
9. NINTH LECTURE : 17/11

We continue with applications of the algebraic tools developed in the last few lec-
tures.

Proposition 9.1. Let p be a prime. Then the congruencex2 ≡ −1 (modp) has a
solution if and only ifp = 2 or p ≡ 1 (mod4).

Proof. If p = 2 thenx = 1 is a solution. Now supposep is an odd prime. Ifx2 ≡
−1 (modp) then, considered as an element of the groupZ∗

p, x has order4. But this
group is cyclic of orderp − 1, hence has an element of order4 if and only if 4|p − 1,
i.e.: if and only ifp ≡ 1 (mod4). �

We give two nice applications of this proposition. The first is another special case of
Dirichlet’s Theorem :

Proposition 9.2. There are infinitely many primes congruent to 1 (mod 4).

Proof. As with Theorem 7.2, the basic idea is to suitably modify Euclid’s original ar-
gument (Theorem 1.2). We thus suppose that there are only finitely many primes con-
gruent to 1 (mod 4), and list them all asp1, ..., pn. This time we consider the number

T :=

(

2 ·
n
∏

i=1

pi

)2

+ 1. (9.1)

Clearly T is not divisible by anypi. It is an odd number so all of its prime factors
are odd. Letp be a prime factor ofT . I claim thatp ≡ 1 (mod4). For consider the
numberx = 2 ·∏n

i=1 pi. If p|T thenp|x2 + 1, which implies thatx2 ≡ −1 (modp). By
Proposition 9.1, this means thatp ≡ 1 (mod4), as claimed. Sincep is not on our list,
we have a contradiction which completes the proof. �

A more impressive application of Proposition 9.1 is the following theorem of
Fermat :

Theorem 9.3.Letp be a prime. Then there exist integersx, y such that

x2 + y2 = p, (9.2)

if and only ifp = 2 or p ≡ 1 (mod4).

Proof. If p = 2 then we have the solutionsx = ±1, y = ±1. If p ≡ 3 (mod4) then
there is clearly no solution, since the square of any integermust be congruent to 0 or 1
modulo 4, so that the sum of two integer squares must be congruent to 0,1 or 2 modulo
4.

Now supposep ≡ 1 (mod4). By Proposition 9.1, there exists an integerx such that
x2 ≡ −1 (modp). Fix such anx and consider the functionf : Z → Z given by

f(u, v) = u + xv. (9.3)

Let K = [
√

p] so thatK <
√

p < K + 1. There are(K + 1)2 > p pairs (u, v) of
integers satisfying0 ≤ u, v ≤ K. Thus, by the Pigeonhole Principle, there must be two
distinct pairs, say(u1, v1) and(u2, v2) such that

f(u1, v1) ≡ f(u2, v2) (modp) ⇒ (u1 − u2) ≡ −x(v1 − v2) (modp). (9.4)
1
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Let a := u1 − u2, b := v1 − v2. Sincex2 ≡ −1 (modp), it follows thata2 + b2 ≡
0 (modp). At least one ofa, b 6= 0, since otherwise the pairs(u1, v1) and(u2, v2) would
coincide. Thusa2 + b2 6= 0. But since all ofu1, v1, u2, v2 lie in the interval[0, K], each
of a andb must lie in the interval[−K,K]. Hencea2 + b2 ≤ 2K2 < 2p.

To summarise, we have shown thata2 + b2 is a multiple ofp and lies strictly between
0 and2p. It follows thata2 + b2 = p, and the proof is complete. �

Remark 9.4. I find this result surprising from a heuristic viewpoint. Given anyn ∈ N,
there are1 + ⌊√n⌋ integer squares between0 andn. Hence there are aboutn pairs of
such squares, and thus no more than aboutn possible distinct sums of two such squares.
But these sums are spread over the whole interval from0 to 2n, so only half of them
should lie in[0, n]. Thus we cannot expect be able to express more than about halfof
the numbers up ton as sums of two squares. Hence, it is surprising that every single
prome congruent to 1 (mod 4) has such a representation. One could, of course, argue
that only half of all primes are sums of two squares anyway, since no prime congruent
to 3 (mod 4) has such a representation. But I find this heuristic argument unconvincing,
since the problem with numbers congruent to 3 (mod 4) is not confined to primes, and
it doesn’t explain why it should be made up for especially by other primes.

Theorem 9.3 can be extended to non-primes. Before stating the result, we need a
lemma :

Lemma 9.5. The set of integers which can be expressed as a sum of two squaresis
closed under multiplication.

Proof. This is a direct consequence of the algebraic identity

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2. (9.5)

The‘best’ way to think about this identity is as follows : consider the complex numbers

z1 := a + bi, z2 := c + di. (9.6)

Then (9.5) is equivalent to the statement that1

|z1z2| = |z1||z2|. (9.7)

�

Notation. The notationpα||n means thatpα is the highest power of the primep which
divides the integern, i.e.: pα|n andpα+1 † n.

Theorem 9.6. Let n ∈ N. Then there exist integersx, y satisfyingx2 + y2 = n if and
only if, in the prime factorisation ofn, every prime congruent to 3 (mod 4) appears to
an even power.

Proof. Lemma 9.5 is easily seen to imply the sufficiency of the condition in the theorem
since note that, ifn ∈ N is a perfect square, sayn = m2, thenn = 02 + m2 is a valid
representation ofn as a sum of two squares.

1More abstractly, (9.7) asserts that the ordinary absolute value function for complex numbers induces
anorm in the algebraic number fieldQ(i), the so-called field ofGaussian numbers.
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We will prove the necessity by a contradiction argument2. Supposen is a sum of two
squares and thatp2k+1||n for some primep ≡ 3 (mod4) andk ≥ 0. Let n = x2 + y2,
say. Thenx2 + y2 ≡ 0 (modp). If y were not divisible byp, this would imply that

(xy−1)2 ≡ −1 (modp), (9.8)

wherey−1 denotes the multiplicative inverse ofy in Z∗
p. Eq. (9.8) would contradict

Proposition 9.1. Thusp|y and, by a similar argument,p|x. Let x = px1, y = py1. Then
x2

1 + y2
1 = n1, wheren1 = n/p2 and thusp2(k−1)+1||n1.

We can now iterate the arguments of the previous paragraph toproduce a non-ending
sequence of integersn1, n2, ... divisible by lesser and lesser, but always odd, powers of
the primep. Clearly, this is ridiculous so the proof is complete. �

2The method of infinite descent.
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10. TENTH LECTURE : 19/11

There are two conceptually quite distinct ways of looking atTheorem 9.6 from last
day, which take one down different, but well-travelled paths.

ALTERNATIVE 1 : See it as a result inadditivenumber theory, i.e.: roughly speak-
ing, as a statement about expressing numbers as sums of othernumbers.
ALTERNATIVE 2 : See it as a result aboutquadratic forms.

In the next few lectures, we will be concerned with exploringAlternative 2. First of
all, though, I want to state some major results and open problems one encounters if
one explores Alternative 1, and later in the course I will give a general introduction to
additive number theory.

Theorem 9.6 tells us which non-negative integers can be expressed as sums of two
squares. Since the answer is‘not all’, it is very natural to ask what happens if we allow
longer sums. There are the following two famous results :

Theorem 10.1. (Gauss)A non-negative integer is a sum of three squares if and only if
it is not of the form4km, wherem ≡ 7 (mod8).

It is easy to check that the conditions of the theorem are necessary (see Homework
3). Proof of sufficiency is highly non-trivial, however, andbeyond the scope of this
course. For a proof, see for example the book

J.-P. Serre,A Course in Arithmetic (Cours d’Arithmétique), Springer GTM Series.

Theorem 10.2. (Lagrange 1770)Every non-negative integer is a sum of four squares.

This is actually easier to prove than Gauss’ theorem, and we will do so later on. Note
that Theorems 10.1 and 10.2 are still concerned with quadratic forms. The step beyond
quadratic forms, and deeper into the realm of additive number theory, was taken by
Waring who, also in 1770, reputedly sent a handwritten letter to Euler containing the
following conjecture :

Waring’s Problem. For everyk ∈ N, there exists an integerg(k) such that every non-
negative integer can be written as a sum ofg(k) perfectk:th powers of non-negative
integers.

Note that Theorems 10.1 and 10.2 together imply thatg(2) = 4. Trivially, g(1) = 1.
Not much else was known until 1909, when Hilbert proved the conjecture for allk.
Hilbert’s proof is ‘purely combinatorial’, i.e.: he doesn’t use analysis, but is long and
complicated. An alternative proof, using Fourier analysis, was provided by Hardy and
Littlewood in the 1920s. This proof is far better known sincetheir method, now known
as theHardy-Littlewood circle method, has proved far more influential than that of
Hilbert. It is one of the key tools of analytic number theory to this day, and some of the
most famous results in the subject have been obtained using it, especially problems of
an additive nature. I wish to state two particularly famous results. The first concerns
sums of primes :
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Theorem 10.3. (Vinogradov 1937)Every sufficiently large odd number is a sum of
three primes.

It is not known whether every odd number greater than 7 is a sumof three primes.
Though Vinogradov’s theorem leaves only a finite collectionof numbers to check, the
number that comes out of his analysis, as the bound up to whichone has to check, is
really enormous and far out of the range of current hardware and software.

Note that Theorem 10.3 implies that every sufficiently largenumber is a sum of at
most 4 primes. Thus, there is certainly somek > 0 such that every number greater than
one is a sum of no more thank primes. This fact was actually proven by Schnirelmann
already in 1930 by combinatorial means. Schnirelmann’s methods have actually had
a lasting impact on additive number theory and we may say moreabout them later in
the course. Regarding sums of primes, however, his approachgives a totally unrealistic
value ofk and seems to reach a dead-end. What one expects to be the‘truth’ is con-
tained in the following famous open problem :

Goldbach’s Conjecture.Every even number greater than two is a sum of two primes.

It is known that Goldbach’s conjecture is true for‘most’ numbers. Mopre precisely,
in 1938 van der Corput applied Vinogradov’s methods to prove

Theorem 10.4.For an integern > 1, letAn denote the number of even integers among
{4, 6, ..., 2n} which can be expressed as a sum of two primes. Then

lim
n→∞

An

n
= 1. (10.1)

Note that the proof of this result is totally non-constructive, i.e.: it doesn’t tell us
anything about whether any specific even number is a sum of twoprimes or not. It
is also curious that the circle method, as applied by Vinogradov, gets one so close to
Goldbach’s Conjecture, but just seems to fall short at the last hurdle !

The second major result I wish to mention which was established using the Hardy-
Littlewood method concerns integer partitions.

Definition. Let n ∈ N . A partition of n is a set{a1, ..., ak} of positive integers such
that

n = a1 + · · · + ak. (10.2)

Note that we do not distinguish between partitions in which the same terms have just
been reordered. Thepartition functionp(n) counts the number of partitions ofn.

Example. p(5) = 7 and all the partitions of5 are

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. (10.3)

Hardy and Ramanujan established an amazing asymptotic formula for the partition
function. In its simplest form it states that
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Theorem 10.5.

p(n) ∼ eπ
√

2n/3

4
√

3 n
. (10.4)

Remark 10.6. Let c(n) denote the number ofcompositionsof a positive integern,
i.e.: the number of solutions to (10.1), where this time we distinguish between re-
ordered solutions. It can be shown by a clever one-line argument (see Homework 3) that
c(n) = 2n−1. Note, in particular, that the functionc(n) grows exponentially, whereas
p(n) exhibits so-calledintermediate growth, i.e.: faster than polynomial but slower than
exponential.

Remark 10.7. It is known that the functiong(k) grows exponentially withk, but this
is because, for eachk, there are a finite number of relatively small numbers which
are particularly awkward to write as a sum ofk:th powers (see Homework 3). More
interesting are thus the functionsG(k), defined as the smallest number ofk:th powers
needed to represent any sufficiently large number. The only values of this function that
are known areG(1) = 1, G(2) = 4 andG(4) = 16, and the computation of the function
for otherk remains an active area of research.

For an in-depth introduction to the Hardy-Littlewood method and its application to
Waring’s Problem, Goldbach’s Problem, partitions and other additive problems, I rec-
ommend the following texts :

1. R.C. Vaughan,The Hardy-Littlewood Method (2nd edition), Cambridge University
Press (1997).
2. G.H. Hardy,Trois Problèmes célèbres de la theorie des nombres, Les Presses Uni-
versitaires de France (1931).

The bookIntroduction to the Theory of Numbers, also by Hardy, contains a lot of
information on‘elementary’ approaches to these famous additive problems.Another
good reference for elementary approaches isElementary Number Theory, by Melvyn
Nathanson.

In the next lecture, we will start exploring what I identifiedas Alternative 2 above.
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11. ELEVENTH LECTURE : 19/11

We prepare the ground for our discussions of both quadratic forms and L-functions
with some more algebraic preliminaries.

Definition. Let G be a finite abelian3 group. A characterof G is a homomorphism
χ : G → C∗, whereC∗ denotes the multiplicative group of non-zero complex numbers.
The collection of all characters of a groupG is denotedĜ.

Definition. Let n ∈ N. A complex numberζ satisfyingζn = 1 is called ann:th
root of unity. If ζn = 1 but ζn 6= 1 for 1 ≤ k < n, then we say thatζ is aprimitiven:th
root of unity. The collection of alln:th roots of unity is denotedµn.

Proposition 11.1.
µn = {e2πik/n : 0 ≤ k < n}. (11.1)

In particular, |µn| = n. µn is a subgroup ofC∗. The primitiven:th roots of unity are
the numberse2πik/n satisfying GCD(k, n) = 1.

Proof. All these statements are pretty obvious. �

Proposition 11.2.LetG be a finite abelian group of ordern andχ ∈ Ĝ. Thenχ(G) ⊆
µn.

Proof. Let g ∈ G. Thengn = 1G, by Lagrange’s Theorem. Thusχ(gn) = χ(1G). Since
χ is a homomorphism we have, on the one hand, thatχ(1G) = 1 and, on the other, that
χ(gn) = [χ(g)]n. Thus[χ(g)]n = 1, soχ(g) ∈ µn, v.s.v. �

Characters can be multiplied pointwise as functions, i.e.: if χ1, χ2 ∈ Ĝ, then we can
define their‘product’χ1χ2 by

(χ1χ2)(g) := χ1(g)χ2(g). (11.2)

Proposition 11.3. Ĝ is closed under the multiplication defined above, i.e.: ifχ1 and
χ2 are characters, then so isχ1χ2. Moreover,Ĝ is a finite abelian group under this
operation.

Proof. It is easy to check that ifχ1 andχ2 are both characters, then so isχ1χ2. The
function which sends every element ofG to 1 is an identity element for this multiplica-
tion. Finally, an inverse to the characterχ is the function

χ−1(g) :=
1

χ(g)
= χ(g). (11.3)

ThusĜ is an abelian group. It is finite, since both the domain and range of any character
are contained inside fixed finite sets, by Proposition 11.2. �

Notation. The identity element in̂G is called thetrivial characterand is often de-
notedχ0.

An important fact is the following :

3The definition makes sense for any group, finite or infinite, abelian or not, but we confine attention
to abelian groups for simplicity, since only such groups will actually be considered.
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Theorem 11.4.For any finite abelian groupG, the groupsG andĜ are isomorphic as
abstract groups4.

Proof. (sketch)By the Fundamental Theorem of Finite Abelian Groups, any finite abelian
group can be decomposed as a direct product of cyclic groups.Suppose

G = < g1 > × · · · × < gr > ∼= Cn1
× · · · × Cnr

. (11.4)

For eachs = 1, ..., r, letχs : G → C∗ be the unique character defined by the conditions

χs(gk) =

{

e2πi/ns , if k = s,
1, if k 6= s.

(11.5)

Then it is not hard to check thatχs has orderns in Ĝ and that

Ĝ ∼= < χ1 > × · · · × < χr > ∼= Cn1
× · · · × Cnr

∼= G. (11.6)

�

Remark 11.5. Given a basis forG as in (11.4), the corresponding basis forĜ defined
by (11.5) is called thedual basis. In fact, the group̂G is sometimes called thedual
groupof G.

Definition. A characterχ of a groupG is said to bereal if χ(G) ⊆ R. By Proposition
11.2, it is then the case thatχ(G) ⊆ {±1}.

In number theory, the groups we are interested in first and foremost are the groups
Z∗

n.

Definition. A character of the groupZ∗
n is called aDirichlet charactermodulon. A

functionχ : Z → C is called anextended Dirichlet charactermodulon if the following
three conditios are satisfied :

(i) χ(x) = χ(y) wheneverx ≡ y (modn), so thatχ can be considered as a function
from Zn to C,

(ii) as such, the restriction ofχ to Z∗
n is a Dirichlet character modulon,

(iii) χ(x) = 0 whenever GCD(x, n) > 1.

Supposen = p, a prime. SinceZ∗
p is cyclic, there is only one non-trivial real Dirichlet

character modulop. This is called theLegendre symbolmodulop and is denoted
(

·

p

)

.

The corresponding extended character is given explicitly by

(

a

p

)

=







0, if p|a,
1, if p † a and the congruencex2 ≡ a (modp) has a solution,
−1, otherwise.

(11.7)

The elementsa ∈ Z∗
p for which

(

a
p

)

= 1 are called thequadratic residuesmodulop.

4For a general finite groupG we have an isomorphism̂G ∼= G/G′, whereG′ is the commutator
subgroup ofG.
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We now turn to quadratic forms. Inspired perhaps by scattered observations of Fer-
mat like Theorem 9.3, Gauss initated a rigorous study of Diophantine equations

f(x1, ..., xk) = n, (11.8)

wheref is a so-calledquadratic form, i.e.: a homogeneous polynomial of degree 2.
Thus the general form off is

f(x1, ..., xk) =
k
∑

i=1

aiix
2
i +

∑

1≤i<j≤k

aijxixj, aij ∈ Z. (11.9)

He developed a very comprehensive theory for forms in 2 variables (so-calledbinary
forms), though it would take another hundred years before a correspondingly compre-
hensive theory was worked out satisfactorily for arbitraryforms. Gauss wrote a book
on arithmetic,Disquitiones Arithmeticae, when in his mid-twenties, and a large part of
this text is concerned with presenting his theory of binary quadratic forms. Gauss’ main
insight was that, just as was the case in Theorem 9.3 for the form f(x, y) = x2 +y2, the
question of existence of, and even the number of, solutions to (11.8) could essentially
be reduced to solving congruences5. I have decided not to go into the details of Gauss’
theory in this course, as there are other things I want to do and it would take a significant
amount of time. But see, for example, my lecture notes from 2004 for a comprehensive
account. I will confine myself to some basic observations about quadratic congruences,
without indicating the deeper connections with quadratic equations.

In fact, I will only talk about the basic one-variable quadratic congruence modulo a
prime (for non-prime moduli, see Homework 3) :

ax2 + bx + c ≡ 0 (modp), p prime,p † a. (11.10)

Now, sinceZp is a field, the usual procedure for solving a quadratic equation in C

remains valid in the present context, so we get an explicit formula for the solutions
when they exist, namely

x ≡ −b ±
√

b2 − 4ac

2a
(modp). (11.11)

In particular, solutions exist if and only ifb2 − 4ac is a square inZp. More precisely,

Proposition 11.6. If p is an odd prime, then the number of solutions to (11.10) inZp is

1 +
(

b2−4ac
p

)

.

Proof. One needs to check that if
(

ξ
p

)

= 1 then the congruencex2 ≡ ξ (modp) has

exactly two solutions inZp. This is easily seen to reduce to checking that

x2 ≡ y2 (modp) ⇔ x ≡ ±y (modp). (11.12)

To see this, the left-hand side implies thatp|x2 − y2 ⇒ p|(x − y)(x + y) ⇒ p|x − y or
p|x + y, sincep is prime, hencex ≡ ±y (modp), as desired. �

5The ultimate expression of this philosophy, for quadratic forms in an arbitrary number of variables,
is the so-calledHasse principlewhich, roughly speaking, states that the existence of solutions to (11.8)
can be determined by examining the equation modulo only a finite number of prime powers, depending
only on the coefficients inf . A precise statement is the renownedHasse-Minkowski Theorem, which is
too technical to state here. See Serre’s book,A Course in Arithmetic, for an account of this theory.
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Thus deciding whether or not a quadratic congruence to a prime modulus has a so-
lution reduces to computing a Legendre symbol6. Efficient methods for computing
Legendre symbols were developed in historical order by Euler, Gauss and Jacobi. It
is Gauss’ result which was the main breakthrough. His so-called Law of Quadratic
Reciprocitystates the following :

Theorem 11.7.Letp andq be distinct odd primes. Then
(

p

q

)(

q

p

)

= (−1)
1

4
(p−1)(q−1). (11.13)

In other words,
(

p

q

)

6=
(

q

p

)

if and only if p ≡ q ≡ 3 (mod4). (11.14)

The proof of this major result, which requires a good deal of effort, will occupy the
next one and a half lectures. Before we start with that, I wantto illustrate the usefulness
of the result with some examples.

Example 1.Proposition 9.1 can be restated as :
(−1

p

)

= 1 ⇔ p = 2 or p ≡ 1 (mod4). (11.15)

Example 2.Let p be an odd prime. I claim that
(−3

p

)

= 1 ⇔ p ≡ 1 (mod3). (11.16)

To see this, first note that since the Legendre symbol is a character, we have
(−3

p

)

=

(−1

p

)(

3

p

)

. (11.17)

Thus, for
(

−3
p

)

= 1 to be satisfied, there are two possibilities :

CASE 1 :
(

−1
p

)

=
(

3
p

)

= +1,

CASE 2 :
(

−1
p

)

=
(

3
p

)

= −1.

First consider Case 1. From Example 1 we must havep ≡ 1 (mod4). Sincep 6≡
3 (mod4), Gauss reciprocity implies that

(

3
p

)

=
(

p
3

)

. But clearly,
(

p
3

)

= 1 ⇔ p ≡
1 (mod3).

Thus, the conditions of Case 1 are satisfied if and only if bothp ≡ 1 (mod4) and
p ≡ 1 (mod3).

Case 2 is analysed similarly. This time, Example 1 tells us that p ≡ 3 (mod4). Since

6Once it is known that
(

ξ

p

)

= 1, there is a polynomial-time algorithm for computing
√

ξ (modp).

See Section 2.2 of Koblitz’ book,A Course in Number Theory and Cryptography, for an account of this
algorithm.
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obviously3 ≡ 3 (mod4), Gauss reciprocity tells us this time that
(

3
p

)

= −
(

p
3

)

. Thus

we again want
(

p
3

)

= +1, hencep ≡ 1 (mod3).
In summary, the conditions of Case 2 are satisfied if and only ifbothp ≡ 3 (mod4)

andp ≡ 1 (mod3).

Altogether, then, the conditions of either Case 1 or Case 2 are satisfied by an odd prime
p if and only if p ≡ 1 (mod3), as claimed.

We ran out of time, so will continue next day ....
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12. TWELVTH LECTURE : 21/11

Example 2 from the last lecture leads to another special caseof Dirichlet’s theorem.

Proposition 12.1.There are infinitely many primes congruent to 1 (mod 3).

Proof. Similar to that of Proposition 9.2. Assume there are only finitely many such
primes and list them all asp1, ..., pn. Consider this time the number

T :=

(

2 ·
n
∏

i=1

pi

)2

+ 3. (12.1)

No pi = 3, thusT is not divisible by anypi. Neither is it divisible by2 or 3. Let p be
a prime divisor ofT and setx := 2 ·∏n

i=1 pi. Thenp|x2 + 3 sox2 ≡ −3 (modp). By
Example 2, this implies thatp ≡ 1 (mod3), but sincep is not on our list, we have a
contradiction. �

Example 3.Find all primesp for which
√

7 exists modp.

Obviously, we can takep = 7. Otherwise, we seek thosep for which
(

7
p

)

= 1. If

p = 2, then
√

7 ≡ 1 (mod2). Otherwise,p is odd and we can exploit Gauss reciprocity.
Since7 ≡ 3 (mod4), there are two cases to consider :

CASE 1 : p ≡ 1 (mod4). Then
(

7
p

)

=
(

p
7

)

, so we want
(

p
7

)

= 1. One checks by

hand that the quadratic residues mod 7 are 1,2 and 4. Thus there are three possibilitites
for p (mod7). Together with the condition mod 4, this gives (by the CRT) three possi-
bilities mod 28.

CASE 2 : p ≡ 3 (mod4). Then
(

7
p

)

= −
(

p
7

)

, so we want
(

p
7

)

= −1. The qua-

dratic non-residues mod 7 are 3,5 and 6. So once again we’ll have three possibilities
mod 28.

In total, we have six possibilities mod 28 :
p (mod4) p (mod7) p (mod28)

1 1 1
1 2 9
1 4 25 ≡ −3
3 3 3
3 5 19 ≡ −9
3 6 27 ≡ −1

So the answer to the question posed is that
√

7 exists modp if and only if p = 2,
p = 7 or p ≡ ±1,±3 or±9 (mod28).

We now turn to the proof of Theorem 11.7. We will need two preliminary results,
Euler’s criterionandGauss’ lemma.
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Proposition 12.2. (Euler’s criterion) Letp be an odd prime anda ∈ Z such thatp † a.

Then
(

a
p

)

= +1 if and only ifa(p−1)/2 ≡ +1 (modp).

Proof. The groupZ∗
p is cyclic of orderp−1. Hence an elementa of this group is a square

if and only if its order divides(p− 1)/2, in other words, if and only if, considered as an
ordinary integer,a(p−1)/2 ≡ 1 (modp), v.s.v. �

Remark 12.3. (i)If
(

a
p

)

= −1 thena(p−1)/2 ≡ −1 (modp).

(ii) Eulers criterion gives an efficient method for computing anyindividual Legendre
symbol, using the square and multiply algorithm. However, it doesn’t help us answer
the kind of question asked in the examples above, namely, given a ∈ Z, for which

primesp is
(

a
p

)

= 1 ? For that, we’ll need Gauss reciprocity (and its extension by

Jacobi, as we’ll see later).

Theorem 12.4. (Gauss’ lemma)Letp be an odd prime. For eachn ∈ Z, let [n] denote
the unique number satisfying[n] ≡ n (modp) and−1

2
p < [n] < 1

2
p.

Now leta ∈ Z such thatp † a and setaj = [aj] for eachj ∈ Z. Then
(

a

p

)

= (−1)l (12.2)

where

l = #{j : 1 ≤ j ≤ p − 1

2
andaj < 0.} (12.3)

Proof. We evaluate the product

P :=

(p−1)/2
∏

j=1

aj (modp) (12.4)

in two different ways. First, by its’ very definition,

P = a(p−1)/2

(

p − 1

2

)

! ≡
(

a

p

)(

p − 1

2

)

!, (12.5)

by Euler’s criterion. On the other hand, by definition we alsohave that

P ≡
(p−1)/2
∏

j=1

aj. (12.6)

Now I claim that, ifj 6= k, thenaj 6≡ ±ak (modp). For if aj ≡ ±ak thenaj ≡ ±ak ⇒
p|a(j ∓ k) ⇒ p|j ∓ k. But bothj andk lie in the interval[1, p−1

2
], so if j 6= k, then

|j ∓ k| ≤ 2 · (p−1
2

) = p − 1 < p, which makes it impossible for this quantity to be
divisible byp.

Thus we’ve established our claim. This implies that the quantities |aj| are just a
permutation of the numbers1, 2, ..., p−1

2
, asj runs from 1 top−1

2
. By definition, l of

them are negative. Hence

P ≡
(p−1)/2
∏

j=1

aj = (−1)l ·
(

p − 1

2

)

! (12.7)
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But (12.2) follows immediately from (12.5) and (12.7). �

Remark 12.5. The number[n] ∈
[

−p−1
2

, p−1
2

]

such thatn ≡ [n] (modp) is called the
numerically least residueof n modulop.

Gauss’ lemma is of interest in its own right (which is why I called it a theorem). For

example, it allows us to calculate the Legendre symbol
(

2
p

)

, which is not covered by

the reciprocity law.

Corollary 12.6. Letp be an odd prime. Then
(

2

p

)

= (−1)
p
2
−1

8 =

{

1, if p ≡ ±1 (mod8),
−1, if p ≡ ±3 (mod8).

(12.8)

Proof. We takea = 2 in Gauss’ lemma. Letj ∈ [1, p−1
2

]. Then

[2j] > 0 ⇔ 2j ≤ p − 1

2
⇔ j ≤ ⌊p − 1

4
⌋.

Hence, fora = 2, the quantityl in Gauss’ lemma is just

l =
p − 1

2
− ⌊p − 1

4
⌋. (12.9)

It is now a short but tedious computation to verify that, for any odd numberp, the RHS
of (12.9) is congruent to(p2−1)/8 modulo 2. This and Gauss’ lemma yield the desired
result. �

We will finish the proof of the reciprocity law next day.


