17. SEVENTEENTHLECTURE: 1/12

A slightly more natural notion than that dfasis’ with respect to the positive integers
is the following modification :

Definition. Let A C Ny andh € N. We say thatd is anasymptotic basigor N
of order# if the differenceN,\h A is a finite set, wherea¥,\(h — 1) A is not.

In words, an asymptotic basi of orderh has the property that every sufficiently
large number can be expressed as a sumedéments ofd, andh is the smallest integer
for which this is the case.

Remark 17.1. You might object that it is even more natural to say that anrgegtic
basis of ordeh should have the property that every sufficiently large nungexpress-
ible as a sum of AT MOST: elements ofA. | agree, but note that, il is an asymptotic
basis of order: according to this alternative criterion, thehuU {0} is an asymptotic
basis of ordef. according to the definition given above.

Similarly, if A is an asymptotic basis of ordér then clearly there is a supersBt
of A which is a basis of order at mostand such thaf3\ A is a finite set. The kinds
of questions we will be dealing with below concern the dgneitbases. Since any
basis of any order is an infinite set, adding a finite humbeilahents does not affect
anything in this sense.

Examples. (i) The solution to Waring’s problem states that thth powers are a basis
of orderg(k) and an asymptotic basis of ordéfk). Note thatG (k) < g(k) for every
k> 2.

(i) Vinogradov's theorem states that the set of prifiderms an asymptotic basis of
order at most 4. It is not known whether they are an asymphbatsis of order 3, some-
thing which would follow from Goldbach’s conjecture. It i®heven known whether
{0,1} U P is a basis of order at most 4 (since the number coming out ai¢/fedov’s
theorem is computationally unreachable), let alone of I08des Goldbach asserts.

Probably the most important question of a combinatorialreatbout bases$n gen-
eral’ is the issue of how efficiently they can be constructadinear algebra (where the
notion of basis is somewhat different), a basis is an optingdficient spanning set for
a vector space in two respects :

(i) it is a spanning set of minimal size,

(ii) every vector has exactly one representation as a linearbination of the basis
vectors, so there is no redundancy.

Similarly, there are two basic ways of measuring the efficyeaf a basis in number
theory :

METHOD1 : ForA C Nandn € N, let

A(n) == #(AN{1,...,n}). (17.1)
We would like to know, ifA is an asymptotic basis of ordér then how slowly can the
function A(n) grow, in other words, how sparse a set cabe ?
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METHOD 2 : ForA C N andh,n € N definer,(A,n) to be the number of ways
of writing n as a sum of, elements ofA. This is called thunordered)h-fold repre-
sentation functiomf A. Note that here | do not distinguish between two represiemst
of a numbem which consist of the same parts, only permuted. Thug,ig an asymp-
totic basis of order: it implies thatr,(A,n) > 0 for all n >> 0. We would like to
know, if A is an asymptotic basis of ordér then how small can the numberg A, n)

be ? Ideally, can we have (A, n) = 1foralln >> 0, i.e.: no redundancy whatsoever ?

In contrast to the situation in linear algebra, we will seat tine answer to our question
in the second case abovedo’. This seems to be a highly non-trivial fact, though. In-
deed, the deeper results in the literature at present seeamt@rn the second notion of
efficiency for bases presented above. The precise conndmimveen the two notions
is not as simple to work out as in the linear algebra settirngodgin with, | will present
some basic results concerning the first notion.

Proposition 17.2. Let A be an asymptotic basis of ordgér Then
A(n) = (h)Yhnt/h, (17.2)

The proof of this will require a basic combinatorial formuwidnich you may have
seen before :

Lemma 17.3. Let k, [ be positive integers. The number of ordered solutions in non
negative integers to the equation

kE+1—-1
[
element set, where repitition is allowed and ordering of cea@scunimportant.

is . This is also the number of ways of choosinglements from &-

Proof. of Lemmalmagine you havéidentical dots an@ — 1 identical vertical dashes.
E+1-1
[
these symbols in a line, since the only choice that makesfereiifce is where you
place the dots. But there is a 1-1 correspondence betweemrdregements of dots and
dashes and the non-negative integer solutions to (17.8)elya given an arrangement

of dots and dashes, interpret as the number of dots between the- 1):st andi:th
dashes.

Finally, to see that the solutions to (17.3) are in 1-1 cqoeslence with the un-
ordered choices of elements from &-set, say the sefl, ..., k}, just observe that,
given such a choice, we can interpsgtas the number of times you choose the number
i. O

Then you havé: + [ — 1 symbols in all. There ar ways of arranging

Proof. of Proposition 17.2Since A is an aysmptotic basis there atg1) elements of
N which cannot be expressed as a sum efements ofA. Now letn be a large integer.
All but O(1) of the numbers amongl, ..., n} have an expression as

a+---+ap, a; € A. (174)
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Obviously, in any such expression, eaghe {1,...,n}. LetT := A(n). By Lemma

17.3, the total number of expressions (17.4), satisfyiage¢achy; < n, is( r +£L -1 )
Thus
<T+2_1)2n—0(1). (17.5)
Letn — oo. Obviously,n — O(1) ~ n. Also,
T+h—-1\ (T+h-1)(T+h-2)---(T) T"
HenceT"/h! > n and hencd” = A(n) > (R)Y/"n'/" v.s.v. O
Remark 17.4. By Stirling’s formula, ash — oo,
h
(A" ~ (hhe ™/ 2rh)Vh ~ = (17.7)

e

Let A = (a,) denote a generic infinite subset&§f, where the elements of are
listed in increasing order. Ifl is an asymptotic basis of ordér then the lower bound
(17.2) for A(n) can be easily converted to an upper bounddgr For, by definition,

A(a,) = n and hence:r > (h!)/"ay/". In other words,

nh

aNSF

(17.8)

This is perhaps an easier way to think about things, as itsgare upper bound on
how ‘sparse’ a basis of ordér can be. Bases whose sparsity is of the right order of
magnitude have been constructed :

Theorem 17.5.For everyh € N there exists a positive numbeg and an asymptotic
basisA = (a,) of orderh such thata,, ~ v,n".

There are several explicit constructions of bases in tleealitire which imply this
theorem, the most important one probably being due to Cassels construction
is complicated, however. Below, we give an example of ayfaiimple construction
which at least has the right order of magnitude. Note, thodight it is an unsolved
problem to determine the largest possible constgntich that an asymptotic basis of
orderh exists satisfying,, ~ ,n". We know from (17.8) that;, < 1/h!. However,
the true maximal value of,, is not known for a singlé, > 1 (as far as | know !), and
the problem seems to be pretty intractable.

Example.Let h > 2. For eachn € N, write n in base 2, say
n=TpTp_1- T1%T0, T; €{0,1}, zp = 1. (17.9)
Let A = U} A; where, for eachi, the set4; is defined by
A;={neN:z,=0forallr #Zi(modh)}. (17.10)

13.W.S. Cassels, Uber Basen der natirliche Zahlenraibie, Math. Sem. Univ. HambuR{i (1957),
247-257.
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Then it is easy to see that U {0} is a basis (not just an asymptotic basis) of ortler
and, foranyt € N,

A" —1)=h-2" — (h—1). (17.11)
From this one can check that i
n
Ay ~ i (17.12)

By (17.7) and (17.11), this basis is in a sense, for ldrgat most a factot /e from
‘optimal’.

We now turn to our second notion of what it means to efficientiyistruct a basis,
a notion which emphasises lack of redundancy rather than Jiaere is the following
fundamental result :

Theorem 17.6.Let A be an asymptotic basis of ordeér Then the representation func-
tionr, (A, n) cannot be ultimately constant. In particular, we cannot hayel, n) = 1
for all sufficiently largen.

This theorem was proven for arbitrakyby Vaughar using Fourier analysis methods.
No really ‘elementary’ proof is known, even far= 2. In that special case, however, a
clever proof was provided earlier by Eigl and Turan using so-callggnerating func-
tions

| started this proof, but didn't finish it, so | will presentiiit full next day ...

R.C. Vaughan, On the addition of sequences of integefdumber Theory (1972), 1-16.



18. BGHTEENTHLECTURE: 3/12

Proof. of Theorem 17.6uppose the contrary and létbe an asymptotic basis of order
2 such thaty(A,n) = [ for all sufficiently largen and some constarit > 0. We
consider the generating function of the getwhich is the power series

G(z) =Gaz) =) 2" (z€C). (18.1)
acA
The power series certainly converges when< 1, so we will work in this region so that
all our algebraic manipulations will be valid. The connentbetween the generating
function and the representation function is that

(G +G(z*) =2 ra(An)2". (18.2)
n=1
Suppose thaty (A, n) = [ for all n > ny. Then (18.2) can be written as

no—1 e’

[G(2)]? +G(2?) = Z ro(A,n)z" + 21 - Z 2" (18.3)

n=1 n=ng

The first sum on the right of (18.3) is some polynomialzin The second sum is a
geometric series, so has a simple formula. We thus find that

no

[G(2))* + G(2*) = P(2) + 21 - (18.4)

1—=z
We obtain a contradiction by seeing what happens as —17", along the real axis.

Because of all the squares present, the left-hand side of)(b&ads inexorably to-
wards positive infinity. But the right-hand side heads tagaome finite value, namely
P(1) £ (. This contradiction completes the proof. 0

Notation. Previously, we have introduced the notatjoe- O(g) to denote thatf (z)/g(z)|
is bounded ag — oo. Two similar pieces of notation whcih are useful to have are :
1. f = Q(g) means the same thing as= O(f), in other words, the quotiept(z)/g(x)|
has a positive lower bound as— oo. In words, it means thaf grows at least as fast
asg.

2. f = O(g) means that botlf = O(g) andg = O(f). In other words, it means that
there exist positive constanis< ¢; < ¢, such that

M < lim sup
9(x)
In words, f andg have the same rate of growth.

f ()

| S (18.5)

c; < liminf

T—00 T—00

One of the major open problems in combinatorial additive banheory is

Conjecture 18.1. (Erdds-Turan) Leth > 2 and A C N be an asymptotic basis of
order h. Then the representation functiep( A, n) is unbounded.

Bases whose representation functions'si@vly growing’ are calledhin. The state-
of-the-art with regard to the construction of thin bases is
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Theorem 18.2.For eachh > 2 there exists an asymptotic basiof order i satisfying
rn(A,n) = O(logn). (18.6)

This theorem is one of the classical applications of theatedprobabilistic method
in number theory. The case = 2 was proven by Erds in 1956 usingChernoff’s
inequality The general case wasn’'t completed until 1990, byd&rdnd Tetali. It is
most succinctly presented using the so-calladson inequalitiesthough Eréds and
Tetali did not actually use these in their original proof.

The more important point, though, is that these proofs useabilistic arguments,
and in each case use tools from probability theory which vetage-of-the-art at the
time. My intention in coming lectures is to give a proof of tteeseh, = 2. On the way
| will state, but not prove, Chernoff’s inequality. As a leagd-to the main result, | will
give an introduction to the probabilistic method in gendeainethod which is widely
used in all areas of combinatorics) by means of the histlyisggnificant example of
Ramsey numbers.

This material will occupy us in the next two lectures. Beferabarking upon it, |
wish to make some extra comments and state some open prodtesmg out of Theo-
rem17.6.

Definition. A set A C Z is called aSidon setf all the sumsa; + a, are distinct,
foray,ay € A.

Example. A = {0,1,3,7} is a Sidon set. There are 10 possible sums, and all are
distinct, namely

0+0=0, 04+1=1, 1+1=2, 04+43=3, 1+3=4,
3+3=6, 0+7=7, 1+7=8, 3+7=10, 7+ 7=14.
Theorem 17.6 implies that an asymptotic basis of order 2Xfeannot be a Sidon set.

There are many open problems regarding Sidon sets. Here®@e s
Problem 18.3.Can an asymptotic basis of order 3 be a Sidon set ?

Problem 18.4.Can an asymptotic basis of order 4 be a Sidon set ?

It can be deduced from the Eig-Tetali result on thin bases that there exist asymptotic
bases of order 5 which are Sidon sets. However, because pfababilistic nature of
the argument, it yields no explicit examples.

Problem 18.5. Give an explicit example of a Sidon set which is an asymptaistsb
of order 5.

Some interesting problems revolve around the connectitwesn finite and infinite
(dense) Sidon sets. Far > 0, let S(n) denote the maximum size of a Sidon set in
{1,...,n}. Since the number of possible sums of pairs of elementskireement set

is k + ( g > = MEH) - Since a sum of any two elements amongst., n must lie



amongse, ..., 2n, we get that

S(n)[S(n) + 1]
2

The following theorem was proven in the 1940s by combiningkwaf Erdds, Turan
and Chowla :

<2n—1= S(n) <2vn. (18.7)

Theorem 18.6.There exist positive constants ¢, such that, for allh € N,

n? — cn®1% < S(n) < n'/? 4 cyn'/t, (18.8)

There remains to this day a gap between the known lower anef ipginds forS(n),
but since this gap is already fairly small, by (18.8), thislgem is perhaps not so inter-
esting. More intriguingly, the following result of Eéd (1955) implies that dense finite
Sidon sets cannot bglued’ together to give equally dense infinite Sidon sets :

Theorem 18.7. Let A C N be a Sidon set. Then there exists a universal constant
¢ > 0 such that

liminf — 20 <. (18.9)
n—oo  /n/logn

Indeed the densest known infinite Sidon sets are given by :

Theorem 18.8. (Ruzsa 1998 here is a Sidon set C N such that
A(n) = n¥21Hon(D), (18.10)

Ruzsa’s proof uses a probabilistic argument and thus doegield explicit exam-
ples. Indeed, basically nothing is known in terms of exfijatonstructing dense infi-
nite Sidon sets, beyond what one gets from a greedy choiceg@uoe. This involves
constructing an infinite Sidon sét C N, according to the following rules :

First take0 € A. At each successive step, addAahe smallest number you can
which maintains the Sidon property.

The set one gets this way starts off As= {0, 1,3,7,12,...} and one can quite easily
verify that A(n) = ©(n'/?). Any improvement on this exponent would be a significant
achievement.

One final problem. As we've stated several times, there isubsetA C N such
that every sufficiently large number can be uniquely ex@messsa, + a,. However,
consider the sefl consisting of alln € N; in whose binary representation, there are
zeroes in all the even positions, reading from right to leftéll the example after The-
orem 17.5). Then it easy to see that everg N, has a unique expression @s+ 2as,,

for someay, ay € A. The following problem is open :

Problem 18.9. For which pairs{u, v} of relatively prime positive integers does there
exist a setd C N such that every sufficiently large number has a unique reprasion
asua; + vay, for someu,,a, € A?



The above comments imply thét, 2} is such a pair, wheregd, 1} isn't.



19. NINETEENTHLECTURE: 5/12

To introduce the proabilistic method, we will take a detowrag from number theory
per se and discuss the problem of computing so-called Ramsapers. The standard
reference for an introduction to the probabilistic methodliscrete mathematics is

N. Alon and J. Spencef,he Probabilistic Method3rd edition, Wiley (2008).

Definition. Let k,l € Ns,. TheRamsey numbeR(k,[) is the smallest. € N such
that, if the edges of the complete grafh are each colored either red or blue then, no
matter how the coloring is done, there must exist eitheralfoted K, subgraph or a
totally blue K; subgraph.

The fundamental result proven by Frank Ramsey in the 1928s wa

Theorem 19.1.The numbersz(k, ) all exist, i.e.: are finite. In fact, we have

R(k,l) = R(l, k), (19.1)
R(k,2) = R(2,k) =k, (19.2)

and, in general,
R(k,l) < R(k—1,1)+ R(k,l —1). (19.3)

Proof. Note that the three statements together imply that all thebmisR(k, () are
finite, say by an induction oh + [. The first statement is totally obvious and, for the
second, note that sincef&, is just a single edge, K, is colored in such a way that it
has no redx, subgraphs, then it means that the entiirgitself is blue.

So we turn to the third statement. bet= R(k — 1,1) + R(k,l — 1). We must show
that any coloring of the edges &f,, must yield either a red(; or a blueK; subgraph.
Consider an arbitrary coloring dk,,. Pick out any vertex, call ity. There arex — 1
other vertices and, since

n—1>[R(k-1,1) -1+ [R(k1-1)—1], (19.4)

at least one of the following events must occur :

CAsE 1 : v, is connected to at leagt(k — 1,1) other vertices by a red edge,
CASE 2 : v is connected to at least(k, [ — 1) other vertices by a blue edge.

We present the remainder of the argument in Case 1 only, for €asedealt with
similarly. By definition of the numbeR(k — 1,1), amongst the vertices to whiel is
connected by a red edge, there must exist at least one ofltbeifay patterns :

(a) an entirely bludy;,

(b) an entirely reds;,_;.
In the former case, we're already done - we have a {uén the whole graph if we
have one in any part of it (wow !). But in the latter case, jasgf bn the vertex, and
we obtain instead a refl, in the whole graph. OJ

From this result we can deduce explicit upper bounds for Rgmsmbers :
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Corollary 19.2. For everyk,l > 2 we have

R%ﬂ)g(k2112).

Proof. For ! = 2 this reduces to
k
R(k,2) < ( o ) , (19.6)

which is true, since both sides equalTo establish the inequality in general, we proceed
by induction onk + [. By (19.3), it is easily seen to suffice that

12 h+1-3 k13
( k1 >Z( k-2 )*( k1 )' (19.7)

And this is true, in fact we have equality again, by PascdEntity for binomial coeffi-

cients :
(-0 e

i

(19.5)

It is natural to consider the special (symmetric) chse [. Then (19.5) becomes

mmmg(ﬁff). (19.9)

Using simply the fact that

}:(Z>=T (19.10)
r=0
(both sides count the number of subsets of.eglement set), it follows that

R(k, k) < 481, (19.11)
A slightly better estimate can be got using Stirling’s foteytbut the important point
is that the upper bound we obtain f&(k, k) is exponential ink. A problem which
Ramsey didn’t solve, and which remained open for a few ydées lais untimely death
in 1930 at the age of 26, was whether these symmetric Ramselyars really do grow
exponentially. It turns out that they do, and the proof o tlaict is perhaps the oldest
application of what has become known as the probabilistithotein combinatorics
The formal result is

Theorem 19.3.Letk > 3. If the positive integern satisfies

(3)
(”)2 2) <1, (19.12)

k
thenR(k, k) > n.

Corollary 19.4.
R(k, k) > 2%/, (19.13)

30nly a finite (and very small 1) collection of Ramsey numb@&, 1), for k,i > 3, have been
computed exactly. For example, | showed in class B(@& 3) = 6.



11

Proof. of Corollary. Note that we have equality in (19.13) fé&r = 2. Now for
k > 3 it suffices to show that if: = 2%/2 then (19.12) is satisfied. Sinc@ " ) =

k
Mo Denht) 1% and ( ]; ) = MEZD the left-hand side of (19.12) will be less
than
K2 k
27 +1 2143
= (19.14)

So we just need to check thatts < k!, for everyk > 3. This is easily done by
induction onk (the case: = 3 reducing tolv/2 < 6). O

Proof. of TheoremLet n be an integer satisfying (19.12). We must show that there is
a way to color the edges df,, red and blue so that there will be no monochromatic
K, subgraph. Consider #otally random’ coloring of the edges, i.e.: for each of the
Z edges independently, toss a fair coin and color the edgerrbilie depending
on whether you get heads or tails respectively. Thus, eagh sdequally likely to be
n

colored red or blue, and in fact &ll 2 possible colorings of the entire graph are
equally likely. LetA be anyK, subgraph. It ha{ g ) edges, and hence the probabil-

k

2

ity that all of these will be colored red & ( ) . There is the same probability that

the entire subgraph is blue, hence

)
1—
P(A is monochromatig= 2 ( 2. (19.15)
The total number of;, subgraphs ir<,, is just Z . The probability of any particu-

lar one being colored monochromatically is given by (19.MN9Qw, the probability of at

least one of a collection of events occurring cannot exceedam of the probabilitites

of the individual events Thus the probability that som&,, is monochromatic is at
k

1—
most( Z ) 2 ( 2 ) By assumption, this quantity is strictly less than one. tireo

words, a random coloring oK, yields, with strictly positive probability, a coloring
for which there is no monochromatf€; subgraph. Since there are only finitely many

n
possible colorings a priori2(< 2 of them), this means that there must be SOME way
to color K,, such that no monochromati€;, arises. O

“This is referred to as thenion boundby probabilists. Formally, ifZy, ..., £, are any events, then
P(U_  Ei) < 30, P(E).
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Remark 19.5. It's important to note here that this proof suffers from thpital weak-

ness of an application of a probabilistic method, namelyittanly proves existence of

the desired object (a certain good coloringfof), not any explicit example. From an

algorithmic/practical viewpoint, this is not such a big dd&an is significantly smaller

than2”*/2, then the proof implies that a random coloringdf will yield no monochro-
k

1—
matic K with very high probability (because the quanti(yz ) 2 < 2 ) will be

very close to zero). Thus if we just perform the coloring atdam, we will get a
good coloring unless we're very unlucky. Of course, we waictually KNOW that our
coloring is good.

As a prelude to developing some machinery which we will needrder to prove
Theorem 18.2, itis instructive, | think, at this point tosahulate the above proof using
somewhat more formal probabilistic terminology. Formatisobability theory revolves
around the study of triplegX, 2, 1), where X is a so-calledandom variable( is a
probability spaceand is aprobability measurel don’t want to get into any technical
details here, but I will just say that, in gener@ljs just some setX is a function from
Q to R, andy is a function from2* to [0, 1], where2 denotes the collection of all
subsets of?.

In Theorem 19.3(2 is the set of all possible colorings of the edgesigf, where

n

each edge is colored red or blue. Herf¢as a finite set and)| = 2 2. [ is
so-calleduniform measuren €2 which means, concretely, that our rules for randomly
coloring the graph lead to every possible coloring beingadlglikely. X is the number

of monochromatick;,, subgraphs. Clearly, this is indeed a function fréhio R. In
fact, X only takes on non-negative integer values. Since we chocséang from2
randomly (according t@), the value ofX is also‘random’ (hence the nameandom
variable’). The strategy of the proof above was to show that

E(X) < 1. (19.16)
SinceX is non-negative integer valued, this inequality allows tmeonclude that
P(X =0) >0, (19.17)

which proves the theorem. The idea behind proving (19.16) twawrite X as a sum
of so-calledindicator variables Let A be aK, subgraph ink,, and let&, denote the
event that a randomly chosen coloring /6§, yields a monochromatiel. We showed
that

)
1—
P(&y) = 2 ( 2/ (19.18)
Let X 4 denote the following random variable :
_ | 1, if & occurs
Xa= { 0, otherwise (19.19)

X 4 is called thandicator variableof the events’s. Clearly,
E(X4) =P(&4). (19.20)
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The important point is that
X=> Xu, (19.21)
A

the sum being taken over all;,, subgraphs of<,,. Now since the average of a sum
equals the sum of the averages, it follows that

E(X) =Y E(Xa). (19.22)

This property of expectation values (that they commute wiims) is referred to by

probabilists adinearity of expectationIn our example, there aré Z ) possibilities
for A, hence from (19.18) we could conclude that
“(5)

E(X) = ( " ) 2 \?2) <1, (19.23)

From a probabilistic viewpoint, the proof of Theorem 19.3dasy’ in the sense that it
sufficed to have knowledge of the expectation value of théoamvariableX of interest
(eq. (19.16)). This we could easily obtain by writiigas a sum of indicator variables
and using linearity of expectation. What we didn’'t need wagiaformation on how
strongly concentrated’ was about its mean. This would actually have been difficult
to obtain, since the indicator variablés, are not all independent. In situations where
we have sums of INDEPENDENT, or mostly independent, randanalles, it is often
possible to prove that the sum is very strongly concentrated about its mean. Some of
the classical results of statistics and probability thesegl with this phenomenon, and
it is such a result which will be needed in due course to pravecfem 18.2. We will
delve deeper into these matters next day ...



