Homework 3 (due Wednesday, Jan. 7)

There is a total of 30 points for exercises without a *. The exercises with a * are considered a lot more difficult. Bonus points are calculated as x/5, where the maximum possible value of x is 42. All your work must be properly motivated !

In Exercises 1-2 you will require the following terminology : Let \mathcal{L} : $\sum_{i=1}^{n} a_i x_i = a_0$ be a linear Diophantine equation. Let $c \in \mathbb{N}$. We say that the equation \mathcal{L} is *c*-irregular if there exists a *c*-coloring of \mathbb{N} for which there are no non-trivial monochromatic solutions to \mathcal{L} . We say that \mathcal{L} is *irregular* if it is *c*-irregular for some $c \in \mathbb{N}$. Otherwise, \mathcal{L} is said to be (*partition*) regular.

Q.1 (3p) Let \mathcal{L} be a linear Diophantine equation. Suppose that there exists a $c \in \mathbb{N}$ such that, for every $n \in \mathbb{N}$, there exists a *c*-coloring of $\{1, ..., n\}$ which induces no non-trivial monochromatic solutions to \mathcal{L} . Prove that \mathcal{L} is then irregular.

Q.2 (3p) Prove that the equation 4x = 2y + z is 3-irregular.

(REMARK : The question of whether one can 3-color the reals such that there are no monochromatic solutions to this equation is known to be undecidable in ZFC-set theory).

Q.3 (2p) Let $h \ge 2$. Recall that an asymptotic basis A for \mathbb{N}_0 of order h is said to be *thin* if the counting function $A(n)/n^{1/h}$ is bounded. Let's call A skinny if the representation function $r_{A,h}(n)$ is bounded.

Prove that a skinny asymptotic basis of order h is also thin of order h. On the other hand, give an example for each $h \ge 2$ of a thin asymptotic basis of order h which is not skinny.

Q.4 (2p) Without using generating functions, show that it is impossible for a subset $A \subseteq \mathbb{N}$ to satisfy $r_2(A, n) = 1$ for all $n \gg 0$.

Q.5 (2p) Prove that the Erdős-Turán Conjecture fails in \mathbb{Z} by exhibiting, for each $h \ge 1$, a basis A for \mathbb{Z} of order h such that $r_{A,h}(n) = 1 \forall n \in \mathbb{Z}$.

Q.6 (4p+1p+1p+4p) Let A be an asymptotic basis for \mathbb{N}_0 . An element $a \in A$ is said to be *essential* if the set $A \setminus \{a\}$ is no longer an asymptotic basis, of any order.

*(i) Prove that if A is an asymptotic basis for \mathbb{N}_0 and $a \in A$, then a is essential if and only if $A \setminus \{a\}$ is contained inside some non-trivial, homogeneous arithmetic progression, i.e.: inside $n\mathbb{Z}$ for some n > 1.

(ii) Deduce from part (i) that an asymptotic basis contains only finitely many essential elements.

(iii) For each $k \ge 1$, give an example of an asymptotic basis with exactly k essential elements.

*(iv) Prove that there exists a function $X : \mathbb{N} \to \mathbb{N}$ with the following property :

For every $h \in \mathbb{N}$, every asymptotic basis A for \mathbb{N}_0 of order h and every $a \in A$, either a is essential or the order of $A \setminus \{a\}$ as an asymptotic basis is at most X(h). In fact, prove that, as $h \to \infty$,

$$\frac{h^2}{4} \lesssim X(h) \lesssim \frac{5h^2}{4}.$$

Q.7 (5x1p + 4p) If $A \subseteq \mathbb{Z}$, then the *difference set* A - A is defined as

$$A - A = \{a_1 - a_2 : a_1, a_2 \in A\}$$

and the restricted sumset is defined as

$$A + A = \{a_1 + a_2 : a_1, a_2 \in A, a_1 \neq a_2\}.$$

(i) For a finite set A, give upper and lower bounds for |A - A| in terms of |A|, analogous to those given in the lectures for the sumset A + A.

(ii) Give any example whatsoever of a finite set A for which |A + A| > |A - A|.

(iii) A set A is said to be symmetric if there exists $x \in \mathbb{Z}$ such that $A = \{x\} - A$. Prove that, if A is symmetric, then |A + A| = |A - A|.

(iv) Prove that $|A+A| \leq |A+A| - 2$.

(v) Let A be a symmetric set and $x \in \mathbb{Z} \setminus A$. Let $B := A \cup \{x\}$. Prove that |B + B| < |B - B|.

*(vi) Prove that there exists a real number C > 0 such that, for all $n \in \mathbb{N}$, there are at least $C \cdot 2^n$ subsets A of $\{1, ..., n\}$ which satisfy $|A + A| \ge |A - A|$.

Q.8 (2p) For each $n \in \mathbb{N}$, let

$$A_n := \{k^2 : 1 \le k \le n\}.$$

Prove that, for any $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{|A_n - A_n|}{n^{2-\epsilon}} = +\infty.$$

Q.9 (2p+3p) Let $A \subseteq \mathbb{Z}$ be a finite set, |A| = k. (i) Prove that, if |A + A| = 2k - 1, then A is an arithmetic progression. (ii) Prove that, if k > 3 and $|A + A| \le 2k$, then there exists an arithmetic progression B such that $|B| \le k + 1$ and $A \subseteq B$).

Q.10 (2p) Prove or disprove the existence of a countably infinite subset $A \subset [0, 1]$ which has distinct subset sums.

Q.11 (3p) Complete the proof of Chernoff's inequality by proving (in the notation of the lecture notes) that

$$\mathbb{P}(\hat{X} < -a) \leq \exp\left(\frac{-a^2}{2pn}\right).$$