
1. FIRST LECTURE : 29/10

Arithmeticas a subject of serious mathematical research has its origins in the work of
Euclid. It is no exaggeration to say that the contents of Books 7-9 of Euclid’s Elements
(especially Book 7) form the basis of the entire modern subject, though it would take
almost 2000 years for anyone to build significantly on his work1. Euclid is best known
for proving the following two fundamental theorems about prime numbers :

Theorem 1.1. (Fundamental Theorem of Arithmetic)Every natural number has a
unique representation as a product of primes.

Theorem 1.2.There are infinitely many primes.

Today we will prove Theorem 1.1 in detail. The really significant part of the theorem
is the word‘unique’2. If we drop this word, then we get a statement which is much
easier to prove, namely

Lemma 1.3. Every natural number has some representation as a product ofprimes.

Proof. The proof is by (strong) induction on the natural numbern. The lemma is cer-
tainly true forn = 1 (which has an empty representation as a product of primes) and
n = 2. Assume it is true forn = 1, 2, ..., k − 1 and consider the integerk. Two cases
arise :

Case 1: k is prime. Thenk = k is an admissable representation.
Case 2: k is composite. Then, by definition of what that means, there must be numbers
u, v such thatk = uv and1 < u, v < k. By the induction hypothesis, each ofu, v is
a product of primes. But then so isuv (just concatenate the representations ofu and
v). �

Remark 1.4. The above simple proof is interesting in that it is probably one of the
oldest documented examples of a proof byinduction. This is an important method for
proving statements about the natural numbers, which, expressed in more modern set-
theoretic language, relies on the so-called

Well-Ordering Principle The setN of natural numbers is well-ordered, i.e.: every
non-empty set of natural numbers has a least element.

To illustrate the connection between WOP and the method of induction, let’s refor-
mulate the proof above.

Reproof of Lemma 1.3.Let S be the set of natural numbers which cannot be written
as a product of primes. We are claiming thatS is empty. If it weren’t then, by WOP,
it would have a least element, sayk. Clearly, k > 2 and, by definition, each of the
numbers1, 2, ..., k − 1 can be expressed as a product of primes. But now repeat the

1Unlike Euclid’s encyclopediac recording of the fruits of Greek geometry, it is speculated that much
of what he wrote on arithmetic was, in fact, his own work.

2It is my experience that this fact is generally overlooked inhigh school curricula, where the focus is
usually placed on computing prime factorisations. This is aclassic example of putting the cart before the
horse.

1

2

argument above to deduce that so cank. This contradiction completes the proof.

Fermat made expert use of the WOP in his work, though he calledit the method of
infinite descent. This is an appropriate choice of phrase for the kinds of applications
he made, which basically were about showing that certain algebraic equations had no
integer solutions. We will come to Fermat’s work later on.

Now let us continue with the proof of Theorem 1.1. It remains to prove the unique-
ness of prime decompositions. The only known way to do this involves what at first
looks like a long detour, through the concept ofgreatest common divisor. The first per-
son to figure this out (i.e.: probably Euclid) must thereforehave been really clever !

Definition Let a, b ∈ N. Thegreatest common divisorof a andb, denoted GCD(a, b),
is the largest integerc such thatc|a andc|b.

Euclid’s key insight is the following :

Euclid’s Lemma Let d = GCD(a, b). Thend equals the smallest positive integerc
for which the equation

ax + by = c (1.1)

has an integer solutionx, y ∈ Z.

Proof. Note that, by WOP, the setS of positive integersc for which (1.1) has a solution
does indeed have a least element (sinceS is obviously an infinite set). Letd be this least
element. We shall show that

(i) d|a andd|b,
(ii) if c|a andc|b thenc|d,

and these obviously suffice to prove thatd = GCD(a, b) (note that they show that
GCD(a, b) automatically has a stronger property, namely (ii), than what is required of
it by its definition). First of all, property (ii) is obvious,for if c is any common divisor
of a andb, thenc also dividesax + by for any integersx, y, hence dividesd.

We prove (i) by contradiction, Suppose thatd † a, for example. Then there exist
integersq, r such that

a = qd + r, 0 < r < d. (1.2)

Let x, y be any integers satisfyingax + by = d. Substituting (1.2) into this equation
yields (after some rewriting)

ax′ + by′ = r, wherex′ = 1 − qx, y′ = −qy. (1.3)

But this contradicts the definition ofd as the least positive integer for which (1.1) has a
solution. �

For the proof of Theorem 1.1, we apply Euclid’s Lemma to deduce the following :

Lemma 1.5. Leta, b ∈ N andp be a prime. Ifp|ab thenp|a or p|b.

3

Proof. Supposep divides neithera norb. Sincep is prime, this implies that GCD(a, p) =
GCD(b, p) = 1. By Euclid’s Lemma, it follows that there existx, y, z, w ∈ Z such that

ax + py = bz + pw = 1. (1.4)

Consequently,

1 = (ax + py)(bz + pw) = (yw)p2 + (axw + byz)p + (xz)ab. (1.5)

The left-hand side of (1.5) is obviously not divisible byp. But the right-hand side is,
sincep|ab. This contradiction completes the proof of the lemma. �

Corollary 1.6. If a1, ..., ak ∈ N andp is a prime such thatp|a1 · ... · ak, thenp|ai for at
least onei.

Proof. Lemma 1.5 is the casek = 2. The general case is easily established by induction
onk. �

We are now ready to complete the proof of Theorem 1.1. Letn ∈ N and let

n = p1 · ... · pk = q1 · ... · ql (1.6)

be two hypothetical prime decompositions ofn (thus repititions among thepi or theqj

are allowed). We show that eachpi occurs among theqj and vice versa, which clearly
suffices to conclude that the primes occuring in the two decompositions are identical.
Takep1 for example. Eq. (1.6) implies thatp1|q1 · ... ·ql. Then Corollary 1.6 implies that
p1|qj for somej. But sinceqj is also prime, this forcesp1 = qj. The same argument
can obviously be applied to anypi or qj, so the proof of Theorem 1.1 is complete.

It is interesting to speculate to what extent Euclid was interested in having aneffec-
tive proof of FTA, i.e.: a proof which also yielded an efficient algorithm for finding the
prime factorisation of an integer input. One can always factorise a number by brute
force exhaustive search, but this is both aesthetically unsatisfying and hopelessly im-
practical for large inputs. The crucial point is that the above proof does NOT appear to
be effective. In modern times, this curious fact has acquired great attention because of
the advent of the RSA public key cryptosystem, which ingeniously exploits the contin-
ued intractibility of the integer factorisation problem for its own security. Note that it
is an open problem as to whether integer factorisation is‘intrinsically difficult’ : to be
more precise, it is not known for example whether the problemis NP-complete3.

A hint that Euclid was indeed interested in such computational issues is given by the
fact that he did present an effective version of his Lemma. What has become known
asEuclid’s Algorithmremains to this day a state-of-the art algorithm for computing the
GCD of two natural numbers and exhibiting a solution to (1.1).

3We will return to issues of algorithmic complexity on many occasions during the course. In the next
lecture, a quick introduction to the basic concepts will be given.

4

Euclid’s Algorithm Leta, b ∈ N. The sequence of divisions

a = q1b + r1, (1.7)

b = q2r1 + r2,

r1 = q3r2 + r3, ...

eventually terminates with somerk = 0. In that case, the last non-zero remainderrk−1

coincides withd = GCD(a, b). Furthermore, if we then run backwards through the
sequence of equations, we get an explicit solution(x, y) ∈ Z

2 to the equationax+by =
d.

Proof. It is clear that the sequence terminates since theri form a strictly decreasing
sequence of non-negative integers (we’re using WOP again !). Let the last equation
read

rk−2 = qkrk−1 + 0. (1.8)
We shall show thatrk−1 satisfies properties (i) and (ii) in the proof of Euclid’s Lemma.
First of all, (1.8) implies thatrk−1|rk−2. The next-to-last equation will have read

rk−3 = qk−1rk−2 + rk−1. (1.9)

From this and the fact thatrk−1|rk−2 we can conclude in turn thatrk−1|rk−3. Continuing
the backward substitution yields in the same manner thatrk−1 divides the left-hand term
in each equation, hence finally that it divides botha andb. Thusrk−1 satisfies property
(i).

To verify property (ii) we run forwards again. Letc be any common divisor ofa and
b. Then from the first equation in (1.7) we can conclude thatc|r1. Substituting this
information into the next equation yields thatc|r2. And so on, until finally we find that
c|rk−1. �

Next day, we shall start by studying the computational complexity of Euclid’s algo-
rithm in more detail.

5

2. SECOND LECTURE : 31/10

Today is going to consist mostly of a crash-course introduction to some basic con-
cepts in the theory ofalgorithmic complexity. Though it may seem like a long detour
away from number theory, I am doing this for several reasons :

1. In the computer age, the vast computational resources at our disposal make it rel-
evant in far more situations than ever before to ask whether acertain computation is
practically feasible.

2. This is a fundamental type of question in all modern discrete mathematics, not just
number theory, but number theory is a particularly rich source of problems.

3. Within number theory, computational issues are especially important for applica-
tions, for example in cryptography.

4. Many math students never seem to learn about complexity theory - it’s usually left
to the computer scientists. But developing and analysing high-level algorithms is more
math than computer science.

WARNING ! The discussion to follow is only meant as a quick exposure tosome basic
notions. If you want to learn this stuff properly, then you need to take a course or read
a book on your own.

The basic unit of information in computer science is thebit, i.e.: a single binary digit.
The(information-theoretic) complexityof a natural numbern is the number of its binary
digits, in other words, the number of bits of information needed to represent it. You can
talk about the information content of other types of data, e.g.: text, provided you have
a way of translating it into natural numbers.

For our purposes, analgorithmis a procedure for computing a functionf : N → N. We
can talk about theinput andoutputof the algorithm, which are thus natural numbers.
It’s natural to want to be able to consider algorithms which have multiple inputs or out-
puts. One way of doing this within the above framework is to think of a sequence of
inputsn1, ..., nk as a single input, by concatenating their binary representations. In fact,
from some general set-theoretic nonsense it follows that the framework of functions
f : N → N is sufficient for any thinkable application.

There are two basic notions of complexity for an algorithm, namely complexity in
time andspace. Informally, the former measures the amount of time required for the
algorithm to run, as a function of the input size (wheresize is an informal term for
‘information-theoretic complexity’), whereas the latter measures the amount of storage
space required by the algorithm. In what follows I will primarily be interested in tem-
poral complexity.

When studying time complexity, one first needs to make a choiceof a computational

6

unit. This should be some basic type of operation which should runin the same time on
any computer equipped with‘state-of.the-art’ hardware, i.e.: the time required should
depend ONLY on the hardware, and thus not be an issue for mathematicians to worry
about. Traditionally, the choice of unit is the so-calledbit operation. This involves
adding two bits modulo 2, and carrying a 1 in the case of1 + 1 = 0. We then choose as
our unit of time that required to perform a single bit operation, so that the time complx-
ity of an algorithm is just the number of bit operations it performs.

A ‘fast’ or ‘good’ algorithm is one which requires few bit operations. This is, of course,
a hopelessly vague statement. To be more precise, the most important general notion of
‘goodness’ for an algorithm is the following :

Definition An algorithm is said to bepolynomial-timeif the number of bit operations it
performs grows polynomially in the input size. In other words, an algorithm for comput-
ing a functionf : N → N is polynomial-time if there exists a polynomialp(x) ∈ Z[x]
such that, for inputn ∈ N, the algorithm computesf(n) after no more thanp(log2 n)
bit operations.

If p(x) can be taken to be a linear function, then the algorithm is said to belinear.
If p(x) can be taken quadratic, we say the algorithm isquadratic. And so on ... Note
that this choice of terminology means, for example, that if we say an algorithm is cubic,
then it doesn’t rule out the possibility that there is a faster, say quadratic, algorithm for
performing the same computation. In fact, it doesn’t even rule out the possibility that a
more careful analysis of the same algorithm will reveal it tobe quadratic.

The reason why this notion is important is because the basic operations of arithmetic,
addition and multiplication, are polynomial-time.

Proposition 2.1. Addition is linear and multiplication is quadratic. In other words,
there is SOME algorithm which adds two numbers in linear time, and SOME algorithm
which multiplies two numbers in quadratic time.

Proof. (sketch)The algorithms in question are the ones everyone learns in elementary
school, just with base 2 instead of base 10. Consider addition, for example. We give
two numbersa, b ∈ N as input. Thus the size of the input is⌈log2 a⌉ + ⌈log2 b⌉ +
ǫ, whereǫ ∈ [0, 2]. To add them, we write them out in binary, one on top of the
other, tag on some zeroes on the left for the smaller number ifnecessary, so that we
have the same number of digits in both numbers, and then add column-by-column. We
perform a single bit operation for each column, thus the algorithm requires no more
than⌈log2(max{a, b})⌉ + 1 bit operations. This is clearly linear in the input size : in
the notation of the previous definition, we can takep(x) = x + 1 for example.

For multiplication, we use the usual long multiplication algorithm. You’ll have a
bunch of rows to add, one for each digit in the larger ofa andb (with zeroes tagged on
appropriately on the left so that we have the same number of digits in each row). We
don’t count the time required to write out each row, since in base 2 this is just transcrip-
tion and involves no bit operations. We then add the rows one-by-one. Each addition is
linear in the input size by what we showed above, and the number of additions equals
the number of rows minus one, which is also linear in the inputsize. Thus the total

7

number of bit operations will be quadratic in the input size.A more careful analysis
will show that one can takep(x) = 2x2, for example. �

Remark 2.2. There is, believe it or not, a way of multiplying numbers which is faster
when the numbers become large. In fact, there are a plethora of suchfast multiplication
algorithms. However, the math behind all of them is far more sophisticated (which
explains why they aren’t taught in elementary school !). If you’re interested then do a
Wikipedia search for theSchönhage-Strassen algorithm.

Now let’s go back to something resembling number theory, andverify that Euclid’s
algorithm is indeed‘fast’.

Theorem 2.3.Euclid’s algorithm runs in polynomial time. In fact, it is cubic.

Proof. Let’s consider only the‘forward part’ of the algorithm, i.e.: the input is a pair of
numbersa, b ∈ N and the output isd = GCD(a, b)4. As in (1.7), the algorithm consists
of a sequence of steps, each of which has the form : take a pair of numbern1 > n2 as
input and output integersq, r satisfying

n1 = qn2 + r, 0 ≤ r < n2. (2.1)

Thus each step is essentially just a division. I leave it as anexercise for you to check
that, just as with multiplication, the elementary school division algorithm is quadratic.
Thus to prove the theorem, it suffices to show that the number of steps cannot be more
than linear in the input size. I will prove something more precise, namely :

CLAIM : For inputa, b ∈ N with a > b, the number of steps in Euclid’s algorithm
is never more than2(log2 b + 1) .

Proof of Claim. The idea is to show that any two consecutive steps at least halve the
remainder. Two such generic steps can be written as

ri−1 = qi+1ri + ri+1, (2.2)

ri = qi+2ri+1 + ri+2.

I am claiming thatri+2 ≤ 1
2
ri. This is obvious if alreadyri+1 ≤ 1

2
ri, since the remain-

ders are decreasing. Ifri+1 > 1
2
ri then, in the second equation of (2.2) we will have

qi+2 = 1, and thenri+2 = ri − ri+1 < ri −
1
2
ri = 1

2
ri, as desired.

Now suppose2k ≤ b < 2k+1. The numberb is the ‘zeroth’ remainder in the algo-
rithm. Every pair of steps reduces this by at least half. The algorithm terminates when
the remainder is zero. Since each remainder is an integer a priori, this is equivalent to
saying that the algorithm terminates when the remainder is less than one. To ensure this,
we will need to halveb a total ofk + 1 times, so the algorithm will certainly require no
more than2(k + 1) steps. Butk ≤ log2 b. This establishes our claim and completes the
proof of the theorem. �

4If you also want as output an explicit solution toax + by = d, then basically the run-time doubles,
since you also have to run the whole algorithm backwards.

8

Remark 2.4. Some interesting stuff is known about average- and worst-case scenarios
for the number of steps required by Euclid’s algorithm. See

http://algo.inria.fr/seminars/sem92-93/daude.ps

for a recent synopsis. Note, in particular, that
(i) the ‘average’ (one has to make precise what one means by this) number of steps

required isC log2 b with C = 12/π2 ≈ 1.216...
(ii) the worst-case scenario is when the inputsa, b are consecutiveFibonacci num-

bers, i.e.: b = fk anda = fk+1 for somek, where the sequence(fn) is defined recur-
sively by

f1 = f2 = 1, fn = fn−1 + fn−2 ∀ n > 2. (2.3)

Notation One denotes byP the class of functionsf : N → N which can be com-
puted (by some algorithm, and for arbitrary inputs) in polynomial time. One denotes by
N P the class of functionsf with the property that, givenn andk, the truth or falsity
of the statement‘f(n) = k’ can be decided in polynomial time.

A function in the classP must also be inN P. For if f ∈ P and we want to check
the validity of the statement‘f(n) = k’ then we just run a polynomial-time algorithm
for computingf(n) and then check whether the output equalsk. Thus, we can write
symbolically,P ⊆ N P.

I think it is intuitively reasonable to expect that the converse is not true, i.e.: to expect
that there should be some computational problems out there for which it is much easier
to check the validity of a candidate solution than to find the solution in the first place.
Amazingly, it is not known if this intuition is valid. I personally regard the following as
the most important open problem in mathematics :

Conjecture 2.5. P 6= N P.

There are many interesting examples of functions which are obviously inN P but
for whom it is unknown whether or not they are inP. One of the most important
examples is theinteger factorisation problemin number theory. In its simplest form, this
takes as input a natural numbern which is known to be a product of two distinct primes
p1, p2 and outputs these two primes. Because the security of the RSAcryptosystem
relies on the intractability of this problem, it has received a lot of attention in the last 30
years or so (though it is probable that even Euclid was aware of its thorny nature). To
the best of my knowledge, the fastest general algorithms arebased on ideas developed
at least 15 years ago5 and have run-time of the order ofe

3
√

log n. This is certainly not
polynomial in log n and, with current technology, becomes impractical for inputs n
consisting of a couple of thousand decimal digits.

I will probably not discuss the factorisation problem directly any more in this course
(though I will dicuss several similar but easier problems),but there is a wealth of infor-
mation about it in the literature if you are interested.

5These go under the name of thegeneral number field sieve (GNFS). The mathematics involved is
algebraic number theoryand beyond the scope of this course.

9

Remark 2.6. A functionf : N → N is said to beN P-completeor N P-hard if it is
in N P and if it is known that the statement

‘f ∈ P ⇒ P = N P ’

is true. This is a very weird notion if you haven’t seen it before, but amazingly there
are many concrete examples known ofN P-complete functions. Many come from
graph theory : for example, the problem6 of deciding whether a connected graph has a
Hamilton cycle is obviously inN P (to check whether a candidate path is a cycle that
visits every vertex exactly once is trivial), and is known tobeN P-complete.

If it is true, as conjectured, thatP 6= N P, then everyN P-complete problem lies
outsideP. This is how most people view the matter7, i.e.: that theseN P-complete
problems satisfy our intuitive understanding that there should be problems for which
finding a solution really is more difficult than simply checking one. Significantly, it is
not known (to the best of my knowledge) whether the integer factorisation problem is
N P-complete.

6The words‘problem’ and‘function’ are used interchangeably in complexity theory. The point is that
it is often more natural to describe some computational exercise in words, i.e.: as a problem to be solved,
rather than as a function to compute. But one can always make the translation to functions in a purely
formal manner.

7The alternative point of view is that, in order to drop a bombshell and prove thatP = N P, all you
need to do is find a clever solution to any singleN P-complete problem.

