
20. TWENTIETH LECTURE : 8/12

An important class of results in probability theory are so-called Central Limit The-
orems. A weaker set of results, calledLaws of Large Numbers, capture the layman’s
notion that things tend to average out over time. The Central Limit Theorems are more
precise : they tell you that random variables which are long-term averages tend to have
normal distributions. Recall some definitions from statistics :

Definition. Let X be a real-valued random variable. Thestandard deviationof X,
denotedσ(X), is the quantity

σ(X) :=
√

E[(X − E(X))2]. (20.1)

Example. Let X be the number of heads obtained when a fair coin is tossedn times.
Thus

X =
n
∑

i=1

Xi, (20.2)

where theXi are independent, identically distributed (i.i.d.) indicator variables, more
precisely :

Xi =

{

1, if the i:th toss yields a head,
0, otherwise.

(20.3)

SinceE(Xi) = 1/2, linearity of expectation gives thatE(X) = n/2. Regarding the
standard deviation ofX, the following formula holds for any sum of indicator
variables :

σ2(X) =
n
∑

i=1

σ2(Xi) +
∑

i6=j

cov(Xi, Xj). (20.4)

The terms in the last sum are calledcovariances. These are zero when theXi are inde-
pendent. Since eachXi is either 0 or 1, each with probability1/2, it is easy to compute
thatσ(Xi) = 1/2. Hence, (20.4) implies thatσ(X) =

√
n/2.

The standard deviation of a random variableX measures, in some sense, the‘average’
amount by whichX deviates from its mean. Actually, a better way to think aboutit
is thatX is unlikely to deviate from its mean by significantly more than a standard
deviation. A precise and very general statement of this typeis

Theorem 20.1. (Chebyshev’s inequality)Let X be a real-valued random variable
with meanµ and standard deviationσ. Then, for anyλ ≥ 1,

P(|X − µ| > λσ) ≤ 1

λ2
. (20.5)

Definition. Let µ ∈ R andσ ∈ R+. Thenormal distributionwith meanµ and standard
deviationσ is the real-valued random variableX = N(µ, σ2) satisfying, for every
z ∈ R+, that

P(|X − µ| ≥ z) = 2 ·
∫ ∞

z

1√
2πσ

e−t2/2σ2

dt. (20.6)
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A normal distribution is highly concentrated within a standard deviation of its mean.
For example, (20.6) implies that, for anyλ > 0,

P(|X − µ| > λσ) ≤ e−λ2/2. (20.7)

This is a much stronger result than the totally general Chebyshev inequality above.

Classically,‘the’ Central Limit Theorem is about sums of i.i.d random variables. It
is an old result of somewhat obscure origins which says, basically, that if X1, X2, ...
is a sequence of i.i.d. variables, each with meanµ and standard deviationσ, and
Yn := (X1 + · · · + Xn)/n is the average of the firstn of them, thenYn approaches
N(µ, σ2). What do we mean here by‘approaches’ ? Well, there are different notions,
but the simplest one (which is also the weakest and thus the easiset to get rigorous re-
sults about) concernsconvergence in proabability, which means concretely that, for any
z ∈ R+,

lim
n→∞

P(|Yn − µ| ≥ z) = 2 ·
∫ ∞

z

1√
2πσ

e−t2/2σ2

dt. (20.8)

While the CLT is a fundamental theoretical result, there are several problems with its
application :

(I) it assumes identical distributions
(II) it assumes independence
(III) it is a qualitative, not a quantitative result. In other words, it doesn’t say anything
about the rate of convergence to the limit in (20.8).

Problem (I) is not serious : the CLT can be extended to sums of variables with different
distributions. (II) and (III) are much more serious, though. There are CL Theorems
that concern dependent variables, but results are limited.In a seminal paper, Chernoff
(1952) dealt significantly with problem (III). His results concern sums of indicator vari-
ables. Chernoff was interested in statistics, and his results are of great importance in
that field. Sums of indicator variables are also ubiquitous in combinatorial applications,
so Chernoff’s results deserve the combinatorialist’s attention. On the other hand, the
fact that they don’t address the issue of independence limits their applicability1.

In the literature, you will find several different results all referred to asChernoff ’s
inequality. The following is one of the more common formulations, and the one which
we shall use in our proof of Theorem 18.2 forh = 2 :

Theorem 20.2. (Chernoff 1952)Let X be a random variable which is a sum of inde-
pendent indicator variables. LetE(x) := µ. Then, for anyǫ > 0, there exists a constant
cǫ > 0, depending only onǫ, such that

P(|X − µ| > ǫµ) < 2e−cǫµ. (20.9)

1Note that, in the example of Ramsey numbers, the variablesXA in (19.19) are not independent. IfA

andB are twoKk subgraphs which have at least one common edge (i.e.: at leasttwo common vertices),
thenXA andXB are dependent. We are thus really lucky that in that application, we only needed to
knowE(X), and nothing at all about the concentration ofX.
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In fact one can take

cǫ = min

{

ǫ2

2
, (1 + ǫ) log(1 + ǫ) − ǫ

}

. (20.10)

I will not prove the theorem here. The book by Alon and Spencercontains a full
treatment as an appendix. I wish to just note that the crucialpoint about this theorem
is that it makes no reference to the numbern of indicator variables of whichX is a
sum. It is in this sense that Chernoff’s inequality is a quantitative version of CLT. By
the way, note that while there is neither any explicit reference to the standard deviation
σ(X), the fact thatcǫ depends quadratically onǫ can be shown to imply that the bound
in (20.9) does implicitly depend onσ(X).

Before coming to our application to thin bases, we state and prove one final lemma
which will be needed :

Lemma 20.3. (Borel-Cantelli lemma)Let (En)∞1 be an infinite sequence of events in
a probability space. If

∞
∑

n=1

P(En) < ∞ (20.11)

then, with probability 1, only finitely many of these events occur.

Proof. Let E be the event that infinitely many of theEn occur. We must show that
P(E ) = 0. We will show thatP(E ) < ǫ, for everyǫ > 0. So letǫ > 0 be given. By
(20.11), there must exist someNǫ > 0 such that

∞
∑

n=Nǫ

P(En) < ǫ. (20.12)

But if E occurs, then so must someEn, for somen ≥ Nǫ. Hence

P(E ) ≤ P

(

∞
⋃

n=Nǫ

En

)

≤
∞
∑

n=Nǫ

P(En) < ǫ. (20.13)

�

I started, but did not finish, the proof of Theorem 18.2(h = 2), so instead will present
it in full in next day’s notes ...
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21. TWENTY-FIRST LECTURE : 10/12

Proof. of Theorem 18.2 (h = 2). Let K be a large positive constant - how large will be
decided later on. We choose a subsetA ⊆ N randomly according to the following rule
: eachx ∈ N is considered independently, and chosen to lie inA with probability

px := min

{

1, K

√

log x

x

}

. (21.1)

I claim that, for a suitably large choice ofK, the setA will satisfy, with probability 1,
that

0.9

(

K2π

2

)

log n < r2(A, n) < 1.1

(

K2π

2

)

log n, (21.2)

for all n ≫ 0. In fact, for eachn ∈ N, letEn denote the event that (21.2) is not satisfied.
By the Borel-Cantelli lemma, it suffices to prove that

∞
∑

n=1

P(En) < ∞. (21.3)

Let Xn denote the random variabler2(A, n). Then

Xn =

⌊n/2⌋
∑

t=1

Xn,t, (21.4)

where

Xn,t =

{

1, if both t andn − t are inA,
0, otherwise.

(21.5)

EachXn,t is an indicator variable and, CRUCIALLY, for each fixedn, the Xn,t are
independent. Thus eachXn is a sum of independent, indicator variables and we can
apply Chernoff’s inequality. Letµn := E[Xn]. I claim that

µn ∼ K2π

2
log n. (21.6)

For the moment, let us assume this is true and show how to finishthe proof. Take
ǫ = 0.09 and apply (20.9). Forn ≫ 0, En will be contained in the event that|Xn−µn| >
ǫµn. Thus, it follows easily that, forn ≫ 0,

P(En) ≤ 2 · exp

(

−cǫ
K2π

2
log n

)

, (21.7)

in other words,
P(En) ≤ 2ṅ−Cǫ , (21.8)

where

Cǫ = cǫ
K2π

2
. (21.9)

Hence, (21.3) will be satisfied provided

cǫ
K2π

2
> 1, (21.10)
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which tells us how large we need to chooseK. Thus, we have proven Theorem 18.2
subject to establishing (21.6). First of all, by (21.4) and linearity of expectation, we
have

µn =

⌊n/2⌋
∑

t=1

E[Xn,t]. (21.11)

By the definition ofXn,t in (21.5), its expectation is just the probability that botht and
n − t lie in A. For t = n/2 (n even) this is justpn/2, otherwise it isptpn−t. Since we
are only interested in asymptotic estimates, it is thus clear that

µn ∼
⌊n/2⌋
∑

t=1

ptpn−t. (21.12)

By (21.1) there will be a bounded number of terms in this sum which are equal to1. In
all other terms, the minimum in (21.1) will be the function oft. Hence,

µn ∼ K2

⌊n/2⌋
∑

t=1

√

log t log(n − t)

t(n − t)
. (21.13)

Note that the summand above is symmetric aboutn/2. Hence, in order to establish
(21.6), it remains to prove that

n−1
∑

t=1

√

log t log(n − t)

t(n − t)
∼ π log n. (21.14)

Applying the standard trick of replacing the sum by an integral, we will show instead
that2

∫ n

1

√

log t log(n − t)

t(n − t)
dt ∼ π log n. (21.15)

We change variablest := ξn, and are left with having to show that
∫ 1

0

√

log(ξn) log[(1 − ξ)n]

ξ(1 − ξ)
dξ ∼ π log n. (21.16)

At this point, we need a bit of calculus :

Lemma 21.1.
∫ 1

0

dξ
√

ξ(1 − ξ)
= π. (21.17)

In particular, the integral converges, hence

lim
δ→0

∫ δ

0

dξ
√

ξ(1 − ξ)
= lim

δ→0

∫ 1

1−δ

dξ
√

ξ(1 − ξ)
= 0. (21.18)

2It needs to be justified that replacing the sum by the integraldoes not lead to a significant error in our
estimates. It is easy to see that the error will beo(log n). A rigorous proof is technical, and hence I omit
it, though if you read through the rest of the calculations presented here, you should be able to see how
to do it.
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The second assertion of the lemma follows from the first (notethat the integrand is
symmetric aboutξ = 1/2), and the first is proven by making the trigonometric substi-
tution ξ := sin2 θ.

So back to the theorem. Letδ be a small positive number. At the end we will let
δ → 0. Divide up the integral in (21.16) into three parts, (i) from0 to δ, (ii) from δ to
1−δ, (iii) from 1−δ to 1. Call these three sub-integralsI1, I2 andI3 respectively. Now,
for any fixedξ ∈ (0, 1), we have

log(ξn) log[(1 − ξ)n] = (log n + log ξ)(log n + log(1 − ξ)) (21.19)

= (log n + O(1))(log n + O(1)) ∼ (log n)2,

so that the numerator of the integrand in (21.16) is∼ log n. From this and Lemma 21.1,
it follows easily that, asδ → 0,

I1 . (log n) ·
∫ δ

0

dξ
√

ξ(1 − ξ)
= o(log n), (21.20)

I2 ∼ (log n) ·
∫ 1−δ

δ

dξ
√

ξ(1 − ξ)
∼ π log n, (21.21)

I3 . (log n) ·
∫ 1

1−δ

dξ
√

ξ(1 − ξ)
= o(log n). (21.22)

Eq. (21.16) follows immediately from these estimates, and hence the proof of Theorem
18.2, forh = 2, is complete. �

Remark 21.2. If you examine the proof above, you will see that by a suitablechoice of
the parametersK andǫ, we can choose positive contantsc1 < c2 such that the quotient
c2/c1 arbitrarily close to 1, and find an asymptotic basisA such that

c1 log n < r2(A, n) < c2 log n (21.23)

for all n ≫ 0.

We now come to the last part of the course, which is a quick introduction to the sub-
ject ofGeneralised Ramsey Theory, in particular the part of the subject which connects
to number theory. For an introduction to the subject in general see, for example, the
book

R. Graham, B. Rothschild and J. Spencer,Ramsey Theory, 2nd edition, Wiley, New
York (1990).

We have already had a glimpse into this subject via the original work of Gordon Ram-
sey, which we presented in the now standard language of coloring the edges of graphs.
As an example of a result of a certain type, which we can use as alaunch pad to con-
struct a general‘theory’, the way to think about Theorem 19.1 is as follows : itsays
that, among objects of a certain class (graphs), if we pick some such very large object
then, no matter how random it looks on the whole, it must have certain regularities in
places. Here the‘randomness’ is in the mish-mash of red and blue edges we observe
when the edges ofKn are colored at random, whereas the‘regularity’ is in the fact that,
in places, the graph is entirely monochromatic.
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Around the same time as Ramsey was at work, a Belgian mathematician called Bartel
van der Waerden quite independently proved a result about numbers, rather than graphs,
which sounds eerily similar to Ramsey’s theorem. In modern terminology, his theorem
is as follows :

Theorem 21.3. (van der Waerden 1927)Let k, l ∈ N. Then for alln ≫ 0, depend-
ing on k and l, the following is true : if each of the numbers1, 2, ..., n is given one
of a selection ofl colors then, no matter how the coloring is done, there must bea
monochromatick-term arithmetic progression (AP).

Definition. For each pairk, l of positive integers, letW (k, l) denote the smallest posi-
tive integern such that for anyl-coloring of{1, 2, ..., n} there must exist a monochro-
matic k-term AP. These are called thevan der Waerden numbersand Theorem 21.3
asserts that they all exist.

I gave some preliminary remarks about the proof of this theorem, but will present more
details next day ...
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22. TWENTY-SECOND LECTURE : 12/12

The main purpose of this lecture is to outline the proof of Theorem 21.3. I will not
give the argument in full generality, in order to avoid getting bogged down in com-
plicated notation and technicalities. Instead I will illustrate the key ideas by means of
examples. First of all, note that it is trivial that

W (1, l) = 1, W (2, l) = l + 1, for any l. (22.1)

The proof of the theorem proceeds by the following inductionprocedure : at stepk,
we assume that the numbersW (k, l) exist for all l, and then deduce that the numbers
W (k + 1, l) exist for all l. Eq. (22.1) allows us to get started. Below, I will prove three
special cases of the theorem :

W (3, 2) ≤ 325, (22.2)

W (3, 3) ≤ 7(2 · 37 + 1)(2 · 330625 + 1), (22.3)

W (4, 2) ≤ [2 · W (3, 2) − 1]
[

2 · W (3, 22·W (3,2)−1) + 1
]

. (22.4)
In the proofs of (22.2) and (22.3), I will assume (22.1), while in the proof of (22.4), I
will assume the existence ofW (3, l) for everyl, a fact which I hope to convince you of
by means of the first two proofs.

In going from (22.2) to (22.3), I wish to illustrate how the proof by induction proceeds
with k fixed andl increasing. With (22.4), I illustrate the second key idea, namely what
to do whenk is increased.

In the lectures, I drew pictures to better show what was goingon. I will not draw
any pictures here, but it really is a lot easier to grasp the ideas with pictures, so please
consult your lecture notes.

Proof of (22.2).We have to show that any 2-coloring of the numbers1, 2, ..., 325 yields
a monochromnatic 3-term AP. Let the colors be red and blue, and consider an arbi-
trary coloring. Divide the 325 numbers into 65 blocks of 5 consecutive numbers called
B1, ..., B65. ThusB1 = {1, 2, 3, 4, 5}, B2 = {6, 7, 8, 9, 10} and so on. There are
25 = 32 possible ways to color a block. Thus, amongst the first 33 blocks, two must
be colored in exactly the same way, reading from left to right. Let Bi andBi+j be any
two such blocks. Sincei + j ≤ 33, the blockBi+2j exists. We now consider the three
blocksBi, Bi+j andBi+2j, so

Bi = {5i − 4, 5i − 3, 5i − 2, 5i − 1, 5i},(22.5)

Bi+j = {5(i + j) − 4, 5(i + j) − 3, 5(i + j) − 2, 5(i + j) − 1, 5(i + j)},(22.6)

Bi+2j = {5(i + 2j) − 4, 5(i + 2j) − 3, 5(i + 2j) − 2, 5(i + 2j) − 1, 5(i + 2j)}.(22.7)

Amongst the first three elements ofBi, two must have the same color (this is another
way of saying thatW (2, 2) = 3, so it is at this point that we are using an induction
hypothesis). Let us suppose that5i−4 and5i−2 are each colored red - the argument is
similar in all other cases and will not be repeated. If5i is also red, then(5i−4, 5i−2, 5i)
is a red AP and we’re done. Thus we may suppose that5i is colored blue. SinceBi+j is
colored in exactly the same way asBi, we have that both5(i + j) − 4 and5(i + j) − 2
are red, whereas5(i + j) is blue. Now we focus on the number5(i + 2j). If it is red,
then(5i−4, 5(i+ j)−2, 5(i+2j)) is a red AP. If it is blue, then(5i, 5(i+ j), 5(i+2j))
is a blue AP. So we are done in either case.
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Proof of (22.3).Let

n = 7(2·37+1)(2·330625+1) = 7·4375·(2·330625+1) = 30625(2·330625+1). (22.8)

We must show that any 3-coloring of the numbers1, 2, ..., n yields a monochromatic
3-term AP. Let the colors be red, blue and green and consider an arbitrary coloring.
First divide the numbers1, 2, ..., n into 2 · 330625 + 1 blocksBξ, each of length30625.
There are330625 ways to color a block, so amongst the first330625 + 1 blocks, two must
be colored in exactly the same way. LetBi andBi+j be any two such blocks. The block
Bi+2j exists, and so we may consider the triple(Bi, Bi+j, Bi+2j) of blocks.

This time we first need to take the argument to another level, by looking inside the
block Bi. It has length 30625, so we subdivide it into 4375 subblocksCi,ξ, each of
length 7. There are37 ways to color a subblock, so amongst the first37 + 1 subblocks,
two have exactly the same coloring. LetCi,r andCi,r+s be any two such subblocks.
The subblockCi,r+2s exists. LetCi+j,r and so on denote the corresponding subblocks
insideBi+j andBi+2j, and letci,r,ξ and so on denote the elements of all these subblocks,
whereξ ∈ {1, ..., 7}.

Now let’s look atCi,r. It has seven elements, so amongst the first four there must
be two with the same color. Let us suppose that the first and fourth elements ofCi,r

are both red - the argument is similar in all other cases and will not be repeated. Thus
ci,r,1 andci,r,4 are both red. Ifci,r,7 were red, then we’d have a red 3-term AP inside
Ci,r and be done already. Without loss of generality, we may thus assume thatci,r,7 is
blue. SinceCi,r andCi,r+s have the same coloring, we haveci,r+s,1 andci,r+s,4 both
red, whereasci,r+s,7 is blue. Now focus on the elementci,r+2s,7. If it were red, then
(ci,r,1, ci,r+s,4, ci,r+2s,7) woul be a red AP. If it were blue, then(ci,r,7, ci,r+s,7, ci,r+2s,7)
would be a blue AP. We may thus assume thatci,r+2s,7 is green.

Next, sinceBi andBi+j have the same coloring, we can deduce that
(i) ci+j,r,1, ci+j,r,4, ci+j,r+s,1 andci+j,r+s,4 are all red,
(ii) ci+j,r,7 andci+j,r+s,7 are blue,
(iii) ci+j,r+2s,7 is green.

Finally, then, zoom in on the numberci+2j,r+2s,7. If it is red, then(ci,r,1, ci+j,r+s,4, ci+2j,r+2s,7)
is a red AP. If it is blue, then(ci,r,7, ci+j,r+s,7, ci+2j,r+2s,7) is a blue AP. If it is green, then
(ci,r+2s,7, ci+j,r+2s,7, ci+2j,r+2s,7) is a green AP. So we are done in all three cases.

Proof of (22.4).Puta := 2 · W (3, 2) − 1, b := W (3, 2a) and

n := a(2b + 1). (22.9)

We must show that any 2-coloring of the numbers1, 2, ..., n yields a monochromatic
4-term AP. Divide all the numbers into2b + 1 blocks of lengtha. There are2a possible
colorings of a block. Hence, amongst the firstW (3, 2a) blocks, there must be a 3-term
AP of blocks, all with the same coloring. Call these blocksBi, Bi+j andBi+2j. The
blockBi+3j exists, so we may consider the 4-tuple(Bi, Bi+j, Bi+2j, Bi+3j) of blocks.

SinceBi has length2 ·W (3, 2)−1, amongst the firstW (3, 2) elements ofBi there must
exist a monochromatic 3-term AP. Suppose, without loss of generality, thatci,r, ci,r+s, ci,r+2s
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is a red AP insideBi. The elementci,r+3s exists insideBi. If it were red then we’d al-
ready have a 4-term red AP, so we may assume this element is blue. Since bothBi+j

andBi+2j are colored in exactly the same way asBi, we now know that
(i) ci+j,r, ci+j,r+s, ci+j,r+2s, ci+2j,r, ci+2j,r+s andci+2j,r+2s are all red,
(ii) ci+j,r+3s andci+2j,r+3s are blue.

Now focus on the elementci+3j,r+3s. If it is red, then(ci,r, ci+j,r+s, ci+2j,r+2s, ci+3j,r+3s)
is a red AP. If it is blue, then(ci,r+3s, ci+j,r+3s, ci+2j,r+3s, ci+3j,r+3s) is a blue AP. So in
both cases, we are done. This completes the proof of (22.4), and thus our outline of the
proof of Theorem 21.3.

We finish off the course with some remarks, for anyone interested in pursuing further
studies in this area. The following is an equivalent formulation of van der Waerden’s
theorem :

Theorem 22.1. Suppose the natural numbers are colored with finitely many colors.
Then there exist arbitrarily long monochromatic AP:s.

Proof. It is very easy to see that Theorem 21.3 implies this result. The converse requires
a bit more effort and is left as an exercise. �

If we color N with finitely many colors, then at least one color must be usedon a
‘positive proportion’ (more precise definitions to follow) of all numbers. It is natural to
expect that the color which is used‘most often’ will yield arbitrarily long AP:s. Erd̋os
and Turán conjectured that this is the case. To state their conjecture precisely, we need
a definition :

Definition. Let A ⊆ N. The upper asymptotic densityof A, denotedd(A), is the
quantity

d(A) := lim sup
n→∞

|A ∩ {1, ..., n}|
n

. (22.10)

Erdős and Turán conjectured that ifd(A) > 0 thenA contains arbitrarily long AP:s.
This turns out to be true. The first progress was made by Roth (1952) who proved that a
set of positive upper density must contain a 3-term AP. His proof used Fourier analysis.
Szemerédi (1975) completely solved the problem. His methodis purely combinatorial,
but anything but easy, and the argument is considered one of the classics of combina-
torics. Furstenberg (1977) gave a completely different proof of what has become known
asSzemerédi’s Theorem, using ergodic theory. Yet another entirely different proof was
provided by Gowers (1998). His methods build on those of Roth, but essentially in-
volved the development of a whole new kind of Fourier analysis. In 2004, Green and
Tao synthesised the ideas of all these authors to solve a veryold problem in classical
number theory : they proved that the set of primes contains arbitrarily long arithmetic
progressions. The field is currently a very hot area of research. There are two outstand-
ing open problems, of which the first is :

Extended Erdős-Turán Conjecture. LetA ⊆ N satisfy that
∑

a∈A

1

a
= +∞. (22.11)
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ThenA contains arbitrarily long AP:s.

Observe that the set of primes satisfies (22.11), hence the Green-Tao result established a
special case of this conjecture. It is at this point unclear,however, whether their methods
can shed any light on the general conjecture. Erdős offered$3000 for a proof or dis-
proof of this conjecture. No Erd̋os problem worth more than$1000 has yet been solved.

The second outstanding open problem is the so-calledHardy-Littlewoodk-tuple conjec-
ture. It is somewhat technical to state precisely, but informally it states that any possible
constellation of prime numbers should appear infinitely often, unless it is ruled out by
some simple congrence obstruction. TheTwin Primes Conjectureis a special case of
this more general conjecture. An example of a constellationwhich is ruled out by a
congruence obstruction is{n, n + 2, n + 4}. Since, for anyn, one of these three num-
bers is a multiple of 3, the constellation appears only once among the primes, namely
{3, 5, 7}. The work of Green-Tao may be able to be pushed further towards establishing
some cases of the Hardy-Littlewood conjecture. Their published work in the last few
years is certainly motivated by this application. Possiblyin the foreseeable future, the
ideas which grew out of van der Waerden’s strange little result on coloring numbers
may lead to a proof of the Twin Primes Conjecture !

One final remark. The upper bounds on van der Waerden numbersW (k, l) obtained by
the kind ofcolor focusingargument we outlined above are eeeeeenoooooorrrrrrrmooooou-
uussss3. Even forW (3, 2), the actual value is known to be 9, which can be checked by
exhaustive computer search. The best-known upper bounds onVdW numbers have
been obtained by the Fourier analysis methods of Gowers et al. It is known that

W (k, l) ≤ el2
2
k+9

. (22.12)

Regarding lower bounds, a probabilistic argument similar to that used in the proof of
Theorem 19.3 can be used to prove that

W (k, l) >
√

2(k − 1)l(k−1)/2. (22.13)

The huge gap between (22.12) and (22.13) illustrates that there is still plenty of room
for new ideas in this area.

3More precisely, they are notprimitive recursive, for those of you who know what that means.


