Extra material: Day 7

Theorem (Dirac) Let G be a simple graph on n vertices in which every vertex has degree at least n/2. Then G has a Hamilton cycle.

PROOF: Let G be a counterexample with the largest possible number of edges - we shall derive the contradiction that G contains a Hamilton cycle after all. By maximality of |E(G)|, if x and y are any two non-adjacent vertices in G, then addition of the edge $\{x,y\}$ would create a Hamilton cycle in G. In other words, there must exist a path from x to y in G passing through all the vertices. Denote the path as

$$y = x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_n = z.$$

We consider two sets S and T, defined as follows:

$$S = \{i : 1 \le i \le n - 1 \text{ and } \{y, x_{i+1}\} \in E(G)\},\$$

$$T = \{i : 1 \le i \le n - 1 \text{ and } \{x_i, z\} \in E(G)\}.$$

On the one hand, both S and T are subsets of $\{1, ..., n-1\}$, so

$$|S \cup T| \le n - 1. \tag{1}$$

On the other hand,

$$|S| = \deg(y) \ge n/2,$$

$$|T| = \deg(z) \ge n/2,$$

which implies that

$$|S| + |T| \ge n. \tag{2}$$

From (1) and (2), we can deduce that $S \cap T$ is non-empty. Let $i \in S \cap T$. Then the following is a Hamilton cycle in G:

$$y \to x_2 \to \cdots x_i \to z \to x_{n-1} \to \cdots \to x_{i+1} \to y.$$

With that, the proof of the theorem is complete.