
Lecture 1 (Nov. 1, 2011)

Various notations are used when comparing the rates of growth of different
functions, and it is a good idea for us to get these out of the way before we
start.

Notation : Let f, g : N → R be any functions. We write

(i) f = O(g) if the quotient |f(n)/g(n)| is bounded as n → ∞.
(ii) f = Ω(g) if g = O(f).
(iii) f = o(g) if f(n)/g(n) → 0 as n → ∞.
(iv) f ∼ g if f(n)/g(n) → 1 as n → ∞.
(v) f � g if lim sup |f(n)/g(n)| ≤ 1.
(vi) f � g if g � f .

First, some general words of wisdom (or waffle) :

The basic application of probabilisitc techniques to combinatorics is to prove
existence of a structure from amongst a certain class X of structures, which
possesses some desired property P.

One does so by introducing some appropriate probability measure µ on the
collection X and showing (somehow) that, if one chooses at random, accord-
ing to the distribution µ, an element of X , then with positive probability
one’s choice possesses the property P.

An important remark :

Usually, though not always, µ is just a simple uniform distribution. Also,
since we’re interested in combinatorial applications, X is usually (though
not always) a finite collection1 This means that

(i) there is usually no great mystery about how the probability theory is
introduced to the problem under consideration. It is intuitively clear what
is meant by ‘choosing at random’ and one doesn’t need to be an expert in
probability theory to understand what’s going on.

(ii) also, since the sets under consideration are usually finite, one can in
principle present most of the same arguments without ever mentioning prob-
ability theory at all, i.e.: by ‘purely combinatorial’ reasoning. Though this is
the case, for more sophisticated applications, the advantages of using notions
of probability in terms of the clarity of exposition outweigh the disadvan-
tages of having to learn these notions.

1We will see some applications, for example in number theory, where X is infinite. But
even here, the underlying set of interest, namely the natural numbers, is discrete.
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Note that the probabilistic method is usually employed to show that some
desired structure exists. It doesn’t usually tell you how to actually find such
a structure. This is an algorithmic problem, but obviously for real-world
applications, one can conceive that it might be essential to actually be able
to find what one is looking for. Sometimes the probabilistic method gives
a good randomized algorithm, basically an algorithm that is fast but has a
certain probability of failure2.

Intuitively, it is clear how this would work. One shows that a structure
with property P exists by showing that if one chooses at random, then one
finds something with property P with probability ǫ > 0. Often it turns out
that the proof yields a value of ǫ which is close to 1. This means that a
random choice is very likely to be a good one.

The course is roughly divided into three parts :

I. Introduction to the basics of the probabilistic method by means of a
variety of examples.
II. Some more sophisticated proabilistic techniques, in particular so-called
concentration inequalities.
III. To be decided (depends on time considerations etc.).

We will discuss applications of the method to a variety of combinatorial
problems, for example in graph theory and number theory, as well as appli-
cations in computer science.

Example 1 : Ramsey Numbers

Definition 1 : The complete graph on n vertices, denoted Kn, is the graph
in which each pair of vertices is joined by a single edge. Thus Kn contains
(

n
2

)

edges.

I will now state and prove an abridged form of what has become known
as Ramsey’s theorem. It is abridged in the sense that, in its’ full generality,
the number of colors in the statement below can be any finite number, not
just two.

Theorem 1 Let k, l ≥ 2 be fixed positive integers. Then for all sufficiently
large positive integers n (how large depends on k, l), the following holds :

If each edge of Kn is colored either red or blue, then there must exist ei-
ther a red Kk or a blue Kl.

2There is also a whole theory of derandomization, which deals with how to turn fast
randomizsed algorithms into decent deterministic ones. We will not discuss this topic in
our course. There is, however, a chapter devoted to it in the book of Alon and Spencer
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Before proving this, we introduce some notation :

Notation : We denote by R(k, l) the smallest integer n for which the
above statement holds. It is called the (k, l)-th Ramsey number. Theorem
1 states that these numbers exist, for every k, l ≥ 2.

Proof of Theorem : We present the standard argument, which is ba-
sically an induction on k + l.

Step 0 : Note that R(k, l) = R(l, k) by symmetry.

Step 1 : Observe that R(2, l) = l since a K2 is just a graph with a sin-
gle edge, so if we’re to avoid a red K2 then we must color every edge of our
graph blue. And then we’ll have a blue Kl as soon as we have l or more
vertices.

Step 2 : The general induction step involves verifying the following inequal-
ity :

(1) R(k, l) ≤ R(k, l − 1) + R(k − 1, l).

So we assume the two Ramsey numbers on the right hand side of (1) exist
and consider a 2-coloring of the graph Kn, where n = R(k−1, l)+R(k, l−1).
We must prove the existence of either a red Kk or a blue Kl. Pick any one
of the n vertices and give it a name, say v. Now v is joined by an edge to
n − 1 other vertices. Since

n − 1 > [R(k − 1, l) − 1] + [R(k, l − 1) − 1],

one of the following must occur :

(i) v is joined to at least R(k − 1, l) vertices by a red edge, or
(ii) v is joined to at least R(k, l − 1) vertices by a blue edge.

Suppose (i) occurs. By definition of the Ramsey numbers, amongst the
vertices joined to v by a red edge, there must exist either a red Kk−1 or a
blue Kl. In the latter case we’re done already. In the former case, adding
on the vertex v gives a red Kk, and again we’re done.

If instead (ii) holds, then the argument is similar. It is left to the reader
to write out the details.

Corollary 2 For every k, l ≥ 2 we have that

(2) R(k, l) ≤
(

k + l − 2
k − 1

)

.
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Proof : This follows from (1) and the well-known Pascal identity for
binomial coefficients

(

n
r

)

=

(

n − 1
r

)

+

(

n − 1
r − 1

)

.

The details are left as an exercise.

It is natural to consider the special case k = l. Then (2) becomes

(3) R(k, k) ≤
(

2k − 2
k − 1

)

.

Using simply the fact that
n

∑

r=0

(

n
r

)

= 2n

(both sides count the number of subsets of an n-element set), it follows that

(4) R(k, k) ≤ 4k−1.

Using Stirling’s formula3 (details left as an exercise), we can obtain a slightly
better estimate, namely

(5) R(k, k) � 4k−1

√

π(k − 1)
.

But the important point is that (4) and (5) both say that the Ramsey num-
bers R(k, k) grow at worst exponentially.

Now, finally, we intorduce probabilistic ideas to the discussion, in order
to show that the numbers R(k, k) do, in fact, exhibit exponential growth.
We do this by proving

Theorem 3 Let k ≥ 3. If the integer n satisfies

(6)

(

n
k

)

2
1−

 

k
2

!

< 1,

then R(k, k) > n.

For the moment, let us assume the theorem and prove what we’re really
after, namely

Corollary 4

(7) R(k, k) > 2k/2.

3

n! ∼ n
n
e
−n

√
2πn.
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Proof of Corollary : We must show that if k ≥ 3 and n = 2k/2,

then (6) is satisfied. Since

(

n
k

)

= n(n−1)···(n−k+1)
k! and, in particular,

(

k
2

)

= k(k−1)
2 , the left-hand side of (6) is thus at most

nk · 21+ k

2

k!2
k2

2

.

Taking n = 2k/2 this becomes simply 21+k/2/k!. It is then a simple exericse

to verify that 21+k/2/k! < 1 for all k ≥ 3.

We remark that a more careful analysis, again based on Stirling’s formula
and left as an exercise for the reader, shows that

(8) R(k, k) � 1

e
√

2
k2k/2.

But again the main point is that both (7) and (8) say that the numbers
R(k, k) exhibit exponential growth. Combining all our results, the essence
of what we have found is expressed in the following :

(9)
√

2 ≤ lim inf
k→∞

R(k, k)1/k ≤ lim sup
k→∞

R(k, k)1/k ≤ 4.

BIG Open Problem Does

lim
k→∞

R(k, k)1/k

exist and, if so, what is it ?

This problem has been open for 70 years without any progress whatsoever
having been made beyond (9). An even more daunting task, however, is to
compute Ramsey numbers R(k, l) exactly. In fact, for k, l > 2 only a small
(finite) collection of Ramsey numbers have been computed exactly.

We conclude this discussion by proving Theorem 3 :

Proof of Theorem 3 : The proof will use the following simple facts
about probabilities :

(I) For any two events A and B,

(10) P (A ∪ B) ≤ P (A) + P (B),

with equality if the events are mutually exclusive, i.e.: if P (A ∩ B) = 0.
(II) If A and B are independent events, then

(11) P (A ∩ B) = P (A) · P (B).
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Consider now a fixed n and k, and a random 2-coloring of the graph Kn.

This means that each of the

(

n
2

)

edges is colored independently red or

blue, each with probability 1/2. We want to estimate the probability of
obtaining a monochromatic Kk. We divide this procedure up into three
steps :

(i) the probability of a given Kk being entirely red is
[

1
2

]

 

k
2

!

. This follows
from (11) and the fact that the probability of any particular edge being red
is 1/2. Obviously, we have the same expression for the probability of a given
Kk being entirely blue.

(ii) hence, the probability of a given Kk being monochromatic is 2
1−

 

k
2

!

.
This follows from (i) and (10), since there are two mutually exclusive ways
to have monochromaticity, namely redness or blueness, and these have equal
probability.
(iii) hence, the probability of there being some monochromatic Kk is at most

(

n
k

)

·2
1−

 

k
2

!

. This follows from the previous steps and (10), since there

are

(

n
k

)

complete k-subgraphs in Kn.

From these estimates it follows that, if (6) holds, then there is a pos-
itive probability that a randomly chosen coloring of Kn will include no
monocrhomatic Kk. In other words, at least one such good coloring ex-
ists, and thus R(k, k) > n. This completes the proof of the theorem.

Remark 5 The proofs of Theorem 3 and Corollary 4 show that, if k ≥ 3 and
n = 2k/2, then the probability that a random 2-coloring of Kn yields some
monochromatic Kk is at most 21+k/2/k!. This goes to zero very quickly as
k → ∞. Hence, for large k, a random coloring is highly likely to be suc-
cessful. No reasonable deterministic algorithm for producing a successful
coloring is known, however.

Remark 6 Small improvements to both the upper and lower bounds for
R(k, k), as given in (5) and (8) respectively, are known. To improve on (8)
one can use a more refined probabilistic technique known as the Lovasz Lo-
cal Lemma - we may do this later in the course. The currently best upper
bounds can be found in [1] (note that the author is Irish and was a Ph.D.
student at Cambridge at the time !!). However, all these improvements are
at the end of the day very minor, as nothing tighter than (9) is yet known.



7

Example 2 : Van der Waerden numbers

Definition 2 : Let k ≥ 1. An increasing sequence a1 < a2 < · · · < ak of
k integers is said to be an arithmetic progression of length k and common
difference d if ai+1 − ai = d for i = 1, ..., k− 1. We will use the abbreviation
‘k-AP’ to denote an arithmetic progression of length k.

The following theorem was proven by the Dutch mathematician Bartel van
der Waerden in the 1920s and has been given his name :

Theorem 7 (van der Waerden’s Theorem) Let k, l ≥ 1 be given in-
tegers. Then for all sufficiently large positive integers n (depending on k
and l), the following holds :

If the integers 1, 2, ..., n are colored with at most l colors, then there must
exist a monochromatic k-AP.

Notation : The van der Waerden number W (k, l) is the least integer n
for which any l-coloring of {1, ..., n} must yield a monochromatic k-AP. The
theorem states that these numbers exist.

It is beyond the scope of this course to give a fully rigorous proof of Theorem
7. A proof may be found, for example, in [2]. Basically, it involves two nice
ideas and a lot of horrible notation. The two ideas are

(i) observe that W (2, l) = l + 1 (why ?). This allows us to get an induction
started. The induction proceeds by proving that the numbers W (k + 1, l)
exist for all l and a fixed k, assuming that the numbers W (k, l) all exist.
(ii) for a fixed l and k, the proof of the existence of W (k, l) in this induc-
tive manner involves an idea which has become called color focusing. It is
basically the same idea for all l but because the numbers involved grow so
drastically with l, it becomes something of a technical nightmare to write
down the details. The idea itself is quite beautiful, though.

We will be content to illustrate the method by proving that

W (3, 2) ≤ 325.(12)

Note that, according to the program outlined above, our proof of this should
at some point use the knowledge that W (2, l) = l+1. I’ll leave it as an amus-
ing exercise for you to spot where this is used, since it would be easy to miss
it !

So let us suppose the numbers from 1 through 325 have been colored red
or blue in some manner. We must prove the existence of a monochromatic
3-AP. The first step is to divide the 325 numbers into 65 blocks B1, ..., B65

of 5 consecutive numbers. So B1 = {1, 2, 3, 4, 5}, B2 = {6, 7, 8, 9, 10} etc.
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There are 25 = 32 possible ways to color any block with 2 colors. Thus,
amongst the first 33 blocks, there must be two which are colored in ex-
actly the same pattern. Pick any two such blocks, say Bi and Bi+j . Since
i + j ≤ 33, it follows that i + 2j ≤ 65. Hence the block Bi+2j exists. We
now focus our attention on the three blocks Bi, Bi+j and Bi+2j .

The rest of the proof is most easily understood with the help of pictures. I
am not going to draw any pictures here, so I recommend that you look in [2].

Note that

Bi = {5i − 4, 5i − 3, 5i − 2, 5i − 1, 5i},
Bi+j = {5(i + j) − 4, 5(i + j) − 3, 5(i + j) − 2, 5(i + j) − 1, 5(i + j)},

Bi+2j = {5(i + 2j) − 4, 5(i + 2j) − 3, 5(i + 2j) − 2, 5(i + 2j) − 1, 5(i + 2j)}.

Amongst the first three elements of the block Bi, at least two must get the
same color. Let’s suppose that 5i − 4 and 5i − 2 are both colored red and
complete the proof in this case. The argument is similar in the other five
cases and I leave it to yourselves to become convinced of that.

If now 5i was also colored red, then we’d have a red 3-AP, namely
{5i − 4, 5i − 2, 5i}. So we may assume 5i is colored blue. Next, we turn
to the block Bi+j . Since it has exactly the same color pattern as Bi, we
conclude that 5(i + j) − 4 and 5(i + j) − 2 are both colored red, whereas
5(i + j) is colored blue.

Finally, now, we focus on Bi+2j and, in particular, zone in on the num-
ber 5(i + 2j). I claim that, no matter what color we give it, we can’t
avoid having a monochromatic 3-AP. For if this number is colored red, then
{5i − 4, 5(i + j) − 2, 5(i + 2j)} is a red 3-AP. But if is colored blue, then
{5i, 5(i + j), 5(i + 2j)} is a blue 3-AP. This completes the proof of (12).

The bounds on Van der Waerden numbers obtained by this kind of color
focusing method are eeeeeeeenooooorrrrrmoooouuusssss4. We can see that
the method is not optimal even for the example of W (3, 2). Our method
gives that W (3, 2) ≤ 325. But, in fact, W (3, 2) = 9. To see this, first check
by hand that for every partition of {1, 2, ..., 9} into two subsets, at least one
contains a 3-AP. On the other hand, we can 2-color the integers 1,...,8 so
that there are no monochromatic 3-APs. For example, let 1,3,6,8 be red and
2,4,5,7 be blue.

Even the best-known upper bounds on van der Waerden numbers (obtained
by quite different and, I think it is safe to say, more sophisticated methods)

4more precisely, they are not primitive recursive, for those of you who know what that
means
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are really, really big. We know that5

(13) W (k, l) ≤ 22l
2
2
k+9

.

We finish our discussion by instead obtaining lower bounds for the numbers
W (k, l) via a probabilistic argument.

Theorem 8

(14) W (k, l) >
√

2(k − 1) l(k−1)/2.

Proof : We need to show that if n ≤
√

2(k − 1)l(k−1)/2, then there exists
an l-coloring of {1, ..., n} which yields no monochromatic k-AP. Fix n and
consider a random l-coloring of {1, ..., n}, i.e.: each number is independently
assigned a color by tossing a fair l-sided die. Now fix a color C and a k-
AP. The probability that this k-AP is monochromatic in color C is l−k.
Hence, the probability that this k-AP is monochromatic, in some color, is
l−(k−1). If f(n) is the total number of k-APs in {1, ..., n}, then (10) implies
that the probability of there being some monochromatic k-AP is at most
f(n) · l−(k−1). To estimate f(n) we observe that a k-AP is determined by
its first term and common difference. If the first term is x ∈ [1, n], then the
common difference cannot exceed n−x

k−1 . This gives us the estimate

(15) f(n) ≤
n−1
∑

x=1

n − x

k − 1
=

n(n − 1)

2(k − 1)
.

Hence the probability of a random l-coloring of [1, n] yielding a monochro-

matic k-AP is at most n(n−1)
2(k−1)lk−1 . We wish this quantity to be strictly less

than one, and it is easy to see that this is the case when n ≤
√

2(k − 1)l(k−1)/2.
This completes the proof of Theorem 8.

The gap between (13) and (14) is an important open problem in combi-
natorial number theory/Ramsey theory. The gap is obviously enormous. I
think it is fair to say that most people believe that the lower bound (14),
which gives exponential growth in k for a fixed l, is closer to the truth. But
noone knows ... By the way, a slight improvement on (14) can also be ob-
tained via the Lovasz Local Lemma, as we may see later.
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Lecture 2 (Nov. 3, 2011)

We now introduce some basic terminology from probability theory, and ex-
plain the general principles behind the probabilistic method. We will then
rewrite the proof of Theorem 3 in this more formal language. In subsequent
applications we will move freely between less and more formal language as
best suits the situation.

Definiton 3 : Let Ω be a set and F ⊆ 2Ω, i.e.: F is a collection of
subsets of Ω. We say that F is a σ-algebra if the following three conditions
are satisfied :

(i) Ω ∈ F ,
(ii) F is closed under complementation, i.e.: A ∈ F ⇒ Ac ∈ F ,
(iii) F is closed under countable unions, i.e.: if A1, A2, ... ∈ F then

∪i≥1Ai ∈ F .

Definition 4 : Let Ω be a set, F a σ-algebra on Ω and µ : F → [0, 1]
a function. We call µ a probability measure if the following two conditions
are satisfied :

(i) µ(Ω) = 1,
(ii) µ is countably additive, i.e.: if A1, A2, ... ∈ F and these sets are

pairwise-disjoint, then

(16) µ





⋃

i≥1

Ai



 =
∑

i≥1

µ(Ai).

Definition 5 : A probability space is a triple (Ω,F , µ), where Ω is a set,
F ⊆ 2Ω is a σ-algebra and µ : F → [0, 1] is a probability measure.

If A ∈ F then the set A is said to be µ-measurable. More informally, A
is called an event.

In this course, all probability spaces will be discrete, i.e.: the set Ω is count-
able and every subset is measurable, i.e.: F = 2Ω. A discrete space is thus
completely determined by the pair (Ω, µ).

In a discrete space, every singleton set is measurable. We will usually
think of Ω as a subset of N and, for i ∈ Ω, we will often write µ({i}) := pi.
More generally, for an event A, we usually denote µ(A) := P(A), and call
this “the probability of the event A”.

If Ω is a finite set with n elements, say Ω := {1, ..., n}, then the simplest
probability measure on Ω is the one that assigns equal probability to each
outcome, i.e.: pi = 1/n for each i = 1, ..., n. This is called uniform measure
and corresponds most intuitively to the notion of the outcome being “ran-
dom”.

Definition 6 : Let (Ω, µ) be a discrete probability space. A function
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X : Ω → R is called a (real-valued) random variable on Ω6. From now on,
we will write RV instead of “real-valued random variable”.

If Ω = {1, ..., n}, then the standard notation is X(i) := xi.

Definition 7 : If X is a random variable on the space (Ω, µ) then the
expected value/expectation/first moment of X, denoted E[X], is the quan-
tity

E[X] :=
∑

ω∈Ω

xωpω,

provided this sum is well-defined, in other words, provided the value of the
sum does not depend on the order of summation. This is certainly the case
if Ω is a finite set. If Ω is infinite, one has to be more careful, but for exam-
ple everything is fine if X is non-negative, i.e.: if xω ≥ 0 for every ω ∈ Ω.
One usually abbreviates this to “X ≥ 0”. Observe that, if X ≥ 0, then
E[X] ∈ [0, +∞].

By another unfortunate historical accident, the expectation of a RV is often
denoted by the letter µ, i.e.: the same letter as that used to denote the
underlying probability measure.

In very general terms, an application of the probabilistic method to a prob-
lem in combinatorics involves understanding the moments7 of some non-
negative RV on some discrete probability space. Often, though by no means
always, the space is finite and the measure uniform. In the simplest ap-
plications8 only the first moment is needed. Note that non-negativity at
least guarantees that the first moment is well-defined, even when the space
is infinite. Henceforth, unless otherwise stated, all RVs are assumed to be
non-negative.
We now state some simple facts about first moments which are used over
and over again. The first property is informally referred to as linearity of
expectation :

Proposition 9 (Linearity of expectation) Let X1, ..., Xk be RVs on the
same probability space (Ω, µ). Then

(17) E[X1 + · · · + Xk] =
k

∑

i=1

E[Xi].

6the term random variable is an unfortunate historical accident. A more accurate term
would be random function. But the former term has become so conventional that no-one
dares change it. It also explains why the letter X, rather than say f , is used to denote a
random variable.

7We postpone a definition of the higher moments of a RV to later.
8Here I mean “simplest” in theoretical terms, though not necessarily in terms of the

ingenuity of the application.
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Proof : Note that the sum of RVs on the left of (17) means just what one
would expect, namely the pointwise sum of functions. The proof relies on
being able to interchange the order of a double summation, which one can
certainly do when the Xi are non-negative. Indeed, the proof then extends
to an infinite sum of RVs. The details are left to the reader.

The next proposition goes under the informal title of the averaging prin-
ciple. It is a formalisation of the simple idea that, given the average of
something, there must be at least one instance which is no worse than av-
erage and at least one instance which is no better.

Proposition 10 Let X be a RV on a space (Ω, µ). Assume that E[X]
is finite. Then

(i) P(X ≥ E[X]) > 0 and
(ii) P(X ≤ E[X]) > 0.

Proof : The proof is trivial once one understands the notation. First,
it is common to write P(· · · ) instead of µ(· · · ) when there can be no confu-
sion as to what probability measure is being used. Second, the expression
‘X ≥ E[X]’ is shorthand for the event {ω ∈ Ω : X(ω) ≥ E[X]}. This kind of
sloppy notation has become standard, so we will use it from now on without
further comment.

The following corollary of Proposition 10(ii) is particularly useful :

Corollary 11 If X is a non-negative integer-valued RV and E[X] < 1,
then P(X = 0) > 0.

One particular class of RVs which is especially useful in applications is the
class of so-called indicator variables.

Definition 8 : Let (Ω, µ) be a probability space and A ⊆ Ω. The in-
dicator random variable of the event A, denoted XA, is the random variable
given by

XA(ω) =

{

1, if ω ∈ A,
0, if ω 6∈ A.

Note that it is an immediate consequence of the definition that

(18) E[XA] = P(A).

More generally, let f : Ω → Ω be any function. The indicator random
variable of the event ‘f ∈ A’, denoted Xf,A, is the random variable given by

Xf,A(ω) =

{

1, if f(ω) ∈ A,
0, if f(ω) 6∈ A.
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The analogue of (18) is then

(19) E[Xf,A] = P[f−1(A)],

where f−1(A) = {ω : f(ω) ∈ A}. Note that (18) is the special case where
f is the identity map on Ω, i.e.: f(ω) = ω ∀ ω. Also note that if f is a 1-1
mapping and µ is uniform measure, then

(20) E[Xf,A] = µ(A) =
|A|
|Ω| .

We are now ready to repeat the proof of Theorem 3 in more formal language.

Let k, n be positive integers such that

(

n
k

)

2
1−

 

k
2

!

< 1. Let Ω be the

set of all possible 2-colorings of the edges of Kn, hence |Ω| = 2

 

n
2

!

. Let
µ be uniform measure on Ω - this corresponds to 2-coloring the edges inde-

pendently and fairly at random. We order the

(

n
k

)

Kk-subgraphs of Kn

in some way, and consider the random variables Xi, i = 1, ...,

(

n
k

)

, where

Xi = XAi
and Ai is the event that the i:th Kk-subgraph is monochromatic.

As shown before, for each i,

(21) E[Xi] = P(Ai) = 2
1−

 

k
2

!

.

Let X :=
∑

i Xi. Then X is the total number of monochromatic Kk-
subgraphs. By (21) and Proposition 9 we have that

(22) E[X] =

(

n
k

)

· 2
1−

 

k
2

!

.

Hence, by assumption, E[X] < 1. Since X is non-negative integer-valued,
Corollary 11 implies that X = 0 with positive probability. In other words,
with positive probability, a random 2-coloring yields no monochromatic Kk-
subgraph, Q.E.D.

We now give four examples where part (i) of Proposition 10 will be used.

Example 1 : MAXSAT problem

I took this material directly from Chapter 6 of [MU]. Please see the supple-
mentary scanned document on the homepage.
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Example 2 : Turán’s Theorem

Let’s first go back to van der Waerden’s theorem. It is natural to conjecture,
but apparently much harder to prove, the following stronger result :

Theorem 12 (Szemerédi’s Theorem) Let k ≥ 3 and ǫ > 0. Then for
all sufficiently large n, depending on k and ǫ, if A is any subset of {1, ..., n}
such that |A| > ǫn, then A contains a k-AP.

This theorem was first proven by the Hungarian mathematician Endre Sze-
merédi in 1975, in a 50-page paper which is generally considered “a mas-
terpiece of combinatorial reasoning”. The theorem had been conjectured
by Erdős and Turán in the 1930s already when they worked (more or less
unsuccessfully) on strengthening van der Waerden’s result. The special case
k = 3 was proven by Roth in 1952 using Fourier analysis, and this work was
cited when Roth received the Fields Medal in 1956.

For our present purposes, what is of interest to us is the comparison with the
situation for graphs. Ramsey’s theorem (for an arbitrary number of colors -
we just stated it for 2 colors earlier) may be considered the analogue of van
der Waerden’s theorem for graphs. The analogue of Szemerédi’s theorem
would then be the following :

Let k ≥ 3 and ǫ > 0. For all sufficiently large n, depending on k and ǫ,

if G is a graph on n vertices and with more than ǫ ·
(

n
2

)

edges, then G

must contain a Kk.

It is pretty easy to see, however, that this statement is false. In fact it
is already false for k = 3 and ǫ = 1/2. For let n be any even integer.
Consider a graph on n vertices in which the vertices are partitioned into
two subsets of size n/2 and in which two vertices are joined by an edge if
and only if they lie in opposite halves of the partition. Such a graph is

called bipartite. Now G has n
2 · n

2 = n2

4 edges, which is more than half of
(

n
2

)

= n(n−1)
2 . But G contains no K3, indeed no cycle of any odd length,

since any path of odd length takes one from one side of the partition to the
other.

We can generalise this example to any k ≥ 3. For simplicity suppose that
n is a multiple of k − 1. A (k − 1)-partite graph on n vertices is obtained
by partitioning the vertices into k − 1 subsets of equal size, and joining two
vertices by an edge if and only if they do not lie in the same part. The total
number of edges in this graph is

(

k − 1
2

)

·
(

n

k − 1

)2

=
k − 2

k − 1
· n2

2
,
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which, as k gets bigger, heads towards 100 procent of all possible edges !
But the graph has no Kk since, at the very least, a Kk contains k vertices,
hence (by the pigeonhole principle) at least two would have to come from
the same part of the graph. But then they are not joined to one another -
contradiction !

Turán’s theorem, proven in 1941, is the statement that the above exam-
ples can’t be improved upon.

Theorem 13 (Turán’s Theorem) Let k ≥ 3 and n be a multiple9 of

k − 1. Then any graph with n vertices and strictly more than k−2
k−1 · n2

2 edges
contains a Kk.

This theorem can be proven in a number of ways. Next day, we will present
a beautiful proof which uses a probabilistic method.

9If n is not a multiple of k then one can prove a correspoding result anyway, but I wish
to avoid the associated technicalities in this presentation. If n = (k − 1)q + r say, where
0 < r < k − 1, then the optimal way to avoid a Kk is to take a (k − 1)-partite graph,
where r of the parts have q + 1 vertices each and the remaining k − 1 − r parts have q

vertices each.


