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Losningar

F.1 See Theorem 8.5 in the book. Here is a proof for the sake of complete-
ness.

< Suppose G is connected, with n nodes and n — 1 edges. We prove by
induction on n that G has no cycles. If n = 2, then G is a single edge, and
hence obviously has no cycles. Suppose G has k edges and k + 1 nodes.
Since

> deg(v) =2|E(G)| =2k < 2(k + 1),
veV(Q)

it follows that G has a vertex v of degree 1. Let G* be the graph obtained by
removing from G the vertex v and its’ single adjacent edge. Then G* must
still be connected. But G* has k nodes and k — 1 edges. By the induction
hypothesis, G* has no cycles. But then neither does G.

= Suppose G is connected with n nodes and no cycles. We prove by induc-
tion on n that G has n — 1 edges. Evidently, this is the case if n = 2. So
suppose G is connected, has k + 1 nodes and no cycles. We must show G
has k edges.

Let v be any vertex in G. Let G* be the graph obtained by deleting
from G the vertex v and all its’ adjacent edges. Let Ci,...,C; denote the
connected components of G*. Then

(i) since G has no cycles, neither has any Cj;, hence by the induction hy-
pothesis

V(G =E(Ci|+1, i=1,..1 (1)

(ii) since G is connected, there is at least one edge in G from v to each C;.
But since G has no cycles, there is therefore exactly one edge from v to each
C;, that is, deg(v) = t. Hence, the total number of edges in G is



as required.

F.2 I label the nodes of the graph as follows : a to the left, z to the right as
in the diagram ; reading downwards on the left b, ¢, d, e ; reading downwards
on the right f, g, h,1.

(i) G has perfect matchings. An example of such a matching is that con-
sisting of the 5 edges

{a,b}, {e,d}, {e)i}, {f,2}, {g,h}.

(ii) Use DFS, starting, say, from the vertex a, to build up the follwowing
sequence of edges in a MST :

{a,b},{a,e},{e,d},{d, h},{h,c}, {c; f},{f, 9} {9, 2}, {h,i}.

The total weight of this treeis1+3+2+3+1+14+24+2+3 =18.

(iii) The following is an example of a maximal flow



Edge | Flow | Edge | Flow
{a,b} 1 {d, h} 3
{a,c} 6 {e,h} 0
{a,d} | 4 {e,i} 3
fa,ey | 3 |{g,f}]| 0
{c,b} | 4 |{hg}| O
{d,c} 1 {i,h} 0
fe,dy | 0 | {fiz}| 5
{b.fy | 5 | {92} | 2
{e.fy | 0 | {h2} | 4
{eg | 2 | {62} | 3
{c¢,h} 1

This flow has strength 14. The corresponding minimal cut (S,T) is
S:{a7b’c7d’f’g}7 T:{e7h7i’z}'
Observe that

c(S,T) = cla,e) +c(e,h) +c(d,h) +c(f,z) +¢c(g9,2) =3+1+3+5+2=14.

F.3 (i) ®(G) is the minimal number of colors needed to color the edges
of G, if edges with a vertex in common must receive different colors.

(ii) Theorem 10.2 in the book.

F.4 Let S have n elements, say S = {1,...,n}. Let E denote the collection
of subsets of S having an even number of elements, and O the collection of
subsets having an odd number of elements. We must describe a bijection
f+ E — O. We do so explicitly as follows : Let X € F, that is X is a subset
of S having an even number of elements. There are two cases :

(i) if n € X, set f(X) =X \{n}.
(i) if n ¢ X, set f(X) =X U{n}.

It’s easy to check that f is a bijection (if you’re not convinced, write it
out in full for n = 4, say).



F.5 Let
o ./L_n
n=0

denote the exponential generating function of the sequence (u,). Noting
that

S n
x
Z n— = ze”,
= !
we conclude that E(z) satisfies the differential equation

2FE" —TE' + 3E = z€”. (2)

We find the general solution to (2) in the usual way. First, the general
solution of the homogeneous equation is

Eh(.T) = 0163:10 + 026%‘%.
A particular solution to the inhomogeneous equation will have the form
E,(z) = (Az + B)e".

Substituting into the lhs of (2) we may solve for A,B as A = —3, B =
Hence the general solution to (2) is

>

1 3
E(z) = C1e%® + Che?® + (—Ex + Z) e’.

To solve for C7 and Cy we use the initial conditions
ug = E(0) =1, u; = E'(0) = 2.

After the required computation, we find that

13 2
Cy=——.

Cr =3 5

We thus finally obtain the desired formula for u,, namely

_18 2(1)n n, 3
Un =90 5\ 2 2 T

4



F.6 f(n — 2,k — 1) is the number of sets satisfying the condition which
contain the number n, and f(n — 1,k) is the number of sets satisfying the
condition which do not contain n.

F.7 Let K = {z? mod 23 : z € Fi;}.

The blocks of the design are the 23 translates of K modulo 23 - see Theorem
16.8. Explicitly,

12=1, 22=4, 32=9, 42=16, 52=2, 62=13,
7?=3 8=18, 92=12, 10°=8, 112=6,

so that

K ={1,2,3,4,6,8,9,12,13,16,18}.



