Exercise For each $n \geq 0$, let A_n be the number of triangulations of an (n+2)-gon. Prove that $A_n = C_n$ for all n.

Solution It suffices to prove that the A_n satisfy the same recurrence relation as the C_n , namely that

$$A_0 = 1,$$

$$A_n = \sum_{m=1}^n A_{m-1} A_{n-m} \quad \text{for all } n \geq 1.$$

It's clear that $A_0=1$. To prove the recurrence relation, label the vertices of an (n+2)-gon as 1,2,...,n+2 in some order. I claim that $A_{m-1}A_{n-m}$ is the number of triangulations in which the edge $\{n+1,n+2\}$ is joined to the vertex m. For the triangle $\{n+1,n+2,m\}$ divides the remainder of the (n+2)-gon into two halves, consisting of m+1 and n-m+2 vertices respectively. So, by definition, there are A_{m-1} and A_{n-m} possible triangulations of the two halves respectively. Finally, apply MP.