Lektion 4

Theorem 4.1 Let x, y, z be positive integers such that SGD(x, y, z) = 1. Then the following two statements are equivalent:

- (i) x is even and $x^2 + y^2 = z^2$,
- (ii) there exist positive integers a < b such that SGD(a,b) = 1 and

$$x = 2ab$$
, $y = b^2 - a^2$, $z = b^2 + a^2$.

PROOF: Left as an exercise.

A triple of relatively prime integers satisfying the equivalent conditions of Theorem 4.1 is called a *primitive Pythagorean triple*.

Theorem 4.2 Let x, y, z be integers such that $x^4 + y^4 = z^4$. Then xyz = 0.

PROOF: We consider more generally the equation

$$x^4 + y^4 = z^2 (1)$$

and show that it has no integer solutions such that $xyz \neq 0$. The proof is by contradiction and makes use of Fermat's technique of *infinite descent*. More precisely, the idea is as follows: we suppose there exists a solution (x,y,z) of (1) for which $xyz \neq 0$. Then there must be a solution for which, in addition, SGD(x,y,z) = 1. Given any such 'primitive' solution, we then show how one may construct a new one (X,Y,Z) such that |Z| < |z|. But since there must be, among all primitive solutions, one in which |z| is minimised, we thereby obtain the desired contradiction.

So let (x, y, z) be a primitive solution to (1). Then (x^2, y^2, z) is a primitive Pythagorean triple so, by Theorem 4.1, if we assume WLOG that x is even and y odd, then there exist relatively prime integers a, b such that

$$x^2 = 2ab, (2)$$

$$y^2 = b^2 - a^2, (3)$$

$$z = b^2 + a^2. (4)$$

We can rewrite (3) as

$$y^2 + a^2 = b^2,$$

and so (y, a, b) is also a primitive Pythagorean triple. Since y is odd, so must a be even, and there exist relatively prime integers p, q such that

$$a = 2pq, (5)$$

$$y = q^2 - p^2, (6)$$

$$b = q^2 + p^2. (7)$$

Substituting (5) and (7) into (2) yields

$$x^2 = 4pq(p^2 + q^2). (8)$$

Now p and q are relatively prime, hence one sees easily that both are relatively prime to p^2+q^2 . Thus, the three numbers p,q and p^2+q^2 are pairwise relatively prime. Since their product is, by (8), a perfect square, it follows from the Fundamental Theorem of Arithmetic that each is a perfect square. In other words, there exist pairwise relatively prime integers X,Y,Z such that

$$p = X^2$$
, $q = Y^2$, $p^2 + q^2 = Z^2$.

Substituting the first two of these relations into the third yields the relation

$$X^4 + Y^4 = Z^2,$$

so we have constructed the desired new primitive solution to (1). It remains to check that |Z| < |z|. But, using (7) and (4), we have

$$Z^2 = p^2 + q^2 = b < b^2 + a^2 = z < z^2$$
,

as required.

Lecture 5

Theorem 5.1 The only integers x, y such that

$$y^2 + 2 = x^3 (9)$$

are $x = 3, y = \pm 5$.

'Proof': Write (9) as

$$(y + \sqrt{-2})(y - \sqrt{-2}) = x^3. \tag{10}$$

We shall first verify that, for any integer y, the numbers $y + \sqrt{-2}$ and $y - \sqrt{-2}$ have no common factor in

$$\mathbf{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} : a, b \in \mathbf{Z}\}.$$

For suppose $z := a + b\sqrt{-2}$ is a common factor. Then z divides

$$(y + \sqrt{-2}) - (y - \sqrt{-2}) = 2\sqrt{-2}$$

and, taking squares of absolute values (as complex numbers), we conclude that

$$a^2 + 2b^2 \mid 8$$

as ordinary integers. The only possibilities are thus

- (i) $a = \pm 1, b = 0.$
- (ii) $a = \pm 2$, b = 0.
- (iii) $a = 0, b = \pm 1.$
- (iv) $a = 0, b = \pm 2.$

In case (i), $z=\pm 1$, and hence not a proper factor. In all other cases, there must exist integers c,d such that

$$y + \sqrt{-2} = (a + b\sqrt{-2})(c + d\sqrt{-2}).$$

From this it follows, by equating the real and imaginary parts, that

$$y = ac - 2bd, (11)$$

$$1 = ad + bc. (12)$$

Now (12) immediately rules out (ii) and (iv), since in both cases the rhs of (12) is even. But from (9) it follows already that y must be odd (otherwise the lhs of (9) will be even, but not divisible by 4), and then (11) also eliminates (iii).

Hence, we have proven that $y \pm \sqrt{-2}$ have no common factor in $\mathbb{Z}[\sqrt{-2}]$.

By (10), this implies that each of them must be a cube in $\mathbb{Z}[\sqrt{-2}]$.

Thus, there exist integers a, b such that

$$y + \sqrt{-2} = (a + b\sqrt{-2})^3. \tag{13}$$

Multiplying out the rhs of (13) and equating the real and imaginary parts yields the two equations

$$y = a^3 - 6ab^2, (14)$$

$$y = a^{3} - 6ab^{2},$$

$$1 = 3a^{2}b - 2b^{3} = b(3a^{2} - 2b^{2}).$$
(14)

Immediately, (14) implies that

$$b = 3a^2 - 2b^2 = \pm 1.$$

Since a, b are integers, the only possibility is b=1, $a=\pm 1$. Substituting these possibilities into (13) gives $y = \pm 5$, v.s.v.

OBS!! There is a major gap in the proof, namely the part in italics. What I state there is correct, but it requires a proof. What one would actually like to prove is a generalisation of the Fundamental Theorem of Arithmetic to the ring $\mathbb{Z}[\sqrt{-2}]$. We will return to this issue later in the course. But, for the moment, it is worth remarking that the F.T.A. does not hold in, for example, the ring $\mathbf{Z}[\sqrt{-5}]$.

Lektion 6 (?)

Notation : \mathbf{C}^{\times} denotes the group of non-zero complex numbers under multiplication.

Definition 6.1 : Let G be a finite abelian group. A *character* of G is a group homomorphism

$$\chi:G\to \mathbf{C}^{\times}$$
.

Note that, since G is finite, $\chi(g)$ must be a root of unity for any $g \in G$ and any character χ . Indeed, if $n \cdot g = 0_G$, then $\chi(0) = 1 = \chi(ng) = [\chi(g)]^n$, so $\chi(g)$ is an n:th root of unity.

Given two characters χ_1, χ_2 of a group G, we can define a third character $\chi_1 \cdot \chi_2$, called the 'product' of χ_1 and χ_2 , as follows:

$$(\chi_1 \cdot \chi_2)(g) := \chi_1(g) \cdot \chi_2(g), \quad \forall g \in G.$$
 (16)

It is easy to check that $\chi_1 \cdot \chi_2$ is also a character.

Notation : The set of characters of an abelian group G is denoted by \hat{G} .

Theorem 6.2 Let G be a finite abelian group. Under the multiplication of characters defined by (16), \hat{G} becomes a finite abelian group isomorphic to G.

PROOF: The details were given in class. To show that \hat{G} is a group (that the multiplication is associative, and that an identity element and inverses exist) is easy. That this group is isomorphic to G is the interesting part. The idea for showing this was as follows: Let

$$G = C_1 \oplus C_2 \oplus \cdots \oplus C_k$$

be any decomposition of G as a direct sum of cyclic groups. Let n_i denote the order of C_i and let e_i be any group element which generates C_i . We think of the set $\{e_1, ..., e_k\}$ as a 'basis' for G. Then there is a canonical 'dual basis' $\{\chi_1, ..., \chi_k\}$ for \hat{G} given by

$$\chi_i(e_j) = \begin{cases} e^{2\pi i/n_i}, & \text{if } i = j, \\ 1, & \text{if } i \neq j. \end{cases}$$

NOTATION/TERMINOLOGY: The identity element of the character group \hat{G} is denoted χ_0 . It is called the *trivial character* and is the mapping given by

$$\chi_0(g) = 1, \quad \forall g \in G.$$

The following proposition will prove useful in our study of Dirichlet L-functions.

Proposition 6.3 Let G be a finite abelian group, $g^* \in G$ and $\chi^* \in \hat{G}$. Then

(i)

$$\sum_{\chi \in \hat{G}} \chi(g^*) = \left\{ \begin{array}{ll} |G|, & \text{if } g^* = 0, \\ 0, & \text{if } g^* \neq 0. \end{array} \right.$$

(ii)

$$\sum_{g \in G} \chi^*(g) = \begin{cases} |G|, & \text{if } \chi^* = \chi_0, \\ 0, & \text{if } \chi^* \neq \chi_0. \end{cases}$$

PROOF: (i) was done in class, and (ii) left as an exercise. For (i), the argument is as follows: if $g \neq 0$ then there exists at least one character - let's pick one and denote it χ_g - with the property that $\chi_g(g) \neq 1$. This follows from the proof of Theorem 6.2, as outlined above.

Then, since \hat{G} is a group, we have that

$$\sum_{\chi} \chi(g) = \sum_{\chi} (\chi \cdot \chi_g)(g) = \chi_g(g) \cdot \sum_{\chi} \chi(g).$$

Since $\chi_g(g) \neq 1$, it follows that the sum must be zero, v.s.v.

Lecture 10 (?)

I gave a second proof of Gauss' reciprocity law, as an alternative to the one in Baker. A handout from the book [1], containing the proof, was given. The idea was to use Gauss sums. The relevant preparatory information on Gauss sums is contained in my old lecture notes, on pages 38-39 (specifically, Proposition 24).

REFERENCE

[1] N. Koblitz, A course in numebr theory and cryptography, Springer 1987 (GTM Series, No. 114).