Proposition Let $n \geq 2$. Then

$$d_n = (n-1)(d_{n-1} + d_{n-2}). (1)$$

PROOF: Let π be a derangement of the numbers 1, 2, ..., n. There are n-1 choices for $i = \pi(1)$. Fix i. Then there are two possibilities:

- (A) $\pi(i) = 1$. Then π induces a derangement of the numbers 2, 3, ..., i-1, i+1, ..., n, so there are d_{n-2} possibilities left for π .
- (B) $\pi(i) \neq 1$. Then, identifying 1 and i, we can imagine that π induces a derangement of 2, 3, ..., n, so there are d_{n-1} possibilities left for π .

Thus, once i is fixed, there are in total $d_{n-1} + d_{n-2}$ possible derangements. And since there were n-1 choices for i, an application of the multiplication principle yields (1).