Extra lecture notes : Day 13

The extra stuff today explores the connection between matchings in bipar-
tite graphs and flows in networks.

We begin with the following corollary of the FF algorithm used to prove
the Max-flow min-cut (MFMC) theorem :

Corollary to MFMC Let G be a network in which the capacity of ev-
ery edge is an integer. Then there exists a mazimum flow for which the flow
along every edge is also an integer.

PROOF : In each step of the FF algorithm, when we augment a given flow
along an augmenting s — ¢ path, we do so by an integer value.

The link to matching problems is most clearly seen, I think, via

Konig’s theorem Let G be a bipartite graph. The mazimum size of a
matching in G equals the minimum number of vertices needed to cover all
the edges of G.

FIRST PROOF (USING HALL’S THEOREM) : Let m be the maximum size
of a matching in G and n the minimum number of vertices needed to cover
all the edges.

Easy part : m < n.

If S is a covering set of vertices of size n and M any set of edges, then
each edge in M must cover a vertex in S. If M is a matching then each
vertex in S is covered at most once, and so M cannot possess more edges
than there are vertices in S.

Harder part : m > n.
Again let S be a covering set of vertices of size n. We’ll show that there must

exist a matching in G of size n. Divide the vertices of G into the following
four subsets :

A:=X\S,



B:=XnNS§,
C:=YnNS§S,
D:=Y\S.

Then |S| = |B| + |C| = n. That S covers all edges in G means that there
are no edges between A and D.

Claim : There is a perfect matching for B in the bipartite graph (B, D).

Suppose otherwise. Then by Hall’s theorem, there must exist a subset E of
B with fewer than |E| neighbours in D. Denote this set of neighbours by
Jp(E). But then the set of vertices

§* := C'U (B\E) U Jp(E)

also covers all edges in G and is smaller than S, contradicting minimality of
the latter. This establishes our claim.

By a similar argument there exists a perfect matching for C in the bipar-
tite graph (A, C). Putting these two matchings together, we get a matching
in G consisting of |B| 4 |C| edges, v.s.v.

SECOND PROOF (UsiING MFMC THEOREM) : Let G* be the following
network :

(i) every edge in G* has capacity 1,

(ii) G* contains a copy of G, with all edges now directed from X to Y,

(iii) G* contains two extra vertices s and ¢ (placed to the left of X and
to the right of Y respectively). There is an edge directed from s to each
vertex of X, and an edge directed to ¢ from each vertex of Y.

By the MFMC theorem, our proof is then complete once we establish the
following two facts :

Fact 1 : The maximum strength of a flow in G* equals the maximum size
of a matching in G.

Fact 2 : There is a cut (S*,7%) of minimum capacity such that G is covered
by a set of ¢(S*,T*) vertices.



More precsiely, Facts 1 and 2 establish, in the notation of our first proof,
the inequality m > n. But as we’ve seen, the reverse inequality is trivial.

Proof of Fact 1: Let f be a flow of maximal strength constructed by apply-
ing the FF algorithm. By the above Corollary to MFMC, f is integer-valued.
In the case of G* this means that the flow along every edge is either 0 or 1.
The edges in the bipartite G which have positive flow then form a matching
M in G whose size is just |f|. Conversely, given any matching My in G we
can construct a flow in G* of strength |My| just by saturating all the edges
in My and all adjacent edges through s and ¢. It follows that the matching
M is maximal, which establishes Fact 1.

Proof of Fact 2 : Let (Sp,Tp) be any cut in G*. We divide the vertices
of G into the following four subsets :

A:=5NX, (1)
B:=T,NX, (2)
C:=5nY, (3)
D:=SyNY. (4)

Since there is an edge from s to each vertex of B, and similarly one from
each vertex of C to ¢, we have that

¢(So,To) = |B| + |C| + no. of edges A — D. (5)

Suppose there is at least one edge in G from A to D, say the edge (v, w).
Let now (S1,71) be the cut of G* given by

S1 = S()\{’U}, T =Ty U {U}

I claim that ¢(S1,T1) < ¢(So,Tp)- For on the one hand, the capacity goes
up by at most 1 because the edge (s,v) now goes across the cut, but on the
other hand it goes down by at least 1 since the edge (v, w) no longer goes
across the cut.

Now if we start with a cut (Sy, Tp) of minimal capacity then, by repeated
application of the above idea, we may replace it with a cut (S*,T*), also of
minimal capacity, such that, in the notation of (1)-(4), there are no edges in
G between A and D. But this just means that the vertices in BUC cover all
edges in G. But, by (5), we also have in this case that ¢(S*,T*) = |B|+|C].
Hence, we have indeed established the statement of Fact 2.



