MAN 240: Diskret matematik

Tentamen 040603

Lösningar

F.1 (i) First choose the three positions for the zeroes $\Rightarrow \begin{pmatrix} 16 \\ 3 \end{pmatrix}$ choices.

Next choose the four positions for the ones $\Rightarrow \begin{pmatrix} 13 \\ 4 \end{pmatrix}$ choices.

Now you have 9 positions left, and each can be filled with any one of the 8 digits from 2-9. Thus, by the multiplication principle, there are 8^9 choices for these remaining positions.

A final application of the multiplication principle then implies that the total number of possible credit card numbers is

$$\begin{pmatrix} 16 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 13 \\ 4 \end{pmatrix} \cdot 8^9.$$

(ii) Subtract from n! the number of permutations which move at most two numbers. For i=0,1,2 let A_i denote the number of permutations which move exactly i numbers. Then

 $A_0 = 1$ (the identity permutation)

 $A_1 = 0$ (can't move just one number)

 $A_2=\left(egin{array}{c} n \ 2 \end{array}
ight)$ (choose a pair of nos. to interchange).

Hence, the answer is $n! - 1 - \binom{n}{2}$.

F.2 (i) The graph has Hamilton cycles, for example

$$A \rightarrow B \rightarrow E \rightarrow H \rightarrow K \rightarrow I \rightarrow J \rightarrow G \rightarrow F \rightarrow C \rightarrow D \rightarrow A$$
.

(ii) $\chi(G^*) \geq 3$ since G^* contains many triangles. On the other hand, if we apply the greedy algorithm to the nodes ordered alphabetically, then we get a 3-coloring, namely (the colors are 1, 2, 3)

1

A	1	G	1
В	2	Η	2
C	3	I	3
D	2	J	2
E	1	K	1
F	2		

Hence $\chi(G^*) = 3$.

(iii) Use BFS, starting, say, from the vertex A, to build up the following sequence of edges in a MST:

$${A, D}, {A, B}, {B, E}, {E, C}, {C, F}, {C, G}, {G, J}, {J, I}, {I, K}, {I, H} \text{ (or } {J, H}).$$

The total weight of this tree is 1 + 2 + 1 + 5 + 1 + 2 + 1 + 1 + 2 + 7 = 23.

(iv) Apply Dijkstra's algorithm to build up the following tree

	1		
Step	Choice of edge	Labelling	
1			
1	AD	D := 1	
2	AB	B := 2	
3	BE	E := 3	
4	AC/DC	C := 8	
5	CF	F := 9	
6	DG/CG	G := 10	
7	EH	H := 11	
8	GJ	J := 11	
9	JI/EI	I := 12	
10	IK	K := 14	

Hence the shortest path from A to K has length 14. Depending on the choices you made in Steps 4,6,8, there are four possibilities for the shortest path, namely

$$\begin{array}{c} A \rightarrow B \rightarrow E \rightarrow I \rightarrow K, \\ A \rightarrow D \rightarrow G \rightarrow J \rightarrow I \rightarrow K, \\ A \rightarrow D \rightarrow C \rightarrow G \rightarrow J \rightarrow I \rightarrow K, \\ A \rightarrow C \rightarrow G \rightarrow J \rightarrow I \rightarrow K. \end{array}$$

(v) Starting with the null flow $f \equiv 0$, one can find the following sequence of f-augmenting paths from A to K (these are not the only choices, of course):

$$A-C-E-H-K, \quad \epsilon=5, \ A-B-E-H-K, \quad \epsilon=1, \ A-C-G-I-K, \quad \epsilon=2, \ A-C-F-E-H-K, \quad \epsilon=1, \ A-D-G-J-K, \quad \epsilon=1.$$

This yields the following maximal flow with |f| = 10

Edge	Flow	Edge	Flow	Edge	Flow
(A,B)	1	(C,G)	2	(G,I)	2
(A,C)	8	(D,G)	1	(G,J)	1
(A, D)	1	(F,E)	0	(I,H)	1
(C,B)	0	(G,F)	0	(J,I)	0
(D,C)	0	(E,H)	6	(H,K)	7
(B,E)	1	(E,I)	0	(I,K)	2
(C, E)	5	(F,I)	1	(J,K)	1
(C,F)	1				

The corresponding minimal cut is $S = \{A, B\}$, T = rest of them. Its' capacity is given by

$$c(S,T) = c(B,E) + c(A,C) + c(A,D) = 1 + 8 + 1 = 10$$
, v.s.v..

- **F.3** This is Mantel's Theorem. See my extra lecture notes for Day 9.
- **F.4** To simplify notation, if v is a vertex of the graph G, let $G \setminus v$ denote the graph obtained by deleting v and all edges through it.

Now since G is connected it has a spanning tree T. Being a tree, T has at least 2 leaves (see exercise 8.5.2 in Biggs). Let v be a leaf of T. Then $T \setminus v$ is still connected and is a spanning tree for $G \setminus v$, which implies that $G \setminus v$ is also connected.

F.5 Everything is contained in my extra lecture notes for Day 5.

F.6 Let

$$F(x) = \sum_{n=0}^{\infty} u_n x^n$$

denote the generating function of the sequence (u_n) . Let's rock!

$$(1 - 4x - 5x^{2})F(x) = (u_{0} + u_{1}x) - 4(u_{0}x) + \sum_{n=2}^{\infty} (u_{n} - 4u_{n-1} - 5u_{n-2})x^{n}$$

$$= (4 - x) - 4(4x) + \sum_{n=2}^{\infty} 3^{n}x^{n}$$

$$= 4 - 17x + \frac{9x^{2}}{1 - 3x}$$

$$= \frac{60x^{2} - 29x + 4}{1 - 3x}.$$

Since

$$1 - 4x - 5x^2 = (1+x)(1-5x),$$

we conclude that

$$F(x) = \frac{60x^2 - 29x + 4}{(1+x)(1-5x)(1-3x)}.$$

We seek a partial fraction decomposition

$$\frac{60x^2 - 29x + 4}{(1+x)(1-5x)(1-3x)} = \frac{A}{1+x} + \frac{B}{1-5x} + \frac{C}{1-3x}.$$
 (1)

Clearing denominators, we have

$$60x^2 - 29x + 4 = A(1 - 5x)(1 - 3x) + B(1 + x)(1 - 3x) + C(1 + x)(1 - 5x).$$

Gathering coefficients, we get the following system of linear equations to solve

$$\begin{pmatrix} 15 & -3 & -5 \\ -8 & -2 & -4 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 60 \\ -29 \\ 4 \end{pmatrix}.$$

After the usual $Gau\beta$ elimination and back substitution (I omit the details), we get the solution

$$A = \frac{31}{8}, \quad B = \frac{5}{4}, \quad C = -\frac{9}{8}.$$

Substituting into (1) and using the relation

$$\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n,$$

we conclude that

$$F(x) = \frac{31}{8} \sum_{n=0}^{\infty} (-1)^n x^n + \frac{5}{4} \sum_{n=0}^{\infty} 5^n x^n - \frac{9}{8} \sum_{n=0}^{\infty} 3^n x^n.$$

After a little tidying up, it follows that

$$u_n = \frac{1}{8} \left(31 \cdot (-1)^n + 2 \cdot 5^{n+1} - 3^{n+2} \right).$$