20. TWENTIETH LECTURE: 8/12

An important class of results in probability theory are sdiex Central Limit The-
orems A weaker set of results, callddaws of Large Numbeysapture the layman’s
notion that things tend to average out over time. The Centrait(Theorems are more
precise : they tell you that random variables which are Itergs averages tend to have
normal distributions Recall some definitions from statistics :

Definition. Let X be a real-valued random variable. T&®ndard deviatiorof X,
denotedr(X), is the quantity

o(X) = VE[(X —E(X))2]. (20.1)

Example. Let X be the number of heads obtained when a fair coin is toss@des.
Thus

X = ix (20.2)
=1

where theX; are independent, identically distributed (i.i.d.) indaravariables, more
precisely :

(20.3)

1, ifthei:th toss yields a head
X; = .
0, otherwise.

SinceE(X;) = 1/2, linearity of expectation gives thdt(X) = n/2. Regarding the
standard deviation ok, the following formula holds for any sum of indicator
variables :

o’(X) =) o*(Xi) + > cov(X;, X;). (20.4)
i=1 i#j

The terms in the last sum are calleolvariances These are zero when thé are inde-

pendent. Since eackj; is either 0 or 1, each with probability/2, it is easy to compute

thato(X;) = 1/2. Hence, (20.4) implies that(X) = \/n/2.

The standard deviation of a random varialllaneasures, in some sense, theerage’
amount by whichX deviates from its mean. Actually, a better way to think akbibut
is that X is unlikely to deviate from its mean by significantly more niha standard
deviation. A precise and very general statement of this iype

Theorem 20.1. (Chebyshev’s inequality) et X be a real-valued random variable
with meanu and standard deviation. Then, for any\ > 1,

1
P(|X — p| > Xo) < ’Vh (20.5)
Definition. Let 4 € R ando € R,.. Thenormal distributionwith meanu and standard

deviationo is the real-valued random variabfé = N(u,o?) satisfying, for every
z € Ry, that

< 1
P(X —pl>z) =2 / —— P g (20.6)
2 2ro
1
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A normal distribution is highly concentrated within a standi deviation of its mean.
For example, (20.6) implies that, for any> 0,

P(|X — p| > Ao) < e 72, (20.7)

This is a much stronger result than the totally general ChHedbysequality above.

Classically,‘the’ Central Limit Theorem is about sums of i.i.d random \ales. It

is an old result of somewhat obscure origins which says.chblgi that if X;, X, ...

is a sequence of i.i.d. variables, each with mgaand standard deviatioa, and
Y, = (X1 + -+ X,,)/n is the average of the first of them, thenY,, approaches
N(u,0?). What do we mean here bgpproaches’ ? Well, there are different notions,
but the simplest one (which is also the weakest and thus tisetdo get rigorous re-
sults about) concerrnvergence in proababilifyvhich means concretely that, for any
z € Ry,

< 1
lim P(|Y, —pu| >2)=2- / — 2 gy (20.8)
n—0o0 2 2ro

While the CLT is a fundamental theoretical result, there averseé problems with its
application :

() it assumes identical distributions

(I1) it assumes independence

(11N it is a qualitative, not a quantitative result. In othgords, it doesn’t say anything
about the rate of convergence to the limit in (20.8).

Problem (1) is not serious : the CLT can be extended to sumsrathlas with different
distributions. (ll) and (Ill) are much more serious, thougrhere are CL Theorems
that concern dependent variables, but results are limited.seminal paper, Chernoff
(1952) dealt significantly with problem (I11). His resultercern sums of indicator vari-
ables. Chernoff was interested in statistics, and his iesué of great importance in
that field. Sums of indicator variables are also ubiquitousombinatorial applications,
so Chernoff’s results deserve the combinatorialist’s &iten On the other hand, the
fact that they don’t address the issue of independencesliimétir applicability.

In the literature, you will find several different result$ adferred to asChernoff’s
inequality. The following is one of the more common formulations, arel@he which
we shall use in our proof of Theorem 18.2 for= 2 :

Theorem 20.2. (Chernoff 1952) et X be a random variable which is a sum of inde-
pendent indicator variables. L&(x) := p. Then, for any > 0, there exists a constant
c. > 0, depending only on, such that

P(| X — pu| > ep) < 2e . (20.9)

INote that, in the example of Ramsey numbers, the variables (19.19) are not independent. Af
and B are twoK;, subgraphs which have at least one common edge (i.e.: atte@msbmmon vertices),
then X 4 and X are dependent. We are thus really lucky that in that apjdicatve only needed to
knowE(X), and nothing at all about the concentration’of



In fact one can take
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The crucial point here is that does not depend oA, i.e.: it doesn’t depend on
how many indicator variableX is the sum of, nor on the distributions of these. Itis in
this sense that Chernoff’s inequality is a quantitative ieere®f CLT. By the way, note
that while there is neither any explicit reference to thedgad deviatiorr (X ), the fact
thatc, depends quadratically ancan be shown to imply that the bound in (20.9) does
implicitly depend oo (X).

Ce :min{f,(l—i—e) log(1 +¢€) —6}. (20.10)

We will deduce Theorem 20.2 fromraormalisedversion of it. LetX; be an indica-
tor variable, say

Y _ 1, with probability p;,
‘1 0, with probability1 — p;.

Thenormalisationof X;, which we denoteX;;, is the variableX; — i, €.

) { 1 —pi, with probability p;,

Xi=91 Zp. with probability1 — p;. (20.11)

Thus X; has mean zero. It has the same varianc& asamelyp;(1 — p;).

Now let X be a random variable which is a sumyohormalised indicator variables, for
some fixedh. Write X = X; + --- + X,,, with the X as above, and define the number
pbynp =p; +---+ p,. Finally, leta be any positive real number. We will prove the
following two inequalities:

IP’(X>CL) < exp [a—pnln (1—|—i> —aln (1+i)} , (20.12)
pn pn
N a?
P(X < —a) < exp [——} ) (20.13)
2pn

Note that the theorem follows from (20.12) and (20.13) upettireya = epn. We will
prove (20.12) in detail. The proof of (20.13) is very simidand is left as an exercise on
Homework 3. First, though, a couple of remarks are in order:

(i) there is an obvious asymmetry in the estimates (20.1d)(20.13), depending on
whetherX is positive or negative. Unfortunately, this is a featur€brnoff's method.

(i) the connection to the normal distribution is clear ifD(23), as the variance of

is aboutnp if the individual p; are small, as is usually the case in applications. With
(20.12), the connection is not so obvious. Howeve, i small compared tpn and

we use the fact thah(1 + u) > u — u?/2 when0 < u < 1, then we can deduce from
(20.12) that

~ a2 CL3
P(X —t—. 20.14
(X >a) <exp [ Som + Q(pn)Q] ( )

Note that (20.14) gives no information wheis large compared top as then the cubic
term dominates. Again, this is a feature of Chernoff’s methmd is not important,
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since we’re only interested in having concentration clostaé mean anyway.

The proof of (20.12) uses thexponential generating functiaf X, namely: Let\ > 0.
Then we will consider the random variable

o
. )\k .
AX . N Sk
et = k:!X .
k=0

Now X > « if and only if X > et The simple Markov inequality gives a bound

]E[e)\f(].

P(e’\X > M) < o

(20.15)

We will estimate the expectation and then the clever pati®ptroof is that\, which at
this point is still some arbitrary positive real number,Ivoi¢é chosen so as to minimise
the right-hand side of (20.15). The estimate of the expiectatill use the concavity of
the logarithm. Let us begin by formally defining what this mea

Definition. A function f on the positive reals is said to lsencavef, for any n, any
positive realse; < z, < --- < x,, and any positive reals,, ..., a,, satisfying) " a; = 1,
it holds that

f (Z ai$i> > Z ai f(z;).

Concavity has a simple geometric interpretation, nameliyttiegraph off lies on or
above the straight line drawn between any two points on it.

CLAIM : LetC > 0. Then the functiorf(z) = In(Cz + 1) is concave

The claim follows immediately from the observation thf&tz) > 0 and f”(xz) < 0
forall z > 0.

Now let us return to the proof of (20.12). Sinde= > X;, one easily sees that

n

AX H g

=1
Now we use the independence of the Recall that if4, B are independent random
variables, thefit|AB| = E[A]E[B]. Thus, by induction,

E[e*X] = f[ E[e*Xi). (20.16)

1=1

But from (20.11), the definition of e.g.f. and linearity of @qgpation (convergence is
not a problem), one easily computes that

E[e)‘f(i] — pet17P) 4 (1 —p;)e P = =i [pi(e’\ —1)+ 1} .



Substituting into (20.16) and recalling the definitionpofve thus have

E[e’\X] = ﬁ[pi(e’\ —1)+1]. (20.17)

But

[Ipi(e* = 1) +1] < [p(e* — 1) +1]™. (20.18)
=1
Indeed this follows from taking logarithms and using the @laSo substituting (20.18)
back into (20.17) and in turn back into (20.15), we have thienede
P(X > a) < e " [pe* + (1 — p)"e™ . (20.19)

It is now a horrid calculus exercise to compute the precisgevaf A which minimises
the right hand side of (20.19) However, a good approximation when< np is to
take\ = In(1+a/pn). Substituting this into (20.19) we get the desired relaRih12)
upon noticing that, with this choice of,

[pe* + (1 —p)]" = (1 +a/n)" < e
This completes the proof of Theorem 20.2.
Before coming to our application to thin bases, we state andepone final lemma
which will be needed :

Lemma 20.3. (Borel-Cantelli lemma)Let (&,)3° be an infinite sequence of events in
a probability space. If

iIP’(@“’n) < o0 (20.20)

then, with probability 1, only finitely many of these eventsuac

Proof. Let & be the event that infinitely many of th€, occur. We must show that
P(&) = 0. We will show thatP(&") < ¢, for everye > 0. So lete > 0 be given. By
(20.11), there must exist somé > 0 such that

e}

Y P(&) <« (20.21)
n=N
But if & occurs, then so must sordg, for somen > N,.. Hence
P(&) <P ( U §n> <) P& <e (20.22)
n=N, n=IN
l

| started, but did not finish, the proof of Theorem 18:2= 2), so instead will present
it in full in next day’s notes ...

2The right value turns out to be

= () ().




21. TWENTY-FIRSTLECTURE: 10/12

Proof. of Theorem 18.2(= 2). Let K be a large positive constant - how large will be
decided later on. We choose a suhd4et N randomly according to the following rule
: eachr € N is considered independently, and chosen to lid ivith probability

1
P := min {1,}( ng} . (21.1)

X

| claim that, for a suitably large choice &f, the setA will satisfy, with probability 1,
that

KQ KQ
0.9 ( 2”) logn < ra(A,n) < 1.1 ( 2”) log n, (21.2)

foralln > 0. Infact, for eacln € N, let &, denote the event that (21.2) is not satisfied.
By the Borel-Cantelli lemma, it suffices to prove that

> P(&,) < 0. (21.3)
n=1
Let X, denote the random variablg( A, n). Then
/2]
Xo= Y X, (21.4)

t=1
where
Y 1, ifbothtandn —t areinA,
mtT) 0, otherwise.
Each.X, , is an indicator variable and, CRUCIALLY, for each fixed the X,, ; are
independent. Thus eacki, is a sum of independent, indicator variables and we can
apply Chernoff’s inequality. Let,, := E[X,,]. | claim that

K?r

(21.5)

oy ™~ logn. (21.6)

For the moment, let us assume this is true and show how to fthistproof. Take
e = 0.09 and apply (20.9). Fat > 0, &, will be contained in the event thgX,, — 1,,| >
eli,. Thus, it follows easily that, fon > 0,

K2
P(&,) <2-exp (—c6 27T log n) : (21.7)
in other words,
P(&,) < 207, (21.8)
where
2
C = KZW (21.9)
Hence, (21.3) will be satisfied provided
2
FECUY (21.10)

2
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which tells us how large we need to chodse Thus, we have proven Theorem 18.2
subject to establishing (21.6). First of all, by (21.4) amgbarity of expectation, we
have

[n/2]

pn =Y E[Xn4]. (21.11)

t=1
By the definition ofX, ; in (21.5), its expectation is just the probability that bo#nd
n —tliein A. Fort = n/2 (n even) this is jusp,, /2, otherwise it isp;p,—;. Since we
are only interested in asymptotic estimates, it is thusrd¢hest

[n/2)
fn ™~ > Dibnt (21.12)
t=1

By (21.1) there will be a bounded number of terms in this suntihaire equal ta. In
all other terms, the minimum in (21.1) will be the functiontoHence,

[n/2]

logtlog n—t)
2
~ K § T (21.13)

Note that the summand above is symmetrlc abo(®. Hence, in order to establish
(21.6), it remains to prove that

Z logﬂog "= rogn. (21.14)
t(n —t)
Applying the standard trlck of replacing the sum by an ind&gwe will show instead
thaf
/ \/bg“og 5 ) gt ~ mlogn. (21.15)
(n—

We change variables:= ¢{n, and are left with having to show that

/ \/log £n) log [(1 —f)n] de ~ mlog . (21.16)

At this point, we need a bit of calculus :

Lemma 21.1.
1 & (21.17)
0 VE(1=9)
In particular, the integral converges, hence
1 1
lim de i de (21.18)

—_— 1 —_—— —
0o EI—§ o0 )is JET-6)

3It needs to be justified that replacing the sum by the intedat not lead to a significant error in our
estimates. It is easy to see that the error wilbbleg n). A rigorous proof is technical, and hence | omit
it, though if you read through the rest of the calculatiorsspnted here, you should be able to see how
to do it.



The second assertion of the lemma follows from the first (o the integrand is
symmetric about = 1/2), and the first is proven by making the trigpnometric substi-
tution ¢ := sin? 6.

So back to the theorem. Létbe a small positive number. At the end we will let
o — 0. Divide up the integral in (21.16) into three parts, (i) fronto 9, (ii) from § to
1—19, (iii) from 1 —¢ to 1. Call these three sub-integrdis I, and/; respectively. Now,
for any fixed¢ € (0,1), we have

log(&n) log[(1 — &)n] = (logn + log &) (log n + log(1 — £)) (21.19)
= (logn + O(1))(logn + O(1)) ~ (logn)?,

so that the numerator of the integrand in (21.16Y ikg n. From this and Lemma 21.1,
it follows easily that, ag — 0,

6 d€ B
[1 5 (lOg n) : ; m = 0(10g n), (2120)
I, ~ (logn) - o & ~ 7logn, (21.21)
s VE(L=E)
1
I3 < (logn) - a8 o(logn). (21.22)

15 EL—8)
Eq. (21.16) follows immediately from these estimates, agrtle the proof of Theorem
18.2, forh = 2, is complete. O

Remark 21.2. If you examine the proof above, you will see that by a suitableice of
the parameter& ande, we can choose positive contants< ¢, such that the quotient
c2 /¢y arbitrarily close to 1, and find an asymptotic bagisuch that

cplogn < ry(A,n) < cologn (21.23)
foralln > 0.

We now come to the last part of the course, which is a quickuction to the sub-
ject of Generalised Ramsey Theomy particular the part of the subject which connects
to number theory. For an introduction to the subject in gainsee, for example, the
book

R. Graham, B. Rothschild and J. Spendétamsey Theorynd edition, Wiley, New
York (1990).

We have already had a glimpse into this subject via the alguork of Gordon Ram-
sey, which we presented in the now standard language ofiegltite edges of graphs.
As an example of a result of a certain type, which we can uselasnah pad to con-
struct a generatheory’, the way to think about Theorem 19.1 is as follows says
that, among objects of a certain class (graphs), if we pickessuch very large object
then, no matter how random it looks on the whole, it must hareat regularities in
places. Here the@andomness’ is in the mish-mash of red and blue edges wewabser
when the edges ok, are colored at random, whereas tregularity’ is in the fact that,

in places, the graph is entirely monochromatic.
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Around the same time as Ramsey was at work, a Belgian mathéanatedled Bartel
van der Waerden quite independently proved a result abaabats, rather than graphs,
which sounds eerily similar to Ramsey’s theorem. In modemmitgology, his theorem
is as follows :

Theorem 21.3. (van der Waerden 1927)etk,l € N. Then for alln > 0, depend-
ing on k& and !, the following is true : if each of the numbers2, ..., n is given one
of a selection of colors then, no matter how the coloring is done, there musa be
monochromatic-term arithmetic progression (AP).

Definition. For each paik, [ of positive integers, letl (k,[) denote the smallest posi-
tive integern such that for any-coloring of {1, 2, ..., n} there must exist a monochro-
matic k-term AP. These are called than der Waerden numbeend Theorem 21.3
asserts that they all exist.

| gave some preliminary remarks about the proof of this thegpbut will present more
details next day ...
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22. TWENTY-SECONDLECTURE: 12/12

The main purpose of this lecture is to outline the proof ofdreen 21.3. | will not
give the argument in full generality, in order to avoid gagtibogged down in com-
plicated notation and technicalities. Instead | will itkizde the key ideas by means of
examples. First of all, note that it is trivial that

wW(1,l)=1, W(2,l)=101+1, foranyl. (22.1)

The proof of the theorem proceeds by the following inductiwocedure : at step,

we assume that the numbéig(k, () exist for all/, and then deduce that the numbers
W(k + 1,1) exist for alll. Eq. (22.1) allows us to get started. Below, | will prove three
special cases of the theorem :

W(3,2) < 325, (22.2)
W(3,3) <7(2-37 4+ 1)(2- 3% 4 1), (22.3)
W(4,2) < [2-W(3,2) — 1] [2- W(3,227E271) 4 1] (22.4)

In the proofs of (22.2) and (22.3), | will assume (22.1), whit the proof of (22.4), |
will assume the existence oF (3, /) for everyl, a fact which | hope to convince you of
by means of the first two proofs.

In going from (22.2) to (22.3), I wish to illustrate how theopf by induction proceeds
with & fixed andl increasing. With (22.4), | illustrate the second key ideanely what
to do whenk is increased.

In the lectures, | drew pictures to better show what was goimg | will not draw
any pictures here, but it really is a lot easier to grasp tlkasdvith pictures, so please
consult your lecture notes.

Proof of (22.2).We have to show that any 2-coloring of the numbkrz ..., 325 yields
a monochromnatic 3-term AP. Let the colors be red and blué,camsider an arbi-
trary coloring. Divide the 325 numbers into 65 blocks of 5 sstutive numbers called
By, ...,Bgs. ThusB; = {1,2,3,4,5}, By = {6,7,8,9,10} and so on. There are
2% = 32 possible ways to color a block. Thus, amongst the first 33Kslotwo must
be colored in exactly the same way, reading from left to riglet B, and B, ; be any
two such blocks. Since+ j < 33, the blockB, 5, exists. We now consider the three
blocksB;, B;+; and B, ;, SO
B; = {5i — 4,5i — 3,5i — 2,5i — 1,5i}(22.5)
B ={5(i+j)—45(+j)—3,5(i+j)—2,5(i+7) —1,5(i + j) }(22.6)
Biioj = {5(i+25) —4,5(i +27) — 3,5(i +2j) — 2,5(i + 25) — 1,5(i + 27) }(22.7)
Amongst the first three elements Bf, two must have the same color (this is another
way of saying thall’(2,2) = 3, so it is at this point that we are using an induction
hypothesis). Let us suppose that- 4 and5: — 2 are each colored red - the argument is
similar in all other cases and will not be repeatedii i also red, thebi—4, 5i—2, 57)
is a red AP and we’re done. Thus we may supposeithiatcolored blue. Sinc®, ; is
colored in exactly the same way &s, we have that both(: + j) — 4 and5(i + j) — 2
are red, whereas(: + j) is blue. Now we focus on the numbg{f: + 2j). If it is red,
then(5:—4,5(i+7) —2,5(i+27)) isared AP. If it is blue, thebi, 5(i + ), 5(i +27))
is a blue AP. So we are done in either case.
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Proof of (22.3).Let
n="7(2-3"4+1)(2-3%% £ 1) = 7.4375-(2-3%% 1+ 1) = 30625(2-3%%% 1 1). (22.8)

We must show that any 3-coloring of the numbeérsg, ..., n yields a monochromatic
3-term AP. Let the colors be red, blue and green and consiarlgtrary coloring.
First divide the numbers, 2, ..., n into 2 - 3°%2° + 1 blocks B, each of lengtt80625.
There are33°525 ways to color a block, so amongst the fi3$t525 + 1 blocks, two must
be colored in exactly the same way. Ligtand B, ; be any two such blocks. The block
B, ,; exists, and so we may consider the triplg, B, ;, B;;»;) of blocks.

This time we first need to take the argument to another leyelpdking inside the
block B;. It has length 30625, so we subdivide it into 4375 subblacks each of
length 7. There arg” ways to color a subblock, so amongst the fist- 1 subblocks,
two have exactly the same coloring. L@, andC;,, be any two such subblocks.
The subblockl; .-, exists. LetC;;, and so on denote the corresponding subblocks
insideB,;,; andB,_,;, and letz; . . and so on denote the elements of all these subblocks,
where¢ € {1,...,7}.

Now let's look atC;,. It has seven elements, so amongst the first four there must
be two with the same color. Let us suppose that the first andif@lements of’; .
are both red - the argument is similar in all other cases atichet be repeated. Thus
¢ir1 andce;, 4 are both red. Ik;, ; were red, then we'd have a red 3-term AP inside
C; and be done already. Without loss of generality, we may tissarae that; , 7 is
blue. SinceC;, andC;, ., have the same coloring, we hawg,; andc;, 4 both
red, whereas; , - is blue. Now focus on the elemeat, ... If it were red, then
(Ci,r,b Cirds,4s Ci,r+23,7) woul be a red AP. If it were blue, thdmﬁiﬂ«j, Cirts,7s Ci,r+23,7)
would be a blue AP. We may thus assume that . - is green.

Next, sinceB; and B, ; have the same coloring, we can deduce that
(1) Citjr1s Citjras Citjrrs,1 @ANAeiy 164 are all red,

(i) ¢i+jr7 @andc;y 457 are blue,
(i) Ciyjris7 IS green.

Finally, then, zoom in onthe numbet. o; 25 7. Ifitisred, then(c; .1, ¢itjrts.4, Cit2jrras7)
isared AP. Ifitis blue, thelc; .7, ¢itj 457, Citajrtos7) IS @ablue AP. Ifitis green, then
(Cirt2s7, Citjrs2s7, Cit2jrr2s7) IS @ green AP. So we are done in all three cases.

Proof of (22.4).Puta :=2- W (3,2) — 1, b := W (3,2%) and
n:=a(2b+1). (22.9)

We must show that any 2-coloring of the numbeérsg, ..., n yields a monochromatic
4-term AP. Divide all the numbers in@ + 1 blocks of length:. There ar&® possible
colorings of a block. Hence, amongst the firfs(3, 2%) blocks, there must be a 3-term
AP of blocks, all with the same coloring. Call these blodks B, ; and B, ,;. The
block B, . 3; exists, so we may consider the 4-tuple,, B, ;, B2, Bi3;) of blocks.

SinceB; has lengti2- W (3, 2) — 1, amongst the firsti’ (3, 2) elements of3; there must
exist a monochromatic 3-term AP. Suppose, without loss oégaity, that:; ., ¢; s, Ci 425
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is a red AP insid&3;. The element; . 35 exists insideB;. If it were red then we'd al-
ready have a 4-term red AP, so we may assume this elementeis $iace bothB,  ;
andB;,.; are colored in exactly the same way/as we now know that

(1) Citjrs Citjrts, Citjrt2s, Cit2jr Cit2jrts ANAci1oj 105 are all red,

(i) ciyjrias @Ndciia),13, are blue.
Now focus on the elemenf, s; . 3;. Ifitis red, then(c; ,, Civj s, Cit2jrt2s: Cit3jr+3s)
is a red AP. Ifit is blue, thefic; .13, Citjr+3ss Cit2jrt3s, Citajrtss) IS @ blue AP. Soin
both cases, we are done. This completes the proof of (22d)thaus our outline of the
proof of Theorem 21.3.

We finish off the course with some remarks, for anyone intetes pursuing further
studies in this area. The following is an equivalent forrtialaof van der Waerden'’s
theorem :

Theorem 22.1. Suppose the natural numbers are colored with finitely mangrsol
Then there exist arbitrarily long monochromatic AP:s.

Proof. Itis very easy to see that Theorem 21.3 implies this restié donverse requires
a bit more effort and is left as an exercise. O

If we color N with finitely many colors, then at least one color must be used
‘positive proportion’ (more precise definitions to follow)all numbers. It is natural to
expect that the color which is uséost often’ will yield arbitrarily long AP:s. Erdls
and Turan conjectured that this is the case. To state thejecture precisely, we need
a definition :

Definition. Let A C N. The upper asymptotic densityf A, denotedd(A), is the
quantity

d(A) := limsup 40 {172 = :

Erdds and Turan conjectured thatifA) > 0 then A contains arbitrarily long AP:s.
This turns out to be true. The first progress was made by Ro&2(3ho proved that a
set of positive upper density must contain a 3-term AP. Hi®pused Fourier analysis.
Szemerédi (1975) completely solved the problem. His methpdrely combinatorial,
but anything but easy, and the argument is considered orfeeaflassics of combina-
torics. Furstenberg (1977) gave a completely differenbpodwhat has become known
asSzemerédi's Theoremsing ergodic theory. Yet another entirely different grovas
provided by Gowers (1998). His methods build on those of Rloti,essentially in-
volved the development of a whole new kind of Fourier analysn 2004, Green and
Tao synthesised the ideas of all these authors to solve aol@myroblem in classical
number theory : they proved that the set of primes contaipisrarily long arithmetic
progressions. The field is currently a very hot area of rebedrhere are two outstand-
ing open problems, of which the firstis :

(22.10)

Extended Erd6s-Turan Conjecture. Let A C N satisfy that
1
Y - = oo (22.11)

a€A
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ThenA contains arbitrarily long AP:s.

Observe that the set of primes satisfies (22.11), hence #enGirao result established a
special case of this conjecture. Itis at this point uncleawever, whether their methods
can shed any light on the general conjecture.d&rdffered$3000 for a proof or dis-
proof of this conjecture. No Efi problem worth more thafi000 has yet been solved.

The second outstanding open problem is the so-chlledy-Littlewoodk-tuple conjec-
ture. It is somewhat technical to state precisely, but inforgpnéktates that any possible
constellation of prime numbers should appear infinitelgftunless it is ruled out by
some simple congrence obstruction. Thein Primes Conjectures a special case of
this more general conjecture. An example of a constellatbich is ruled out by a
congruence obstruction {3, n + 2,n + 4}. Since, for any:, one of these three num-
bers is a multiple of 3, the constellation appears only omsersy the primes, namely
{3,5,7}. The work of Green-Tao may be able to be pushed further tanestablishing
some cases of the Hardy-Littlewood conjecture. Their ghigld work in the last few
years is certainly motivated by this application. Possiblthe foreseeable future, the
ideas which grew out of van der Waerden'’s strange little ltesu coloring numbers
may lead to a proof of the Twin Primes Conjecture !

One final remark. The upper bounds on van der Waerden nurfibgts/) obtained by
the kind ofcolor focusingargument we outlined above are eeeeeeno00000ITTTITINA0O00
uusss Even forlV (3, 2), the actual value is known to be 9, which can be checked by
exhaustive computer search. The best-known upper bound&dh numbers have
been obtained by the Fourier analysis methods of Gowers ktismknown that
k49

Wk < (22.12)
Regarding lower bounds, a probabilistic argument similahtd used in the proof of
Theorem 19.3 can be used to prove that

Wk, 1) > v/2(k — 1)1*+D/2, (22.13)

The huge gap between (22.12) and (22.13) illustrates tea¢ tis still plenty of room
for new ideas in this area.

“More precisely, they are nprimitive recursivefor those of you who know what that means.



