
Homework 1 (due Monday, Nov. 24)

There are 8 problems below, but most of them are quite long anddivided
into multiple parts. Hence, points are awarded for the different parts indi-
vidually. The maximum number of points is 31. The total exam bonus will
be calculated as6x/31, wherex is the number of points obtained.

Some of the problems you might find more difficult than others.Some
are the same as on last year’s homework. Some others I had thought of dur-
ing the last couple of weeks. A couple simply came to mind during class,
for example as a result of questions from the audience !

Q.1 (5x1p) Let a1, ..., an be positive integers with GCD(a1, ..., an) = 1. Let
G(a1, ..., an) denote theirFrobenius number, i.e.: the largest positive inte-
gera0 such that (1) above has no solution in non-negative integersx1, ..., xn.

(i) Prove thatG(a1, ..., an) < ∞ always.
(ii) Prove thatG(a1, a2) = (a1 − 1)(a2 − 1) − 1.
(iii) Write down a formula for the general solution of the Diophantine

equation

7x + 19y + 23z = 11.

(iv) Calculate the Frobenius numberG(7, 19, 23). You may use a com-
puter.

(v) Determine with proof all positive integersn for which there exist pos-
itive integersm1,m2 satisfyingm1 < m2 < 2m1 andn = 3m1 + 2m2.

Q.2 (5x1p) (i) If (x, y, z) is a Pythagorean triple, prove thatxyz is divisible
by 60.
(ii) Prove that, for any odd numbert, the equationx4+y4 = zt has infinitely
many solutions in positive integersx, y, z.
(iii) Let (a1, b1, c1) and(a2, b2, c2) be distinct primitve Pythagorean triples.
Prove that|{a1, b1, c1} ∩ {a2, b2, c2}| ≤ 1.
(iv) Let p, q be relatively prime integers withp > q. Prove thatp2 − q2

cannot dividep2 + q2.
(iv) Using the results of parts (iii) and (iv) or otherwise, provethat the equa-
tion x4 − y4 = z2 has no solutions in positive integers.

Q.3 (2p+1p) (i) Let m,n be relatively prime positive integers. Prove that
the equationaxn = bym has an integer solution for anya, b ∈ N.
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(ii) Let n ∈ N be fixed. Describe a polynomial-time1 algorithm for deciding
whether or not the equationaxn = byn has a positive integer solution and
for finding this (unique) solution if it exists.

Q.4 (2p) Let (R, +, ·) be a commutative ring. A functiond : R → Z+

is said to beEuclidean if the following three properties are satisfied :
(i) d(a) = 0 ⇔ a = 0.
(ii) For all a, b 6= 0, d(a) ≤ d(ab).
(iii) For all a, b 6= 0, there existq, r ∈ R such thata = qb + r and either

r = 0 or d(r) < d(b).

Now letR = Z[
√
−2]. Prove that the function

d(z) = |z|2, i.e.: d(x + y
√
−2) = x2 + 2y2,

is a Euclidean function onR.
(HINT : The hard part is to verify property (iii). One option is to first do

this whenb is a positive integer, using numerically least remainders (see the
statement of Theorem 12.4 in the lecture notes). There is also a more purely
geometric approach.).

Remark : An integral domain equipped with a Euclidean function is called
a Euclidean ring. As I have said on multiple occasions in class, it can
be shown that a Euclidean ring is a principal ideal domain andsatisfies a
unique factorisation property. We may discuss this in classlater. This is
one way of proving that one has unique factorisation inZ[

√
−2], which we

used in Theorem 4.2.

Q.5 (3x2p) (i) A sequence(an)∞
n=1 of real numbers is said to besubadditive

if, for every m,n ∈ N, am+n ≤ am + an. Let (an)∞
n=1 be a subadditive

sequence of non-negative integers. Prove thatlimn→∞ an/n exists and is a
non-negative real number.
(ii) For n ∈ N, let f(n) be the largest size of a subset of{1, ..., n} con-
taining no three-term arithmetic progressions. Roth’s theorem (mentioned
in class, and see Supplementary Lecture Notes for Week 51) states that
limn→∞ f(n)/n = 0. Without using this, prove thatlimn→∞ f(n)/n actu-
ally exists at least.
(iii) Let L be any linear Diophantine equation, say

L : a1x1 + · · · + anxn = a0, ai ∈ Z.

1that is, polynomial in the size of the inputsa, b.
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Let f(n) be the largest size of a subset of{1, ..., n} which contains no non-
trivial solutions toL . In general, it is not known whetherlimn→∞ f(n)/n
exists. Prove, however, thatlim infn→∞ f(n)/n > 0 whenever the equation
is variant, .i.e.: whenever eithera0 6= 0 or

∑
n

i=1
ai 6= 0.

Q.6 (2x2p) With notation as in partQ.5, compute (with proof)limn→∞ f(n)/n
for each of the following variant equations :

(a)2x = y,
(b) 3x = y + z.

OBS! One can generalise part (a) and determine explicitly, for every pair
a, b of relatively prime positive integers, the maximum subset of N which
contains no solutions to the equationax = by. For extra credit (2p), do this
instead of part (a).

Q.7 (2p) Forn ∈ N defineτ(n) to be the number of positive integers which
dividen, including both1 andn itself. Prove that, for anyǫ > 0,

lim
n→∞

τ(n)

nǫ
= 0.

(You can get partial credit for proving the result just forǫ = 1).

Q.8 (2p) Let S = {p/q : p andq are primes}. Prove thatS is dense in
R+.


