
17. SEVENTEENTH LECTURE : 1/12

A slightly more natural notion than that of‘basis’ with respect to the positive integers
is the following modification :

Definition. Let A ⊆ N0 andh ∈ N. We say thatA is anasymptotic basisfor N0

of orderh if the differenceN0\hA is a finite set, whereasN0\(h − 1)A is not.
In words, an asymptotic basisA of orderh has the property that every sufficiently

large number can be expressed as a sum ofh elements ofA, andh is the smallest integer
for which this is the case.

Remark 17.1. You might object that it is even more natural to say that an asymptotic
basis of orderh should have the property that every sufficiently large number is express-
ible as a sum of AT MOSTh elements ofA. I agree, but note that, ifA is an asymptotic
basis of orderh according to this alternative criterion, thenA ∪ {0} is an asymptotic
basis of orderh according to the definition given above.

Similarly, if A is an asymptotic basis of orderh, then clearly there is a supersetB
of A which is a basis of order at mosth and such thatB\A is a finite set. The kinds
of questions we will be dealing with below concern the density of bases. Since any
basis of any order is an infinite set, adding a finite number of elements does not affect
anything in this sense.

Examples. (i)The solution to Waring’s problem states that thek:th powers are a basis
of orderg(k) and an asymptotic basis of orderG(k). Note thatG(k) < g(k) for every
k > 2.
(ii) Vinogradov’s theorem states that the set of primesP forms an asymptotic basis of
order at most 4. It is not known whether they are an asymptoticbasis of order 3, some-
thing which would follow from Goldbach’s conjecture. It is not even known whether
{0, 1} ∪ P is a basis of order at most 4 (since the number coming out of Vinogradov’s
theorem is computationally unreachable), let alone of order 3 as Goldbach asserts.

Probably the most important question of a combinatorial nature about bases‘in gen-
eral’ is the issue of how efficiently they can be constructed.In linear algebra (where the
notion of basis is somewhat different), a basis is an optimally efficient spanning set for
a vector space in two respects :

(i) it is a spanning set of minimal size,
(ii) every vector has exactly one representation as a linearcombination of the basis

vectors, so there is no redundancy.

Similarly, there are two basic ways of measuring the efficiency of a basis in number
theory :

METHOD 1 : ForA ⊆ N andn ∈ N, let

A(n) := #(A ∩ {1, ..., n}). (17.1)

We would like to know, ifA is an asymptotic basis of orderh, then how slowly can the
functionA(n) grow, in other words, how sparse a set canA be ?
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METHOD 2 : For A ⊆ N andh, n ∈ N definerh(A, n) to be the number of ways
of writing n as a sum ofh elements ofA. This is called the(unordered)h-fold repre-
sentation functionof A. Note that here I do not distinguish between two representations
of a numbern which consist of the same parts, only permuted. Thus, ifA is an asymp-
totic basis of orderh it implies thatrh(A, n) > 0 for all n >> 0. We would like to
know, if A is an asymptotic basis of orderh, then how small can the numbersrh(A, n)
be ? Ideally, can we haverh(A, n) = 1 for all n >> 0, i.e.: no redundancy whatsoever ?

In contrast to the situation in linear algebra, we will see that the answer to our question
in the second case above is‘No’. This seems to be a highly non-trivial fact, though. In-
deed, the deeper results in the literature at present seem toconcern the second notion of
efficiency for bases presented above. The precise connection between the two notions
is not as simple to work out as in the linear algebra setting. To begin with, I will present
some basic results concerning the first notion.

Proposition 17.2.LetA be an asymptotic basis of orderh. Then

A(n) & (h!)1/hn1/h. (17.2)

The proof of this will require a basic combinatorial formulawhich you may have
seen before :

Lemma 17.3. Let k, l be positive integers. The number of ordered solutions in non-
negative integers to the equation

x1 + · · · + xk = l (17.3)

is

(

k + l − 1
l

)

. This is also the number of ways of choosingl elements from ak-

element set, where repitition is allowed and ordering of choice is unimportant.

Proof. of Lemma.Imagine you havel identical dots andk− 1 identical vertical dashes.

Then you havek + l − 1 symbols in all. There are

(

k + l − 1
l

)

ways of arranging

these symbols in a line, since the only choice that makes a difference is where you
place the dots. But there is a 1-1 correspondence between thearrangements of dots and
dashes and the non-negative integer solutions to (17.3), namely : given an arrangement
of dots and dashes, interpretxi as the number of dots between the(i − 1):st andi:th
dashes.

Finally, to see that the solutions to (17.3) are in 1-1 correspondence with the un-
ordered choices ofl elements from ak-set, say the set{1, ..., k}, just observe that,
given such a choice, we can interpretxi as the number of times you choose the number
i. �

Proof. of Proposition 17.2.SinceA is an aysmptotic basis there areO(1) elements of
N which cannot be expressed as a sum ofh elements ofA. Now letn be a large integer.
All but O(1) of the numbers among{1, ..., n} have an expression as

a1 + · · · + ah, ai ∈ A. (17.4)
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Obviously, in any such expression, eachai ∈ {1, ..., n}. Let T := A(n). By Lemma

17.3, the total number of expressions (17.4), satisfying that eachai ≤ n, is

(

T + h − 1
h

)

.

Thus
(

T + h − 1
h

)

≥ n − O(1). (17.5)

Let n → ∞. Obviously,n − O(1) ∼ n. Also,
(

T + h − 1
h

)

=
(T + h − 1)(T + h − 2) · · · (T )

h!
∼ T h

h!
. (17.6)

HenceT h/h! & n and henceT = A(n) & (h!)1/hn1/h, v.s.v. �

Remark 17.4. By Stirling’s formula, ash → ∞,

(h!)1/h ∼ (hhe−h
√

2πh)1/h ∼ h

e
. (17.7)

Let A = (an) denote a generic infinite subset ofN0, where the elements ofA are
listed in increasing order. IfA is an asymptotic basis of orderh, then the lower bound
(17.2) forA(n) can be easily converted to an upper bound foran. For, by definition,
A(an) = n and hencen & (h!)1/ha

1/h
n . In other words,

an .
nh

h!
. (17.8)

This is perhaps an easier way to think about things, as it gives an upper bound on
how ‘sparse’ a basis of orderh can be. Bases whose sparsity is of the right order of
magnitude have been constructed :

Theorem 17.5.For everyh ∈ N there exists a positive numberγh and an asymptotic
basisA = (an) of orderh such thatan ∼ γhn

h.

There are several explicit constructions of bases in the literature which imply this
theorem, the most important one probably being due to Cassels1. His construction
is complicated, however. Below, we give an example of a fairly simple construction
which at least has the right order of magnitude. Note, though, that it is an unsolved
problem to determine the largest possible constantsγh such that an asymptotic basis of
orderh exists satisfyingan ∼ γhn

h. We know from (17.8) thatγh ≤ 1/h!. However,
the true maximal value ofγh is not known for a singleh > 1 (as far as I know !), and
the problem seems to be pretty intractable.

Example. Let h ≥ 2. For eachn ∈ N, write n in base 2, say

n = xkxk−1 · · ·x1x0, xi ∈ {0, 1}, xk = 1. (17.9)

Let A = ∪h−1
i=0 Ai where, for eachi, the setAi is defined by

Ai = {n ∈ N : xr = 0 for all r 6≡ i (modh)}. (17.10)

1J.W.S. Cassels, Über Basen der natürliche Zahlenreihe,Abh. Math. Sem. Univ. Hamburg21 (1957),
247-257.
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Then it is easy to see thatA ∪ {0} is a basis (not just an asymptotic basis) of orderh
and, for anyt ∈ N,

A(2ht − 1) = h · 2t − (h − 1). (17.11)
From this one can check that

an ∼ nh

hh
. (17.12)

By (17.7) and (17.11), this basis is in a sense, for largeh, at most a factor1/e from
‘optimal’.

We now turn to our second notion of what it means to efficientlyconstruct a basis,
a notion which emphasises lack of redundancy rather than size. There is the following
fundamental result :

Theorem 17.6.LetA be an asymptotic basis of orderh. Then the representation func-
tion rh(A, n) cannot be ultimately constant. In particular, we cannot haverh(A, n) = 1
for all sufficiently largen.

This theorem was proven for arbitraryh by Vaughan2 using Fourier analysis methods.
No really ‘elementary’ proof is known, even forh = 2. In that special case, however, a
clever proof was provided earlier by Erdős and Turán using so-calledgenerating func-
tions.

I started this proof, but didn’t finish it, so I will present itin full next day ...

2R.C. Vaughan, On the addition of sequences of integers,J. Number Theory4 (1972), 1-16.
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18. EIGHTEENTH LECTURE : 3/12

Proof. of Theorem 17.6.Suppose the contrary and letA be an asymptotic basis of order
2 such thatr2(A, n) = l for all sufficiently largen and some constantl > 0. We
consider the generating function of the setA, which is the power series

G(z) = GA(z) :=
∑

a∈A

za (z ∈ C). (18.1)

The power series certainly converges when|z| < 1, so we will work in this region so that
all our algebraic manipulations will be valid. The connection between the generating
function and the representation function is that

[G(z)]2 + G(z2) = 2 ·
∞

∑

n=1

r2(A, n)zn. (18.2)

Suppose thatr2(A, n) = l for all n ≥ n0. Then (18.2) can be written as

[G(z)]2 + G(z2) =

n0−1
∑

n=1

r2(A, n)zn + 2l ·
∞

∑

n=n0

zn. (18.3)

The first sum on the right of (18.3) is some polynomial inz. The second sum is a
geometric series, so has a simple formula. We thus find that

[G(z)]2 + G(z2) = P (z) + 2l · zn0

1 − z
. (18.4)

We obtain a contradiction by seeing what happens asz → −1+, along the real axis.
Because of all the squares present, the left-hand side of (18.4) heads inexorably to-
wards positive infinity. But the right-hand side heads towards some finite value, namely
P (1) ± l. This contradiction completes the proof. �

Notation. Previously, we have introduced the notationf = O(g) to denote that|f(x)/g(x)|
is bounded asx → ∞. Two similar pieces of notation whcih are useful to have are :
1. f = Ω(g) means the same thing asg = O(f), in other words, the quotient|f(x)/g(x)|
has a positive lower bound asx → ∞. In words, it means thatf grows at least as fast
asg.
2. f = Θ(g) means that bothf = O(g) andg = O(f). In other words, it means that
there exist positive constants0 < c1 ≤ c2 such that

c1 ≤ lim inf
x→∞

∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

≤ lim sup
x→∞

∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

≤ c2. (18.5)

In words,f andg have the same rate of growth.

One of the major open problems in combinatorial additive number theory is

Conjecture 18.1. (Erd̋os-Turán) Let h ≥ 2 and A ⊆ N be an asymptotic basis of
orderh. Then the representation functionrh(A, n) is unbounded.

Bases whose representation functions are‘slowly growing’ are calledthin. The state-
of-the-art with regard to the construction of thin bases is
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Theorem 18.2.For eachh ≥ 2 there exists an asymptotic basisA of orderh satisfying

rh(A, n) = Θ(log n). (18.6)

This theorem is one of the classical applications of the so-calledprobabilistic method
in number theory. The caseh = 2 was proven by Erd̋os in 1956 usingChernoff ’s
inequality. The general case wasn’t completed until 1990, by Erdős and Tetali. It is
most succinctly presented using the so-calledJanson inequalities, though Erd̋os and
Tetali did not actually use these in their original proof.

The more important point, though, is that these proofs use probabilistic arguments,
and in each case use tools from probability theory which werestate-of-the-art at the
time. My intention in coming lectures is to give a proof of thecaseh = 2. On the way
I will state, but not prove, Chernoff’s inequality. As a lead-up to the main result, I will
give an introduction to the probabilistic method in general(a method which is widely
used in all areas of combinatorics) by means of the historically significant example of
Ramsey numbers.

This material will occupy us in the next two lectures. Beforeembarking upon it, I
wish to make some extra comments and state some open problemsarising out of Theo-
rem 17.6.

Definition. A set A ⊆ Z is called aSidon setif all the sumsa1 + a2 are distinct,
for a1, a2 ∈ A.

Example. A = {0, 1, 3, 7} is a Sidon set. There are 10 possible sums, and all are
distinct, namely

0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 2, 0 + 3 = 3, 1 + 3 = 4,

3 + 3 = 6, 0 + 7 = 7, 1 + 7 = 8, 3 + 7 = 10, 7 + 7 = 14.

Theorem 17.6 implies that an asymptotic basis of order 2 forN cannot be a Sidon set.
There are many open problems regarding Sidon sets. Here are some :

Problem 18.3.Can an asymptotic basis of order 3 be a Sidon set ?

Problem 18.4.Can an asymptotic basis of order 4 be a Sidon set ?

It can be deduced from the Erdős-Tetali result on thin bases that there exist asymptotic
bases of order 5 which are Sidon sets. However, because of theprobabilistic nature of
the argument, it yields no explicit examples.

Problem 18.5. Give an explicit example of a Sidon set which is an asymptotic basis
of order 5.

Some interesting problems revolve around the connection between finite and infinite
(dense) Sidon sets. Forn > 0, let S(n) denote the maximum size of a Sidon set in
{1, ..., n}. Since the number of possible sums of pairs of elements in ak-element set

is k +

(

k
2

)

= k(k+1)
2

. Since a sum of any two elements amongst1, ..., n must lie
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amongst2, ..., 2n, we get that

S(n)[S(n) + 1]

2
≤ 2n − 1 ⇒ S(n) . 2

√
n. (18.7)

The following theorem was proven in the 1940s by combining work of Erdős, Turán
and Chowla :

Theorem 18.6.There exist positive constantsc1, c2 such that, for alln ∈ N,

n1/2 − c1n
5/16 < S(n) < n1/2 + c2n

1/4. (18.8)

There remains to this day a gap between the known lower and upper bounds forS(n),
but since this gap is already fairly small, by (18.8), this problem is perhaps not so inter-
esting. More intriguingly, the following result of Erdős (1955) implies that dense finite
Sidon sets cannot be‘glued’ together to give equally dense infinite Sidon sets :

Theorem 18.7. Let A ⊆ N be a Sidon set. Then there exists a universal constant
c > 0 such that

lim inf
n→∞

A(n)
√

n/ log n
≤ c. (18.9)

Indeed the densest known infinite Sidon sets are given by :

Theorem 18.8. (Ruzsa 1998)There is a Sidon setA ⊆ N such that

A(n) = n
√

2−1+on(1). (18.10)

Ruzsa’s proof uses a probabilistic argument and thus does not yield explicit exam-
ples. Indeed, basically nothing is known in terms of explicitly constructing dense infi-
nite Sidon sets, beyond what one gets from a greedy choice procedure. This involves
constructing an infinite Sidon setA ⊆ N0 according to the following rules :

First take0 ∈ A. At each successive step, add toA the smallest number you can
which maintains the Sidon property.
The set one gets this way starts off asA = {0, 1, 3, 7, 12, ...} and one can quite easily
verify thatA(n) = Θ(n1/3). Any improvement on this exponent would be a significant
achievement.

One final problem. As we’ve stated several times, there is no subsetA ⊆ N such
that every sufficiently large number can be uniquely expressed asa1 + a2. However,
consider the setA consisting of alln ∈ N0 in whose binary representation, there are
zeroes in all the even positions, reading from right to left (recall the example after The-
orem 17.5). Then it easy to see that everyn ∈ N0 has a unique expression asa1 + 2a2,
for somea1, a2 ∈ A. The following problem is open :

Problem 18.9. For which pairs{u, v} of relatively prime positive integers does there
exist a setA ⊆ N such that every sufficiently large number has a unique representation
asua1 + va2, for somea1, a2 ∈ A ?
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The above comments imply that{1, 2} is such a pair, whereas{1, 1} isn’t.
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19. NINETEENTH LECTURE : 5/12

To introduce the proabilistic method, we will take a detour away from number theory
per se and discuss the problem of computing so-called Ramseynumbers. The standard
reference for an introduction to the probabilistic method in discrete mathematics is

N. Alon and J. Spencer,The Probabilistic Method, 3rd edition, Wiley (2008).

Definition. Let k, l ∈ N≥2. TheRamsey numberR(k, l) is the smallestn ∈ N such
that, if the edges of the complete graphKn are each colored either red or blue then, no
matter how the coloring is done, there must exist either a totally redKk subgraph or a
totally blueKl subgraph.

The fundamental result proven by Frank Ramsey in the 1920s was :

Theorem 19.1.The numbersR(k, l) all exist, i.e.: are finite. In fact, we have

R(k, l) = R(l, k), (19.1)

R(k, 2) = R(2, k) = k, (19.2)

and, in general,
R(k, l) ≤ R(k − 1, l) + R(k, l − 1). (19.3)

Proof. Note that the three statements together imply that all the numbersR(k, l) are
finite, say by an induction onk + l. The first statement is totally obvious and, for the
second, note that since aK2 is just a single edge, ifKn is colored in such a way that it
has no redK2 subgraphs, then it means that the entireKn itself is blue.

So we turn to the third statement. Letn = R(k − 1, l) + R(k, l − 1). We must show
that any coloring of the edges ofKn must yield either a redKk or a blueKl subgraph.
Consider an arbitrary coloring ofKn. Pick out any vertex, call itv0. There aren − 1
other vertices and, since

n − 1 > [R(k − 1, l) − 1] + [R(k, l − 1) − 1], (19.4)

at least one of the following events must occur :

CASE 1 : v0 is connected to at leastR(k − 1, l) other vertices by a red edge,
CASE 2 : v0 is connected to at leastR(k, l − 1) other vertices by a blue edge.

We present the remainder of the argument in Case 1 only, for Case2 is dealt with
similarly. By definition of the numberR(k − 1, l), amongst the vertices to whichv0 is
connected by a red edge, there must exist at least one of the following patterns :

(a) an entirely blueKl,
(b) an entirely redKk−1.

In the former case, we’re already done - we have a blueKl in the whole graph if we
have one in any part of it (wow !). But in the latter case, just tag on the vertexv0 and
we obtain instead a redKk in the whole graph. �

From this result we can deduce explicit upper bounds for Ramsey numbers :
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Corollary 19.2. For everyk, l ≥ 2 we have

R(k, l) ≤
(

k + l − 2
k − 1

)

. (19.5)

Proof. For l = 2 this reduces to

R(k, 2) ≤
(

k
k − 1

)

, (19.6)

which is true, since both sides equalk. To establish the inequality in general, we proceed
by induction onk + l. By (19.3), it is easily seen to suffice that

(

k + l − 2
k − 1

)

≥
(

k + l − 3
k − 2

)

+

(

k + l − 3
k − 1

)

. (19.7)

And this is true, in fact we have equality again, by Pascal’s identity for binomial coeffi-
cients :

(

n
r

)

=

(

n − 1
r − 1

)

+

(

n − 1
r

)

. (19.8)

�

It is natural to consider the special (symmetric) casek = l. Then (19.5) becomes

R(k, k) ≤
(

2k − 2
k − 1

)

. (19.9)

Using simply the fact that
n

∑

r=0

(

n
r

)

= 2n (19.10)

(both sides count the number of subsets of ann-element set), it follows that

R(k, k) ≤ 4k−1. (19.11)

A slightly better estimate can be got using Stirling’s formula, but the important point
is that the upper bound we obtain forR(k, k) is exponential ink. A problem which
Ramsey didn’t solve, and which remained open for a few years after his untimely death
in 1930 at the age of 26, was whether these symmetric Ramsey numbers really do grow
exponentially. It turns out that they do, and the proof of this fact is perhaps the oldest
application of what has become known as the probabilistic method in combinatorics3.
The formal result is

Theorem 19.3.Letk ≥ 3. If the positive integern satisfies

(

n
k

)

2
1−

0

@

k
2

1

A

< 1, (19.12)

thenR(k, k) > n.

Corollary 19.4.
R(k, k) ≥ 2k/2. (19.13)

3Only a finite (and very small !) collection of Ramsey numbersR(k, l), for k, l ≥ 3, have been
computed exactly. For example, I showed in class thatR(3, 3) = 6.
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Proof. of Corollary. Note that we have equality in (19.13) fork = 2. Now for

k ≥ 3 it suffices to show that ifn = 2k/2 then (19.12) is satisfied. Since

(

n
k

)

=

n(n−1)···(n−k+1)
k!

< nk

k!
and

(

k
2

)

= k(k−1)
2

, the left-hand side of (19.12) will be less

than

2
k
2

2
+1

k! 2
k(k−1)

2

=
21+ k

2

k!
. (19.14)

So we just need to check that21+ k

2 ≤ k!, for everyk ≥ 3. This is easily done by
induction onk (the casek = 3 reducing to4

√
2 < 6). �

Proof. of Theorem.Let n be an integer satisfying (19.12). We must show that there is
a way to color the edges ofKn red and blue so that there will be no monochromatic
Kk subgraph. Consider a‘totally random’ coloring of the edges, i.e.: for each of the
(

n
2

)

edges independently, toss a fair coin and color the edge red or blue depending

on whether you get heads or tails respectively. Thus, each edge is equally likely to be

colored red or blue, and in fact all2

0

@

n
2

1

A

possible colorings of the entire graph are

equally likely. LetA be anyKk subgraph. It has

(

k
2

)

edges, and hence the probabil-

ity that all of these will be colored red is2
−

0

@

k
2

1

A

. There is the same probability that
the entire subgraph is blue, hence

P(A is monochromatic) = 2
1−

0

@

k
2

1

A

. (19.15)

The total number ofKk subgraphs inKn is just

(

n
k

)

. The probability of any particu-

lar one being colored monochromatically is given by (19.15). Now, the probability of at
least one of a collection of events occurring cannot exceed the sum of the probabilitites
of the individual events4. Thus the probability that someKk is monochromatic is at

most

(

n
k

)

2
1−

0

@

k
2

1

A

. By assumption, this quantity is strictly less than one. In other

words, a random coloring ofKn yields, with strictly positive probability, a coloring
for which there is no monochromaticKk subgraph. Since there are only finitely many

possible colorings a priori (2

0

@

n
2

1

A

of them), this means that there must be SOME way
to colorKn such that no monochromaticKk arises. �

4This is referred to as theunion boundby probabilists. Formally, ifE1, ..., Er are any events, then
P(∪r

i=1
Ei) ≤

∑

r

i=1
P(Ei).
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Remark 19.5. It’s important to note here that this proof suffers from the typical weak-
ness of an application of a probabilistic method, namely that it only proves existence of
the desired object (a certain good coloring ofKn), not any explicit example. From an
algorithmic/practical viewpoint, this is not such a big deal. If n is significantly smaller
than2k/2, then the proof implies that a random coloring ofKn will yield no monochro-

matic Kk with very high probability (because the quantity

(

n
k

)

2
1−

0

@

k
2

1

A

will be

very close to zero). Thus if we just perform the coloring at random, we will get a
good coloring unless we’re very unlucky. Of course, we won’tactually KNOW that our
coloring is good.

As a prelude to developing some machinery which we will need in order to prove
Theorem 18.2, it is instructive, I think, at this point to reformulate the above proof using
somewhat more formal probabilistic terminology. Formally, probability theory revolves
around the study of triples(X, Ω, µ), whereX is a so-calledrandom variable, Ω is a
probability spaceandµ is aprobability measure. I don’t want to get into any technical
details here, but I will just say that, in general,Ω is just some set,X is a function from
Ω to R, andµ is a function from2Ω to [0, 1], where2Ω denotes the collection of all
subsets ofΩ.

In Theorem 19.3,Ω is the set of all possible colorings of the edges ofKn, where

each edge is colored red or blue. HenceΩ is a finite set and|Ω| = 2

0

@

n
2

1

A

. µ is
so-calleduniform measureon Ω which means, concretely, that our rules for randomly
coloring the graph lead to every possible coloring being equally likely. X is the number
of monochromaticKk subgraphs. Clearly, this is indeed a function fromΩ to R. In
fact,X only takes on non-negative integer values. Since we choose acoloring fromΩ
randomly (according toµ), the value ofX is also‘random’ (hence the name‘random
variable’). The strategy of the proof above was to show that

E(X) < 1. (19.16)

SinceX is non-negative integer valued, this inequality allows oneto conclude that

P(X = 0) > 0, (19.17)

which proves the theorem. The idea behind proving (19.16) was to writeX as a sum
of so-calledindicator variables. Let A be aKk subgraph inKn and letEA denote the
event that a randomly chosen coloring ofKn yields a monochromaticA. We showed
that

P(EA) = 2
1−

0

@

k
2

1

A

. (19.18)

Let XA denote the following random variable :

XA =

{

1, if EA occurs,
0, otherwise.

(19.19)

XA is called theindicator variableof the eventEA. Clearly,

E(XA) = P(EA). (19.20)
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The important point is that
X =

∑

A

XA, (19.21)

the sum being taken over allKk subgraphs ofKn. Now since the average of a sum
equals the sum of the averages, it follows that

E(X) =
∑

A

E(XA). (19.22)

This property of expectation values (that they commute withsums) is referred to by

probabilists aslinearity of expectation. In our example, there are

(

n
k

)

possibilities

for A, hence from (19.18) we could conclude that

E(X) =

(

n
k

)

2
1−

0

@

k
2

1

A

< 1. (19.23)

From a probabilistic viewpoint, the proof of Theorem 19.3 is‘easy’ in the sense that it
sufficed to have knowledge of the expectation value of the random variableX of interest
(eq. (19.16)). This we could easily obtain by writingX as a sum of indicator variables
and using linearity of expectation. What we didn’t need was any information on how
strongly concentratedX was about its mean. This would actually have been difficult
to obtain, since the indicator variablesXA are not all independent. In situations where
we have sums of INDEPENDENT, or mostly independent, random variables, it is often
possible to prove that the sumX is very strongly concentrated about its mean. Some of
the classical results of statistics and probability theorydeal with this phenomenon, and
it is such a result which will be needed in due course to prove Theorem 18.2. We will
delve deeper into these matters next day ...


