea,, € A,. Hence{v,d,} € 36\&. Summing over alb € V5 and noting that
any given pair of vertices is counted at most twice, it folotivat
1 1 1

BEEI 2 5 Vel - (L —e)d = 5 (1 - @)?16] > elé], (27)

contradicting our assumptions.

STEP 4 : SupposeCase 2holds. LetVs := {v € Vi : a,, > 1}, so that|V] > 1|V|.
Letv € V35 and fix a choice of a vertex, € %, such that, has at Ieas%(l — €1)d neigh-
bors insideA,. Letd, be any neighbor of, inside D,. Observe that all the neighbors of
d, lie insideC, U D,. Hence, by (2.5), there are at led@s$t— ¢;)d choices for a vertex
e, € N(d,)N D,. Forany such vertex, and any vertex.,, € N(c¢,) N 4,, there is a path
in the graphz, — ¢, — d,, — e,. Hence{a,, e, } € 3&\&. Therefore, if we set

S:= Z #{{a,,e,} €3E\E :a, € Ay, €, € D,}, (2.8)
veEV3
then we have
_ _ 3 2
S| > V3] x w x (1—e)d > (%) dT". (2.9)

On the other hand, since sincec N(a, ) always, any pair of vertices can appear in the
sum at mosgd times. It follows that

1
3681 2 11— e1)18] = ], (2.10)

which again contradicts our assumptions, and completesrt of the theorem.

3. Proof of Proposition 1.6

Let¥ be a connected graph envertices of minimal degreé. Let$ be the diameter o
and letv, w be a pair of vertices such that a shortest path between thenehgth exactly
0. Let such a path be

V] =V — Vg — -+ — V5 — Vgp1 = W. (3.2)
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Let A be the set of vertices along the path @d= V' (¥¢)\ A. Using the fact that there is

no shorter path ity betweerv andw, we shall count in two ways the numbsiA, B) of
edges ing betweenA and B. On the one hand, this fact implies that there are no edges
between the vertices along the path other than those in thatpalf. Since4 has minimal
degreet, it follows that

e(A,B)>(6—1)-(d—2)+2-(d—1)= (6 +1)(d—2) + 2. (3.2)

On the other hand, the absence of a shorter path betwaadw means that no vertex in
B can be joined to more than three verticesdofand if it joined to exactly three of them,
then they must be adjacent along the path (3.1)). Hence,

e(A,B) <3|B|=3(n—9d—1). (3.3)
From (3.2) and (3.3) one easily deduces (1.6).

Remark 3.1. The proof just given can be easily adapted to construct explkamples of
graphs which show that the upper bound in (1.6) is essenbalt-possible. Lei > 5 be
odd for simplicity and choose a non-negative intefjel et

a:=3k+1), bi=k(d—2)+2d-1)=k+2)(d—2)+2, n:=a+b. (3.4

We construct al-regular graph om vertices as follows. The vertices &f are partitioned
into two disjoint setsA and B such thatA| = q, | B| = b. Denote

A:=A{v1,...,v.}, B:={wi,...,wp}. (3.5)
The graph? will contain the following edges :

TYPEl: The edges ofthe path — vo — -+ — v,.

Type Il : All edges{v;, w;} such thatl <: < 3 andl < j < d — 1, except the edges
{’Ug, wd_l} and{v3, wl}.

Typelll : All edges {v(q41)—i; Wr41)—;  Suchthatl <i < 3andl < j <d-— 1, except
the edgegv,—1, wpt2—a} and{v,_o2, wp}.

Type IV @ All edges {vs; s, Wa—2)r4+14¢) SUCh thatl < » < £k, 1 < s < 3 and
1<t<d-2.

TYPE V : The complete subgraph on the vertiaes, ..., wys_1, minus a perfect matching
on thed — 3 verticesws, ..., wq_s.

TyPE VI : The complete subgraph on the verticeg, >4, ..., wy, Minus a perfect match-
ing on thed — 3 verticeswy13—d, ..., Wp—1-

TyPe VIl : For eachl < r < k, the complete subgraph on the vertices

Wr(d—2)+25 +++>s W(r41)(d—2)+1-
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One can readily check that this graph is indeleggular and, for sufficiently largg, of
diameterr — 1 := §. Moreover, ford > 5 one has

3n—(d+3)

0=l

| (3.6)
For further known results on the maximum diameter of reg(d#@graphs, the interested
reader is referred to [5], for example.

4. Concluding Remarks

There are two obvious directions in which the results of ffaper need to be improved
upon. The first is to generalise them/tefold sumgraphs for arbitrark, and in particular
to understand better the most natural case when2. The second is to sharpen them, in
particular to obtain the best-possible constaimt Theorem 1.5. Both directions naturally
lead in turn to Freiman-type inverse problems, where on&@gto say something about
the‘structure’ of regular, connected graphs whose sumgrapivs giowly.

Finally, we note that, while studying Cayley graphs purebyni the point of view of
sumgraph growth appears to be a new idea, a related prodesticb graphs - that of pos-
sessing short cycles - has been previously studied in ctionagith the so-called Caccetta-
Hé&ggkvist conjecture. See, for example, [1] and [4].

Acknowledgements

This work was performed while the author was visiting thetitnge for Pure and Applied
Mathematics (IPAM) at UCLA, and | thank them for their hosgfity. My research is
partly supported by a grant from the Swedish Science Rels€ouncil (Vetenskapsradet).
Finally, I thank the referee for bringing to my attention firesence of the terrsum graph’
in the existing literature.

References

[1] Y.O. HamidouneAn application of connectivity theory in graphs to facters
tions of elements in groupEuropean J. Combir2.(1981), no. 4. 349-355.



INTEGERS: 10 (2010) 9

(2]

(3]

(4]

(5]

F. Harary,Sum graphs and difference grapl@ongr. Numer72 (1990), 101—
108.

M. Kneser,Abschatzung der asymptotischen Dichte von Summenmenigtn
Z.58(1953), 459-484.

M.B. NathansonThe Caccetta-Haggkvist conjecture and additive number the
ory, Analytic Number Theory, pp. 347-358, Cambridge Univ. By€&ambridge
(2009).

J. SoaresMaximum diameter of regular digraph3. Graph Theory6 (1992),
no. 5, 437-450.



