In exercise 4.16, you proved by induction on n that

Theorem 1 For eachn > 1,

o2k —1 1
II < : (1)
i 2k Vin+1
It follows immediately that
o2k —1 1
li < — 2
nggo\/ﬁ<k1;11 )< @

if the limit exists (by no means obvious). In fact, the limit does exist and
we have the following result :

Theorem 2
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PROOF : Note that
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Multiplying the product in (2) above and below by this number one sees
that
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The proof is now completed by applying a famous formula due to Stirling. 1
know of no easy proof of this result, so I will just state it. In fact, all known
proofs seem to use techniques from a branch of mathematics called complex
analysis. which is the theory of differentiable functions of one complex vari-
able. Maybe you’ll take the course some time !

Stirling’s formula
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Now back to the proof of Theorem 2. From (4) and (5) we obtain
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as required.



