Lektion 4

Theorem 4.1 Let z,y,z be positive integers such that SGD(z,y,z) = 1.
Then the following two statements are equivalent :

(i) = is even and 2% + y* = 22,

(i) there ezist positive integers a < b such that SGD(a,b) =1 and
z=2ab, y=0b—-d> z=0"+d.

PROOF : Left as an exercise.

A triple of relatively prime integers satisfying the equivalent conditions of
Theorem 4.1 is called a primitive Pythagorean triple.

Theorem 4.2 Let z,y, z be integers such that z* + y* = z*. Then zyz = 0.
PROOF : We consider more generally the equation
t +yt =2 (1)

and show that it has no integer solutions such that zyz # 0. The proof is by
contradiction and makes use of Fermat’s technique of infinite descent. More
precisely, the idea is as follows : we suppose there exists a solution (z,y, 2)
of (1) for which zyz # 0. Then there must be a solution for which, in ad-
dition, SGD(z,y, z) = 1. Given any such ‘primitive’ solution, we then show
how one may construct a new one (X,Y, Z) such that |Z| < |z|. But since
there must be, among all primitive solutions, one in which |z| is minimised,
we thereby obtain the desired contradiction.

So let (z,v,z) be a primitive solution to (1). Then (22,42, 2) is a primi-
tive Pythagorean triple so, by Theorem 4.1, if we assume WLOG that z is
even and y odd, then there exist relatively prime integers a,b such that

1% = 2ab, (2)
= - (3
z=b*+a*. (4)
We can rewrite (3) as
y? +a® = b7,



and so (y,a,b) is also a primitive Pythagorean triple. Since y is odd, so
must a be even, and there exist relatively prime integers p, g such that
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~

a = 2pq, (
y=q" —p
b=q*+p° (7)

—~
(=2}
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Substituting (5) and (7) into (2) yields
z? = 4pq(p” + ¢%). (8)

Now p and ¢ are relatively prime, hence one sees easily that both are rela-
tively prime to p?+¢%. Thus, the three numbers p, g and p® + ¢ are pairwise
relatively prime. Since their product is, by (8), a perfect square, it follows
from the Fundamental Theorem of Arithmetic that each is a perfect square.
In other words, there exist pairwise relatively prime integers X,Y, Z such
that

p=X? q=Y? p+¢=2%
Substituting the first two of these relations into the third yields the relation
Xt4vt= 272

so we have constructed the desired new primitive solution to (1). It remains
to check that |Z| < |z|. But, using (7) and (4), we have

Z2=p’+ @ =b< b +a? =2< 2,

as required.



Lecture 5
Theorem 5.1 The only integers x,y such that
v’ +2=12° (9)
are x = 3,y = £5.
‘PrROOF’ : Write (9) as
(y +vV=2)(y - V-2) =2". (10)

We shall first verify that, for any integer y, the numbers y + v/—2 and
1y — v/ —2 have no common factor in

Zlv—-2|={a+b/—-2:a,bec Z}.
For suppose z := a + by/—2 is a common factor. Then z divides
(v +V=2) - (y - V) =2V,

and, taking squares of absolute values (as complex numbers), we conclude
that

a® +2b* | 8,
as ordinary integers. The only possibilities are thus

(i) a==£1, b=0.
(i) a = 2, b= 0.
(ii) a = 0, b= £1.
(iv) a =0, b= =£2.

In case (i), z = £1, and hence not a proper factor. In all other cases,
there must exist integers ¢, d such that

y+vV=2 = (a+bvV=2)(c+dvV=2).
From this it follows, by equating the real and imaginary parts, that

y = ac — 2bd, (11)
1=ad+ be. (12)



Now (12) immediately rules out (ii) and (iv), since in both cases the rhs of
(12) is even. But from (9) it follows already that y must be odd (otherwise
the lhs of (9) will be even, but not divisible by 4), and then (11) also elimi-
nates (iii).

Hence, we have proven that y +1/—2 have no common factor in Z[/—2].
By (10), this implies that each of them must be a cube in Z[/—2].

Thus, there exist integers a, b such that
y+vV-2=(a+bv/-2)> (13)

Multiplying out the rhs of (13) and equating the real and imaginary parts
yields the two equations

y = a® — 6ab?, (14)
1 = 3a®b — 2b® = b(3a® — 2b%). (15)

Immediately, (14) implies that
b=3a® — 2b* = £1.

Since a, b are integers, the only possibility is b = 1, a = +1. Substituting
these possibilities into (13) gives y = £5, v.s.v.

OBS !! There is a major gap in the proof, namely the part in italics. What
I state there is correct, but it requires a proof. What one would actually
like to prove is a generalisation of the Fundamental Theorem of Arithmetic
to the ring Z[v/—2]. We will return to this issue later in the course. But,
for the moment, it is worth remarking that the F.T.A. does not hold in, for
example, the ring Z[/—5].



Lektion 6 (?)

NOTATION : C* denotes the group of non-zero complex numbers under mul-
tiplication.

DEFINITION 6.1 : Let G be a finite abelian group. A character of G is
a group homomorphism

x:G — C*.

Note that, since G is finite, x(g) must be a root of unity for any g € G and
any character x. Indeed, if n- g = Og, then x(0) = 1 = x(ng) = [x(g9)]", so
x(g) is an n:th root of unity.

Given two characters x1,x2 of a group G, we can define a third charac-
ter x1 - xo, called the ‘product’ of x1 and y2, as follows :

(x1-x2)(9) == x1(9) - x2(9), VgeQG. (16)

It is easy to check that 1 - x2 is also a character.

NOTATION : The set of characters of an abelian group G is denoted by
G.

Theorem 6.2 Let G be a finite abelian group. Under the multiplication
of characters defined by (16), G becomes a finite abelian group isomorphic
to G.

PROOF : The details were given in class. To show that Gisa group (that
the multiplication is associative, and that an identity element and inverses
exist) is easy. That this group is isomorphic to G is the interesting part.
The idea for showing this was as follows : Let

G=CidCy®---0Cy

be any decomposition of G as a direct sum of cyclic groups. Let n; denote
the order of C; and let e; be any group element which generates C;. We
think of the set {e1, ..., ex} as a ‘basis’ for G. Then there is a canonical ‘dual
basis’ {x1,..., xx} for G given by

e?mi/miif § = j,
xiles) :{ 1, if § # j.



NOTATION/TERMINOLOGY : The identity element of the character group G
is denoted xq- It is called the trivial character and is the mapping given by

xo(lg) =1, Vgeda.

The following proposition will prove useful in our study of Dirichlet L-
functions.

Proposition 6.3 Let G be a finite abelian group, g* € G and x* € G.
Then

()

o _ ) |Gl ifgr =0,

x€G

(i)

* |G|a Zf X* = X0»
D> x*(g) = { .
geG 07 zfX ?é X0-

PROOF : (i) was done in class, and (ii) left as an exercise. For (i), the
argument is as follows : if g # 0 then there exists at least one character -
let’s pick one and denote it x4 - with the property that x,(g) # 1. This
follows from the proof of Theorem 6.2, as outlined above.

Then, since Gisa group, we have that

> x(9) =D (x- xo)(9) = xg(9) - D_ x(9)-

X

Since x4(g) # 1, it follows that the sum must be zero, v.s.v.



Lecture 10 (?)

I gave a second proof of Gauss’ reciprocity law, as an alternative to the one
in Baker. A handout from the book [1], containing the proof, was given.
The idea was to use Gauss sums. The relevant preparatory information on
Gauss sums is contained in my old lecture notes, on pages 38-39 (specifically,
Proposition 24).
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