1. ARSTLECTURE: 29/10

Arithmeticas a subject of serious mathematical research has its iigthe work of
Euclid. It is no exaggeration to say that the contents of Bo6® of Euclid’s Elements
(especially Book 7) form the basis of the entire modern sttbjough it would take
almost 2000 years for anyone to build significantly on hisktioEuclid is best known
for proving the following two fundamental theorems abouby@ numbers :

Theorem 1.1. (Fundamental Theorem of Arithmetic)Every natural number has a
unique representation as a product of primes.

Theorem 1.2. There are infinitely many primes.

Today we will prove Theorem 1.1 in detail. The really sigrafit part of the theorem
is the word‘unique®. If we drop this word, then we get a statement which is much
easier to prove, namely

Lemma 1.3. Every natural number has some representation as a prodyntimes.

Proof. The proof is by (strong) induction on the natural numhefThe lemma is cer-
tainly true forn = 1 (which has an empty representation as a product of primesk) an
n = 2. Assume itis true fon = 1,2, ..., k — 1 and consider the integét Two cases
arise :

Case 1 kis prime. Therk = k is an admissable representation.

Case 2 k is composite. Then, by definition of what that means, therstiine numbers
u,v such thatt = wv and1 < u,v < k. By the induction hypothesis, each @fv is
a product of primes. But then soi& (just concatenate the representations: @nd
v). O

Remark 1.4. The above simple proof is interesting in that it is probabhe @f the
oldest documented examples of a proofibgluction This is an important method for
proving statements about the natural numbers, which, egptein more modern set-
theoretic language, relies on the so-called

Well-Ordering Principle The setN of natural numbers is well-ordered, i.e.: every
non-empty set of natural numbers has a least element.

To illustrate the connection between WOP and the method aifdtion, let’s refor-
mulate the proof above.

Reproof of Lemma 1.3Let S be the set of natural numbers which cannot be written
as a product of primes. We are claiming titats empty. If it weren't then, by WOP,

it would have a least element, say Clearly, k. > 2 and, by definition, each of the
numbersl, 2, ...,k — 1 can be expressed as a product of primes. But now repeat the

Unlike Euclid’s encyclopediac recording of the fruits ofé@k geometry, it is speculated that much
of what he wrote on arithmetic was, in fact, his own work.
2It is my experience that this fact is generally overlookedigh school curricula, where the focus is
usually placed on computing prime factorisations. Thisétaasic example of putting the cart before the
horse.
1

2

argument above to deduce that so éaff his contradiction completes the proof.

Fermat made expert use of the WOP in his work, though he célig method of
infinite descent This is an appropriate choice of phrase for the kinds of iappbns
he made, which basically were about showing that certaiaebailic equations had no
integer solutions. We will come to Fermat’s work later on.

Now let us continue with the proof of Theorem 1.1. It remam@tove the unique-
ness of prime decompositions. The only known way to do thislies what at first
looks like a long detour, through the concepgoéatest common divisor he first per-
son to figure this out (i.e.: probably Euclid) must therefoeee been really clever !

Definition Leta,b € N. Thegreatest common divis@f a andb, denoted GCIu, b),
is the largest integer such that|a andc|b.

Euclid’s key insight is the following :

Euclid’s Lemma Letd = GCD(a,b). Thend equals the smallest positive integer
for which the equation
ar +by =c (1.2)

has an integer solutiom, y € Z.

Proof. Note that, by WOP, the sétof positive integers for which (1.1) has a solution
does indeed have a least element (sisicg obviously an infinite set). Letbe this least
element. We shall show that

(i) d|a andd|b,
(ii) if c|a andc|b thenc|d,

and these obviously suffice to prove that= GCD(a,b) (note that they show that
GCD(a, b) automatically has a stronger property, namely (ii), tharaiib required of
it by its definition). First of all, property (ii) is obvioudor if ¢ is any common divisor
of a andb, thenc also dividesux + by for any integers:, y, hence divided.
We prove (i) by contradiction, Suppose that a, for example. Then there exist
integersy, r such that
a=qd+r, 0<r<d. (1.2)

Let x,y be any integers satisfyingr + by = d. Substituting (1.2) into this equation
yields (after some rewriting)

ar' +by =r, wherexr' =1—qx, v = —qy. (1.3)

But this contradicts the definition afas the least positive integer for which (1.1) has a
solution. 0

For the proof of Theorem 1.1, we apply Euclid’s Lemma to dedihe following :
Lemma 1.5. Leta, b € N andp be a prime. Ifp|ab thenpl|a or p|b.

3

Proof. Suppose divides neither norb. Sincep is prime, this implies that GC@@, p) =
GCD(b,p) = 1. By Euclid’s Lemma, it follows that there existy, z, w € Z such that

ax +py = bz +pw = 1. (1.4)
Consequently,
1 = (az + py)(bz + pw) = (yw)p® + (azw + byz)p + (v2)ab. (1.5)

The left-hand side of (1.5) is obviously not divisible py But the right-hand side is,
sincep|ab. This contradiction completes the proof of the lemma. O

Corollary 1.6. If ay, ..., a;, € Nandp is a prime such that|a; - ... - ai, thenp|a; for at
least one.

Proof. Lemma 1.5 is the cage= 2. The general case is easily established by induction
onk. U

We are now ready to complete the proof of Theorem 1.1.71.€tN and let

=D Pe =G (1.6)

be two hypothetical prime decompositionsrothus repititions among thg or theg;
are allowed). We show that eaphoccurs among the; and vice versa, which clearly
suffices to conclude that the primes occuring in the two deumsitions are identical.
Takep, for example. Eq. (1.6) implies that|q; - ...- ¢;. Then Corollary 1.6 implies that
p1]g; for somej. But sinceg; is also prime, this forceg; = ¢;. The same argument
can obviously be applied to amy or ¢;, so the proof of Theorem 1.1 is complete.

It is interesting to speculate to what extent Euclid wasrggted in having aeffec-
tive proof of FTA, i.e.: a proof which also yielded an efficientalighm for finding the
prime factorisation of an integer input. One can alwaysdasé a number by brute
force exhaustive search, but this is both aestheticallyatisfging and hopelessly im-
practical for large inputs. The crucial point is that the adproof does NOT appear to
be effective. In modern times, this curious fact has acquiyreat attention because of
the advent of the RSA public key cryptosystem, which ingesip exploits the contin-
ued intractibility of the integer factorisation problenr fits own security. Note that it
is an open problem as to whether integer factorisatiomtsnsically difficult’ : to be
more precise, it is not known for example whether the probeMP-complet

A hint that Euclid was indeed interested in such computaliggsues is given by the
fact that he did present an effective version of his Lemma. tWMaa become known
asEuclid’s Algorithmremains to this day a state-of-the art algorithm for commuthe
GCD of two natural numbers and exhibiting a solution to (1.1).

3We will return to issues of algorithmic complexity on manycasions during the course. In the next
lecture, a quick introduction to the basic concepts will beqg.

4

Euclid’s Algorithm Leta, b € N. The sequence of divisions
a = qb+ry, a.7)
b= qor1 + 12,
1T =(q3r2 + 73, ...

eventually terminates with somg = 0. In that case, the last non-zero remainder ,
coincides withd = GCD(a, b). Furthermore, if we then run backwards through the
sequence of equations, we get an explicit solutiony) € Z? to the equationmx + by =

d.

Proof. It is clear that the sequence terminates sincerthferm a strictly decreasing
sequence of non-negative integers (we're using WOP agaihé) the last equation
read

Tk—2 = qkTk—1 + 0. (1.8)
We shall show that;_; satisfies properties (i) and (ii) in the proof of Euclid’s Lera.
First of all, (1.8) implies that;_; |rx_>. The next-to-last equation will have read

Th—3 = Qk—1Tk—2 + Tk—1. (1.9)

From this and the fact thaf,_, |r,_» we can conclude in turn that_, |r;_3. Continuing
the backward substitution yields in the same mannenthatdivides the left-hand term
in each equation, hence finally that it divides betandb. Thusr,_; satisfies property
().

To verify property (ii) we run forwards again. Letbe any common divisor af and
b. Then from the first equation in (1.7) we can conclude that. Substituting this
information into the next equation yields that,. And so on, until finally we find that
c|ri—1. O

Next day, we shall start by studying the computational caxipf of Euclid’s algo-
rithm in more detail.

2. SECONDLECTURE: 31/10

Today is going to consist mostly of a crash-course intradacto some basic con-
cepts in the theory odlgorithmic complexity Though it may seem like a long detour
away from number theory, | am doing this for several reasons :

1. In the computer age, the vast computational resourcesralisposal make it rel-
evant in far more situations than ever before to ask whetheartain computation is
practically feasible.

2. This is a fundamental type of question in all modern digcreathematics, not just
number theory, but number theory is a particularly rich sewf problems.

3. Within number theory, computational issues are esggdialportant for applica-
tions, for example in cryptography.

4. Many math students never seem to learn about complexatyryhr it's usually left
to the computer scientists. But developing and analysigg-kevel algorithms is more
math than computer science.

WARNING ! The discussion to follow is only meant as a quick exposurgotoe basic
notions. If you want to learn this stuff properly, then yowedeo take a course or read
a book on your own.

The basic unit of information in computer science is g i.e.. a single binary digit.

The(information-theoretic) complexityf a natural numbet is the number of its binary
digits, in other words, the number of bits of information ded to represent it. You can
talk about the information content of other types of datg,:dext, provided you have
a way of translating it into natural numbers.

For our purposes, aaigorithmis a procedure for computing a functign N — N. We
can talk about thenput andoutputof the algorithm, which are thus natural numbers.
It's natural to want to be able to consider algorithms whielkdémultiple inputs or out-
puts. One way of doing this within the above framework is toklof a sequence of
inputsny, ..., n; as a single input, by concatenating their binary represents In fact,
from some general set-theoretic nonsense it follows thatftdamework of functions
f N — Nis sufficient for any thinkable application.

There are two basic notions of complexity for an algorithramely complexity in
time andspace Informally, the former measures the amount of time reqliie the
algorithm to run, as a function of the input size (whereeis an informal term for
‘information-theoretic complexity’), whereas the latteeasures the amount of storage
space required by the algorithm. In what follows | will prinia be interested in tem-
poral complexity.

When studying time complexity, one first needs to make a chafiGecomputational

6

unit. This should be some basic type of operation which shouldrrtime same time on
any computer equipped witlstate-of.the-art’ hardware, i.e.: the time required stioul
depend ONLY on the hardware, and thus not be an issue for mati@ans to worry
about. Traditionally, the choice of unit is the so-calleitl operation This involves
adding two bits modulo 2, and carrying a 1 in the casé©fl = 0. We then choose as
our unit of time that required to perform a single bit opeyatiso that the time complx-
ity of an algorithm is just the number of bit operations itfoems.

A ‘fast’ or ‘good’ algorithm is one which requires few bit operationsislik, of course,
a hopelessly vague statement. To be more precise, the mosttant general notion of
‘goodness’ for an algorithm is the following :

Definition An algorithm is said to b@olynomial-timaf the number of bit operations it
performs grows polynomially in the input size. In other weren algorithm for comput-
ing a functionf : N — N is polynomial-time if there exists a polynomialz) € Z|x]
such that, for input € N, the algorithm computeg(n) after no more thap(log, n)
bit operations.

If p(x) can be taken to be a linear function, then the algorithm id gabelinear.
If p(x) can be taken quadratic, we say the algorithrguadratic And so on ... Note
that this choice of terminology means, for example, thatafsay an algorithm is cubic,
then it doesn’t rule out the possibility that there is a fgstay quadratic, algorithm for
performing the same computation. In fact, it doesn’t evde out the possibility that a
more careful analysis of the same algorithm will reveal ibeoquadratic.

The reason why this notion is important is because the bgscations of arithmetic,
addition and multiplication, are polynomial-time.

Proposition 2.1. Addition is linear and multiplication is quadratic. In othevords,
there is SOME algorithm which adds two numbers in linear tinmel, &OME algorithm
which multiplies two numbers in quadratic time.

Proof. (sketch)The algorithms in question are the ones everyone learnemegitary
school, just with base 2 instead of base 10. Consider addiorexample. We give
two numberse,b € N as input. Thus the size of the input i®g, a] + [log, b]| +

¢, wheree € [0,2]. To add them, we write them out in binary, one on top of the
other, tag on some zeroes on the left for the smaller numheedéssary, so that we
have the same number of digits in both numbers, and then ddohneby-column. We
perform a single bit operation for each column, thus the rigm requires no more
than [log,(max{a,b})] + 1 bit operations. This is clearly linear in the input size : in
the notation of the previous definition, we can take) = x + 1 for example.

For multiplication, we use the usual long multiplicatiomgatithm. You'll have a
bunch of rows to add, one for each digit in the largen@ndb (with zeroes tagged on
appropriately on the left so that we have the same numbergitsdn each row). We
don’t count the time required to write out each row, sinceasd? this is just transcrip-
tion and involves no bit operations. We then add the rowslprene. Each addition is
linear in the input size by what we showed above, and the nuofedditions equals
the number of rows minus one, which is also linear in the irpeé¢. Thus the total

7

number of bit operations will be quadratic in the input sizZemore careful analysis
will show that one can takg(z) = 222, for example. 0

Remark 2.2. There is, believe it or not, a way of multiplying numbers whis faster
when the numbers become large. In fact, there are a pletfistecbfast multiplication
algorithms However, the math behind all of them is far more sophistidgvhich
explains why they aren’t taught in elementary school !). dtiye interested then do a
Wikipedia search for th&chdnhage-Strassen algorithm

Now let’'s go back to something resembling number theory,\ady that Euclid’s
algorithm is indeedfast’.

Theorem 2.3. Euclid’s algorithm runs in polynomial time. In fact, it isloigc.

Proof. Let’s consider only thé&forward part’ of the algorithm, i.e.: the input is a pair of
numbersz, b € N and the output ig = GCD(a, b)*. As in (1.7), the algorithm consists
of a sequence of steps, each of which has the form : take afoaimobern,; > ny as
input and output integekg r satisfying

ni=qna+r, 0<r<ns. (2.1)

Thus each step is essentially just a division. | leave it asxamcise for you to check
that, just as with multiplication, the elementary schoeiglon algorithm is quadratic.
Thus to prove the theorem, it suffices to show that the numbsteps cannot be more
than linear in the input size. | will prove something moregise, namely :

CLAIM : For inputa,b € N with a > b, the number of steps in Euclid’s algorithm
is never more tha(log, b+ 1) .

Proof of Claim. The idea is to show that any two consecutive steps at leagt ltiad
remainder. Two such generic steps can be written as

Tic1 = Qir1Ti + Tig1, (2.2)
Ty = Qir2Ti41 + Tigo.

I am claiming that;,, < %ri. This is obvious if already; | < %ri, since the remain-
ders are decreasing. #f.; > %n then, in the second equation of (2.2) we will have
Qiv2 = 1, and ther"“z‘+2 =T —Tip1 <T; — lTZ‘ = %T’i, as desired.

2
Now suppose* < b < 2F*1. The numbe is the ‘zeroth’ remainder in the algo-
rithm. Every pair of steps reduces this by at least half. Tiger&ghm terminates when
the remainder is zero. Since each remainder is an integeoa, phis is equivalent to
saying that the algorithm terminates when the remaindessthan one. To ensure this,
we will need to halvé a total ofk + 1 times, so the algorithm will certainly require no
more thar2(k + 1) steps. Buk < log, b. This establishes our claim and completes the
proof of the theorem. O

4If you also want as output an explicit solutionde + by = d, then basically the run-time doubles,
since you also have to run the whole algorithm backwards.

8

Remark 2.4. Some interesting stuff is known about average- and wors¢-saenarios
for the number of steps required by Euclid’s algorithm. See

http://algo.inria.fr/'seminars/sem92-93/daude.ps

for a recent synopsis. Note, in particular, that

(i) the ‘average’ (one has to make precise what one means by this)enwhbteps
required isC'log, b with C' = 12/7% ~ 1.216...

(ii) the worst-case scenario is when the input$ are consecutivé&ibonacci num-
bers i.e.. b = f, anda = f,, for somek, where the sequendg,,) is defined recur-
sively by

f1:f2:1a fn:fn—1+fn—2vn>2‘ (23)

Notation One denotes by” the class of functiong : N — N which can be com-
puted (by some algorithm, and for arbitrary inputs) in pagmal time. One denotes by
N 2 the class of functiong with the property that, given andk, the truth or falsity
of the statemeritf (n) = &’ can be decided in polynomial time.

A function in the class” must also be in/" &. Forif f € &2 and we want to check
the validity of the statemenf(n) = &k’ then we just run a polynomial-time algorithm
for computingf(n) and then check whether the output equalsThus, we can write
symbolically,Z C 4 .

| think it is intuitively reasonable to expect that the corseeis not true, i.e.: to expect
that there should be some computational problems out thergtfich it is much easier
to check the validity of a candidate solution than to find tbkeion in the first place.
Amazingly, it is not known if this intuition is valid. | persally regard the following as
the most important open problem in mathematics :

Conjecture 2.5. & # N X

There are many interesting examples of functions which axéoosly in.4" &2 but
for whom it is unknown whether or not they are i®. One of the most important
examples is thanteger factorisation problenm number theory. Inits simplest form, this
takes as input a natural numbewhich is known to be a product of two distinct primes
p1, p2 and outputs these two primes. Because the security of the &@@Rosystem
relies on the intractability of this problem, it has receielot of attention in the last 30
years or so (though it is probable that even Euclid was awhits thorny nature). To
the best of my knowledge, the fastest general algorithmgased on ideas developed
at least 15 years agand have run-time of the order ef™°s™. This is certainly not
polynomial inlogn and, with current technology, becomes impractical for ispu
consisting of a couple of thousand decimal digits.

| will probably not discuss the factorisation problem difg@ny more in this course
(though I will dicuss several similar but easier problenhsit, there is a wealth of infor-
mation about it in the literature if you are interested.

5These go under the name of theneral number field sieve (GNFShe mathematics involved is
algebraic number theorgind beyond the scope of this course.

9

Remark 2.6. A function f : N — N is said to be /" &7-completeor .4 Z-hardif it is
in /& and if it is known that the statement

PP = NP

is true. This is a very weird notion if you haven't seen it biefobut amazingly there
are many concrete examples known.df &2-complete functions. Many come from
graph theory : for example, the probl&wf deciding whether a connected graph has a
Hamilton cycle is obviously in4” &7 (to check whether a candidate path is a cycle that
visits every vertex exactly once is trivial), and is knowrbe. 4" &7-complete.

Ifitis true, as conjectured, tha? # .+ &7, then every /" &7-complete problem lies
outsideZ2. This is how most people view the mattgire.: that theset” 22-complete
problems satisfy our intuitive understanding that thereusth be problems for which
finding a solution really is more difficult than simply cheegione. Significantly, it is
not known (to the best of my knowledge) whether the integetofésation problem is
N P-complete.

5The words problem’ andfunction’ are used interchangeably in complexity theorge point is that
it is often more natural to describe some computational@seiin words, i.e.: as a problem to be solved,
rather than as a function to compute. But one can always nieké&anslation to functions in a purely
formal manner.

The alternative point of view is that, in order to drop a bohmdkand prove that? = 4+ 22, all you
need to do is find a clever solution to any singleZ?-complete problem.

