9. NINTH LECTURE: 17/11

We continue with applications of the algebraic tools depebbin the last few lec-
tures.

Proposition 9.1. Let p be a prime. Then the congruengé = —1 (modp) has a
solution if and only ifp = 2 or p = 1 (mod4).

Proof. If p = 2 thenz = 1 is a solution. Now supposeis an odd prime. If:? =
—1 (modp) then, considered as an element of the gréljpx has ordert. But this
group is cyclic of ordep — 1, hence has an element of ordeif and only if 4|p — 1,
i.e.;ifand only ifp = 1 (mod4). O

We give two nice applications of this proposition. The fissahother special case of
Dirichlet’s Theorem :

Proposition 9.2. There are infinitely many primes congruent to 1 (mod 4).

Proof. As with Theorem 7.2, the basic idea is to suitably modify kli€loriginal ar-
gument (Theorem 1.2). We thus suppose that there are oniglyimnany primes con-
gruentto 1 (mod 4), and list them all as ..., p,,. This time we consider the number

n 2
T := (2-Hpi> +1. (9.1)

Clearly T is not divisible by anyp;. It is an odd number so all of its prime factors
are odd. Lep be a prime factor of". | claim thatp = 1 (mod4). For consider the
numberz = 2-[]", pi. If p|T thenp|z? + 1, which implies that:* = —1 (modp). By
Proposition 9.1, this means that= 1 (mod4), as claimed. Sincg is not on our list,
we have a contradiction which completes the proof. O

A more impressive application of Proposition 9.1 is thedaling theorem of
Fermat :

Theorem 9.3. Letp be a prime. Then there exist integerg, such that
>y =p, (9.2)
if and only ifp = 2 or p = 1 (mod4).

Proof. If p = 2 then we have the solutions= +1,y = £1. If p = 3 (mod4) then
there is clearly no solution, since the square of any integgst be congruentto O or 1
modulo 4, so that the sum of two integer squares must be cengto 0,1 or 2 modulo
4.

Now suppose = 1 (mod4). By Proposition 9.1, there exists an integesuch that
r? = —1 (modp). Fix such anz and consider the functiofi: Z — Z given by

fu,v) = u+ xv. (9.3)
Let K = [\/p] so thatK < ,/p < K + 1. There arg(K + 1)* > p pairs(u,v) of
integers satisfying < u,v < K. Thus, by the Pigeonhole Principle, there must be two
distinct pairs, sayu,, v;) and(usy, v2) such that

fug,v1) = f(ug,v2) (Modp) = (ull— ug) = —x(v; — v9) (Modp). (9.4)
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Leta := u; — u, b := v; — vo. Sincex? = —1 (modp), it follows thata? + v* =
0 (modp). Atleast one ofi, b # 0, since otherwise the paifs;, v;) and(us, v2) would
coincide. Thus:i? + b* # 0. But since all ofu;, vy, us, v, lie in the intervall0, K], each
of a andb must lie in the interval— K, K. Hencea? + b* < 2K? < 2p.

To summarise, we have shown that- b? is a multiple ofp and lies strictly between
0 and2p. It follows thata? + b? = p, and the proof is complete. O

Remark 9.4. | find this result surprising from a heuristic viewpoint. @ivanyn € N,
there arel + |/n] integer squares betwe®randn. Hence there are aboutpairs of
such squares, and thus no more than abqgssible distinct sums of two such squares.
But these sums are spread over the whole interval ficim2n, so only half of them
should lie in[0, n]. Thus we cannot expect be able to express more than aboufhalf
the numbers up te as sums of two squares. Hence, it is surprising that eveplesin
prome congruent to 1 (mod 4) has such a representation. Quié, @ course, argue
that only half of all primes are sums of two squares anywangesno prime congruent
to 3 (mod 4) has such a representation. But | find this heargstument unconvincing,
since the problem with numbers congruent to 3 (mod 4) is noficed to primes, and

it doesn’t explain why it should be made up for especially byeo primes.

Theorem 9.3 can be extended to non-primes. Before statmgeitult, we need a
lemma :

Lemma 9.5. The set of integers which can be expressed as a sum of two sdsiares
closed under multiplication.

Proof. This is a direct consequence of the algebraic identity
(a® +b*)(c* + d*) = (ac — bd)* + (ad + bc)?. (9.5)

The‘best’ way to think about this identity is as follows : consitlee complex numbers

z1:=a+bi, z9:=c+di. (9.6)

Then (9.5) is equivalent to the statement that
|2122| = |21]|22]- (9.7)
U

Notation. The notatiorp®||n means thap® is the highest power of the primawhich
divides the integen, i.e.: p“|n andp®™! 1 n.

Theorem 9.6. Letn € N. Then there exist integers y satisfyingz? + y?> = n if and
only if, in the prime factorisation aof, every prime congruent to 3 (mod 4) appears to
an even powetr.

Proof. Lemma 9.5 is easily seen to imply the sufficiency of the cooniin the theorem
since note that, if. € N is a perfect square, say= m?, thenn = 02 + m? is a valid
representation aof as a sum of two squares.

More abstractly, (9.7) asserts that the ordinary absolakeevfunction for complex numbers induces
anormin the algebraic number fiel@(7), the so-called field oGaussian numbers



3

We will prove the necessity by a contradiction argurdeBuppose: is a sum of two
squares and that*+!||n for some primep = 3 (mod4) andk > 0. Letn = 2% + 32,
say. Thene? + 32 = 0 (modp). If y were not divisible by, this would imply that

(zy™)? = —1 (modp), (9.8)

wherey~—! denotes the multiplicative inverse ¢fin Zy. Eq. (9.8) would contradict
Proposition 9.1. Thug|y and, by a similar argumeng|x. Letz = pzy, y = py;. Then
22 + y? = ny, wheren; = n/p? and thug?**=D+1||n,.

We can now iterate the arguments of the previous paragraptothuce a non-ending
sequence of integers, no, ... divisible by lesser and lesser, but always odd, powers of
the primep. Clearly, this is ridiculous so the proof is complete. O

2The method of infinite descent.



10. TENTHLECTURE: 19/11

There are two conceptually quite distinct ways of looking aeorem 9.6 from last
day, which take one down different, but well-travelled gath

ALTERNATIVE 1 : See it as a result indditive number theory, i.e.: roughly speak-
ing, as a statement about expressing numbers as sums ohatheers.
ALTERNATIVE 2 : See it as a result abogtiadratic forms

In the next few lectures, we will be concerned with explorinigernative 2. First of
all, though, | want to state some major results and open eneblone encounters if
one explores Alternative 1, and later in the course | willega&vgeneral introduction to
additive number theory.

Theorem 9.6 tells us which non-negative integers can beesgpd as sums of two
squares. Since the answernst all’, it is very natural to ask what happens if we allow
longer sums. There are the following two famous results :

Theorem 10.1. (GaussA non-negative integer is a sum of three squares if and only if
it is not of the formd*m, wherem = 7 (mod8).

It is easy to check that the conditions of the theorem aressarg (see Homework
3). Proof of sufficiency is highly non-trivial, however, abeyond the scope of this
course. For a proof, see for example the book

J.-P. SerreA Course in Arithmetic (Cours d’Arithmétiquegpringer GTM Series.
Theorem 10.2. (Lagrange 1770Every non-negative integer is a sum of four squares.

This is actually easier to prove than Gauss’ theorem, and Weavso later on. Note
that Theorems 10.1 and 10.2 are still concerned with quiadaims. The step beyond
guadratic forms, and deeper into the realm of additive nuntieory, was taken by
Waring who, also in 1770, reputedly sent a handwritten dgticEuler containing the
following conjecture :

Waring’s Problem. For everyk € N, there exists an integer(k) such that every non-
negative integer can be written as a sumg6k) perfectk:th powers of non-negative
integers.

Note that Theorems 10.1 and 10.2 together imply tiiaj = 4. Trivially, g(1) = 1.
Not much else was known until 1909, when Hilbert proved thejecture for allk.
Hilbert's proof is‘purely combinatorial’, i.e.: he doesn’'t use analysis, lsubng and
complicated. An alternative proof, using Fourier analysias provided by Hardy and
Littlewood in the 1920s. This proof is far better known sittiseir method, now known
as theHardy-Littlewood circle methadhas proved far more influential than that of
Hilbert. It is one of the key tools of analytic number theawythis day, and some of the
most famous results in the subject have been obtained usiegpiecially problems of
an additive nature. | wish to state two particularly famoesuits. The first concerns
sums of primes :



5

Theorem 10.3. (Vinogradov 1937Every sufficiently large odd number is a sum of
three primes.

It is not known whether every odd number greater than 7 is a aluthree primes.
Though Vinogradov’s theorem leaves only a finite collecadmumbers to check, the
number that comes out of his analysis, as the bound up to vdriehhas to check, is
really enormous and far out of the range of current hardwadesaftware.

Note that Theorem 10.3 implies that every sufficiently langenber is a sum of at
most 4 primes. Thus, there is certainly soing 0 such that every number greater than
one is a sum of no more thanprimes. This fact was actually proven by Schnirelmann
already in 1930 by combinatorial means. Schnirelmann’shoug have actually had
a lasting impact on additive number theory and we may say raboeit them later in
the course. Regarding sums of primes, however, his appigpgeh a totally unrealistic
value ofk and seems to reach a dead-end. What one expects to beuthéis con-
tained in the following famous open problem :

Goldbach’s Conjecture. Every even number greater than two is a sum of two primes.

It is known that Goldbach’s conjecture is true fonost’ numbers. Mopre precisely,
in 1938 van der Corput applied Vinogradov’s methods to prove

Theorem 10.4.For an integem > 1, let A,, denote the number of even integers among
{4,6, ..., 2n} which can be expressed as a sum of two primes. Then

A
lim — = 1. (10.1)

n—oo 1

Note that the proof of this result is totally non-construetii.e.: it doesn'’t tell us
anything about whether any specific even number is a sum ofptimoes or not. It
is also curious that the circle method, as applied by Vindgvagets one so close to
Goldbach’s Conjecture, but just seems to fall short at thehiale !

The second major result | wish to mention which was estabtistising the Hardy-
Littlewood method concerns integer partitions.

Definition. Letn € N. A partition of n is a set{ay, ..., a;} of positive integers such
that

n=a;+---+ a. (10.2)

Note that we do not distinguish between partitions in whioh $ame terms have just
been reordered. Theartition functionp(n) counts the number of partitions of

Example. p(5) = 7 and all the partitions of are
5 441, 3+2, 3+1+41, 242+1, 2+14+1+1, 1+14+1+1+1. (10.3)

Hardy and Ramanujan established an amazing asymptoticufarfor the partition
function. In its simplest form it states that
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Theorem 10.5.
eV 2n/3

p(n) ~ W

Remark 10.6. Let ¢(n) denote the number afompositionsof a positive integer,
i.e.. the number of solutions to (10.1), where this time wstidguish between re-
ordered solutions. It can be shown by a clever one-line agguifsee Homework 3) that
c(n) = 2" 1. Note, in particular, that the functior(rn) grows exponentially, whereas
p(n) exhibits so-calledhtermediate growthi.e.: faster than polynomial but slower than
exponential.

(10.4)

Remark 10.7. It is known that the functio(k) grows exponentially withk, but this
is because, for each, there are a finite number of relatively small numbers which
are particularly awkward to write as a sum fath powers (see Homework 3). More
interesting are thus the functioG& k), defined as the smallest numberkofh powers
needed to represent any sufficiently large number. The aadlyes of this function that
are known ar€+(1) = 1, G(2) = 4 andG(4) = 16, and the computation of the function
for otherk remains an active area of research.

For an in-depth introduction to the Hardy-Littlewood medhend its application to
Waring's Problem, Goldbach’s Problem, partitions and o#witive problems, | rec-
ommend the following texts :

1. R.C. VaughanThe Hardy-Littlewood Method (2nd editigrambridge University
Press (1997).

2. G.H. Hardy,Trois Problemes célebres de la theorie des nomtres Presses Uni-
versitaires de France (1931).

The bookIntroduction to the Theory of Numberalso by Hardy, contains a lot of
information on‘elementary’ approaches to these famous additive probléimsther
good reference for elementary approacheBlamentary Number Theqgrpy Melvyn
Nathanson.

In the next lecture, we will start exploring what | identifiad Alternative 2 above.



11. BEEVENTH LECTURE: 19/11

We prepare the ground for our discussions of both quadratim$ and L-functions
with some more algebraic preliminaries.

Definition. Let G be a finite abeliahgroup. A characterof G is a homomorphism
x : G — C*, whereC* denotes the multiplicative group of non-zero complex nursbe
The collection of all characters of a groapis denoted=.

Definition. Letn € N. A complex number satisfying(™ = 1 is called ann:th
root of unity. If (" = 1 but(™ # 1for 1 < k < n, then we say thaf is aprimitive n:th
root of unity. The collection of ath:th roots of unity is denoted,,.

Proposition 11.1. ‘
fn = {¥™*/m 0 < k< n}. (11.1)
In particular, |u,| = n. u, is a subgroup ofC*. The primitiven:th roots of unity are
the numberg?™*/" satisfying GCDk, n) = 1.
Proof. All these statements are pretty obvious. O
-

Proposition 11.2. Let G be a finite abelian group of order andy € G. Theny(G)

U

Proof. Letg € G. Theng"” = 1, by Lagrange’s Theorem. Thygg") = x(1¢). Since
X is a homomorphism we have, on the one hand, thi&at) = 1 and, on the other, that
x(g") = [x(9)]". Thus[x(g)]" = 1, sox(g) € fin, V.S.V. O

Characters can be multiplied pointwise as functions, ifey; iy» € G, then we can
define theirproduct’ x; x» by

(x1x2)(9) == x1(9)x2(9)- (11.2)

Proposition 11.3. G is closed under the multiplication defined above, i.e.x.ifand
X2 are characters, then so ig; y». Moreover,G is a finite abelian group under this
operation.

Proof. It is easy to check that if; andy, are both characters, then soxisy,. The
function which sends every element@fto 1 is an identity element for this multiplica-
tion. Finally, an inverse to the characters the function

1 -

-1
X \9)=—F75=X\3) 11.3
(9) ) (9) (11.3)

ThusG is an abelian group. Itis finite, since both the domain andeasf any character
are contained inside fixed finite sets, by Proposition 11.2. O

Notation. The identity element ir7 is called thetrivial characterand is often de-
notedy.

An important fact is the following :

3The definition makes sense for any group, finite or infinitesliaim or not, but we confine attention
to abelian groups for simplicity, since only such groupd adtually be considered.
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Theorem 11.4.For any finite abelian groug, the groupss andG are isomorphic as
abstract group$

Proof. (sketchBy the Fundamental Theorem of Finite Abelian Groups, anyefiabelian
group can be decomposed as a direct product of cyclic gré&ygspose

G=<g1>X - X<g>=2C, X - xC,,. (11.4)
Foreachs = 1,...,r, letx, : G — C* be the unique character defined by the conditions
e2mi/ms if k= s,
Xs(gr) = { 1, it k£ s (11.5)
Then it is not hard to check that has ordemn, in G and that
G <y >X- X< xXp>2Cpy X xCp. =G, (11.6)
U

Remark 11.5. Given a basis fof7 as in (11.4), the cgrresponding basis fodefined
by (11.5) is called thelual basis. In fact, the group is sometimes called theual
groupof G.

Definition. A charactery of a groupG is said to beeal if y(G) C R. By Proposition
11.2, it is then the case thatG) C {£1}.

In number theory, the groups we are interested in first andnfiaist are the groups
7.

Definition. A character of the groufd is called aDirichlet charactermodulon. A
functiony : Z — C is called arextended Dirichlet charactenodulon if the following
three conditios are satisfied :

(i) x(x) = x(y) wheneverr = y (modn), so thaty can be considered as a function
from Z,, to C,

(i) as such, the restriction of to Z is a Dirichlet character module,

(iii) x(z) = 0 whenever GCRz,n) > 1.

Supposer = p, a prime. Sinc&Z; is cyclic, there is only one non-trivial real Dirichlet

character modulg. This is called the_egendre symbahodulop and is denotex(;).
The corresponding extended character is given explicitly b

0, if pla,
(9) =< 1, if ptaandthe congruence® = a (modp) has a solution (11.7)
p —1, otherwise

The elements € Z; for which <%) = 1 are called thejuadratic residuesnodulop.

4For a general finite groug’ we have an isomorphisi’ = G/G', whereG’ is the commutator
subgroup ofG.
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We now turn to quadratic forms. Inspired perhaps by scatteteservations of Fer-
mat like Theorem 9.3, Gauss initated a rigorous study of Béopine equations

f(zq, ... x) =n, (11.8)

where f is a so-calledquadratic form i.e.. a homogeneous polynomial of degree 2.
Thus the general form of is
k
fzy,.ymy) = Zaiix? + Z a;;x;t;, a; € L. (11.9)
i=1 1<i<j<k
He developed a very comprehensive theory for forms in 2 e (so-calledinary
formg, though it would take another hundred years before a cooredingly compre-
hensive theory was worked out satisfactorily for arbitreayms. Gauss wrote a book
on arithmetic Disquitiones Arithmeticgenvhen in his mid-twenties, and a large part of
this text is concerned with presenting his theory of binargdratic forms. Gauss’ main
insight was that, just as was the case in Theorem 9.3 for the fx, y) = 2 + 12, the
guestion of existence of, and even the number of, solutior{&x.8) could essentially
be reduced to solving congruengekhave decided not to go into the details of Gauss’
theory in this course, as there are other things | want to datamould take a significant
amount of time. But see, for example, my lecture notes fro@MZ0r a comprehensive
account. | will confine myself to some basic observationsiajoadratic congruences,
without indicating the deeper connections with quadragigagions.
In fact, | will only talk about the basic one-variable quadraongruence modulo a
prime (for non-prime moduli, see Homework 3) :

az® + br +c=0 (modp), pprime,pta. (11.10)

Now, sinceZ, is a field, the usual procedure for solving a quadratic equaith C
remains valid in the present context, so we get an explicintda for the solutions
when they exist, namely

— A/ b2 —
M ;’ 49 (modp). (11.11)
a

In particular, solutions exist if and only #f — 4ac is a square irZ,. More precisely,
Proposition 11.6. If p is an odd prime, then the number of solutions to (11.1®),jms

b2—4dac
1+ (—p )

Proof. One needs to check that (ff;) = 1 then the congruence’ = ¢ (modp) has
exactly two solutions itZ,. This is easily seen to reduce to checking that

2 =y (modp) < = = +y (modp). (11.12)
To see this, the left-hand side implies that* — y* = p|(x — y)(x +y) = p|lz —y or
p|z + y, sincep is prime, hence: = +y (modp), as desired. OJ

5The ultimate expression of this philosophy, for quadraticifs in an arbitrary number of variables,
is the so-calledHasse principlevhich, roughly speaking, states that the existence of isolsito (11.8)
can be determined by examining the equation modulo only gefinimber of prime powers, depending
only on the coefficients irf. A precise statement is the renownddsse-Minkowski Theoremwhich is
too technical to state here. See Serre’s b@okourse in Arithmeticfor an account of this theory.
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Thus deciding whether or not a quadratic congruence to agonmadulus has a so-
lution reduces to computing a Legendre syniboEfficient methods for computing
Legendre symbols were developed in historical order by E@auss and Jacobi. It
is Gauss’ result which was the main breakthrough. His steddlaw of Quadratic
Reciprocitystates the following :

Theorem 11.7.Letp andq be distinct odd primes. Then

<§> (g) _ (—1)H-DlD), (11.13)

(?> ” (€> if and only if p = ¢ = 3 (mod4). (11.14)
q p

The proof of this major result, which requires a good dealftdre will occupy the
next one and a half lectures. Before we start with that, | wantustrate the usefulness
of the result with some examples.

In other words,

Example 1.Proposition 9.1 can be restated as :

(_—1) =1&p=2o0rp=1(mod4). (11.15)
p
Example 2.Letp be an odd prime. | claim that

(?) =14 p=1(mod3). (11.16)

To see this, first note that since the Legendre symbol is aacterr we have

2)-R)E)

Thus, for(‘f) = 1 to be satisfied, there are two possibilities :

CASEL: (%) = (g) = +1,
CASE2: (%) = (%) = —1.

First consider Case 1. From Example 1 we must have 1 (mod4). Sincep #
3 (mod4), Gauss reciprocity implies thz(t%) = (2). Butclearly,(2) =1 & p =
1 (mod3).

Thus, the conditions of Case 1 are satisfied if and only if poth 1 (mod4) and
p=1(mod3).

Case 2 is analysed similarly. This time, Example 1 tells usgha 3 (mod4). Since
%0nce it is known tha g = 1, there is a polynomial-time algorithm for computiRgt (modp).

See Section 2.2 of Koblitz' boold Course in Number Theory and Cryptograpfor an account of this
algorithm.
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obviously3 = 3 (mod4), Gauss reciprocity tells us this time th(a%) =— (g) Thus

we again wan{2) = +1, hencep = 1 (mod3).
In summary, the conditions of Case 2 are satisfied if and oriiptifip = 3 (mod4)
andp =1 (mod3).

Altogether, then, the conditions of either Case 1 or Case 2adisfied by an odd prime
pifand only if p = 1 (mod3), as claimed.

We ran out of time, so will continue next day ....
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12. TWELVTH LECTURE: 21/11

Example 2 from the last lecture leads to another special@aBeichlet’s theorem.
Proposition 12.1. There are infinitely many primes congruent to 1 (mod 3).

Proof. Similar to that of Proposition 9.2. Assume there are onlytdigi many such
primes and list them all gs, ..., p,,. Consider this time the number

T = (2-12[]91') +3. (12.1)

No p; = 3, thusT is not divisible by any,. Neither is it divisible by2 or 3. Letp be
a prime divisor ofl" and setc := 2 - [[!"_, p;. Thenp|2? + 3 soz? = —3 (modp). By
Example 2, this implies that = 1 (mod3), but sincep is not on our list, we have a
contradiction. O

Example 3.Find all primesp for which /7 exists mog.

Obviously, we can take = 7. Otherwise, we seek thogefor which (%) = 1. If

p = 2, theny/7 = 1 (mod?2). Otherwisep is odd and we can exploit Gauss reciprocity.
Since7 = 3 (mod4), there are two cases to consider :

CASE1l: p =1 (mod4). Then (%) = (), so we want(2) = 1. One checks by

hand that the quadratic residues mod 7 are 1,2 and 4. Thuesahethree possibilitites
for p (mod7). Together with the condition mod 4, this gives (by the CRT&possi-
bilities mod 28.

CASE 2 : p = 3 (mod4). Then (%) = — (%), so we want(Z) = —1. The qua-

dratic non-residues mod 7 are 3,5 and 6. So once again wed thaee possibilities
mod 28.

In total, we have six possibilities mod 28 :
| p (mod4) | p (mod7) [ p (Mmod28) |

1 1 1
1 2 9
1 4 25 =-3
3 3 3
3 5 19=-9
3 6 27T = -1

So the answer to the question posed is t#atexists modp if and only if p = 2,
p=To0rp=-+1,+3 or+9 (mod28).

We now turn to the proof of Theorem 11.7. We will need two prahary results,
Euler’s criterionandGauss’ lemma
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Proposition 12.2. (Euler’s criterion) Letp be an odd prime and € Z such thap } a.
Then(%) = +1ifand only ifa®1/2 = +1 (modp).

Proof. The grougZ; is cyclic of orderp—1. Hence an elementof this group is a square
if and only if its order dividegp — 1) /2, in other words, if and only if, considered as an
ordinary integerg*~Y/2 = 1 (modp), v.s.v. O
Remark 12.3. (i)If <%> = —1thena® /2 = —1 (modp).

(i) Eulers criterion gives an efficient method for computing amgividual Legendre
symbol, using the square and multiply algorithm. Howevedoesn't help us answer
the kind of question asked in the examples above, namelgngive 7Z, for which

primesp is 2 =1 ? For that, we’ll need Gauss reciprocity (and its extensign b
Jacobi, as we’'ll see later).
Theorem 12.4. (Gauss’ lemmal.etp be an odd prime. For each € Z, let [n] denote
the unique number satisfyig] = n (modp) and—ip < [n] < 3p.

Now leta € Z such that { « and setu; = [aj] for eachj € Z. Then

(9) — (-1)' (12.2)

p
where
| = #{j;1gjgz%1andaj <0} (12.3)
Proof. We evaluate the product
(p—1)/2
P:= ][ aj (modp) (12.4)

j=1
in two different ways. First, by its’ very definition,

P 2 <1%1)! _ (g) (1%1);7 (12.5)

by Euler’s criterion. On the other hand, by definition we dtswe that
(p—1)/2

I @ (12.6)

j=1
Now | claim that, ifj # &, thena; # +a; (modp). Forifa; = +a, thenaj = ok =
pla(j F k) = p|j ¥ k. But bothj andk lie in the interval[l, 1], so if j # k, then
j F k| <2-(5) = p—1 < p, which makes it impossible for this quantity to be
divisible byp.

Thus we've established our claim. This implies that the djtias |a;| are just a

permutation of the numbers 2, ..., 7%1 asj runs from 1 top%l. By definition, [ of
them are negative. Hence

(r-1)/2 .
P= [ a=(1" <pT)! (12.7)

P
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But (12.2) follows immediately from (12.5) and (12.7). O

Remark 12.5. The numbeifn] € [-21, 221] such that: = [n] (modp) is called the

numerically least residuef n» modulop.

Gauss’ lemma is of interest in its own right (which is why lledlit a theorem). For
example, it allows us to calculate the Legendre syn‘(t@, which is not covered by
the reciprocity law.

Corollary 12.6. Letp be an odd prime. Then

2\ -1 [ 1, ifp=+1(mods),
(5) = (=D _{ ~1, if p=+3 (mods). (12.8)
Proof. We takea = 2 in Gauss’ lemma. Lef € [1,2%]. Then
-1 -1
124] >0<:>2jng<:>jg H’TJ.
Hence, fora = 2, the quantityl in Gauss’ lemma is just
p—1 p—-1
[ = — . 12.9
— - 5 (12.9)

It is now a short but tedious computation to verify that, fay@dd numbep, the RHS
of (12.9) is congruent tgp*> — 1) /8 modulo 2. This and Gauss’ lemma yield the desired
result. O

We will finish the proof of the reciprocity law next day.



