
Lecture 3 (Nov. 8, 2011)

We will find it more convenient to prove an equivalent formulation of Turán’s
theorem, where one replaces a graph by its complement, i.e.: the graph con-
sisting of the same vertices and those edges missing from the original. We
require a definition :

Definition 9 : A collection of vertices in a graph are said to be inde-
pendent, if no two amongst them are joined by an edge. The independence
number of a graph G, denoted α(G), is the maximum size of an independent
set of vertices in G.

The following is then equivalent to Theorem 13 :

Theorem 13’ Let k ≥ 3 and n be a multiple of k − 1. Then any graph

G with n vertices and strictly fewer than

(

n
2

)

− k−2
k−1 · n2

2 = n2

2(k−1) − n
2

edges satisfies α(G) ≥ k.

Our proof of this will require three lemmas. The probabilistic component1

is the first (and most interesting) one, for which we need some more termi-
nology :

Definition 10 : For a vertex v in a graph G, the vertices to which it
is joined by an edge are called its neighbours. The number of its neighbours
is called the degree of the vertex v, and is denoted dv. Two neighbours in a
graph are also said to be adjacent.

Lemma 14 For any graph G we have that

(23) α(G) ≥
∑

v∈V (G)

1

dv + 1
.

Proof : Suppose G has n vertices. We consider the probability space
(Ω, µ), where Ω is the collection of all possible orderings of the n vertices,
hence |Ω| = n!, and µ is uniform measure. For each vertex v, we let Xv

be the indicator random variable of the event that v appears before all its
neighbours in a randomly chosen ordering. Now since v and its neighbours
form a collection of dv +1 vertices in all, and each of them is equally likely to
appear first, it is clear that E[Xv] = 1

dv+1 . Let X =
∑

v Xv. By Proposition

9, E[X] =
∑

v
1

dv+1 . By Proposition 10(i), there is thus at least one ordering

of the vertices, call it O, such that X(O) ≥ ∑

v
1

dv+1 . But now one just
needs to observe that, in any ordering whatsoever, those vertices which ap-
pear before all their neighbours must form an independent set. This proves

1there are other ways to prove this theorem, the standard proof being a kind of double
induction on k and n.
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(23).

We will need one more simple general fact about graphs.

Lemma 15 For any graph G we have that

(24) #edges in G =
1

2

∑

v∈V (G)

dv.

Proof : When we sum up the degress of the vertices, we are summing up
the edges emanating from each vertex, and then each edge will be counted
twice.

Finally, we need a third fact which is pure algebra/calculus :

Lemma 16 Let x1, x2, ..., xn, t be positive real numbers. If

x1 + · · · + xn ≤ t,

then

1

x1
+ · · · + 1

xn

≥ n2

t
,

with equality in the latter if and only if x1 = · · · = xn = t/n.

Proof : Equivalently, we need to prove that

(25)

(

n
∑

i=1

xi

)(

n
∑

i=1

1

xi

)

≥ n2,

with equality if and only if x1 = · · · = xn. Set

yi :=
√

xi, zi :=
1√
xi

,

and let y, z be the vectors in R
n
+ given by

y := (y1, ..., yn), z := (z1, ..., zn).

Then the Cauchy-Schwarz inequality in R
n says that

||y||22 · ||z||22 ≥ | < y, z > |2,
with equality if and only if z = λy, for some λ ∈ R. This is easily checked
to be equivalent to the statement that (25) holds, with equality if and only
if and only if the xi are all equal.

Proof of Theorem 13’ : By Lemma 15, the assumption in the state-
ment of the theorem about the number of edges in G can be written as

1

2

∑

v

dv <
n2

2(k − 1)
− n

2
,
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which can be rewritten as
∑

v

(dv + 1) <
n2

k − 1
.

Hence, by Lemma 16,

∑

v

1

dv + 1
>

n2

n2

k−1

= k − 1.

So, by Lemma 14, α(G) > k − 1. But α(G) is an integer, thus α(G) ≥ k,
Q.E.D.

Example 3 : Sum-free sets

Definition 10 : Let (G, +) be an abelian group, and A be a subset of G.
The sumset A + A is defined as

(26) A + A := {a1 + a2 : a1, a2 ∈ A}.
Definition 11 : A subset A of an abelian group (G, +) is said to be sum-
free if A∩ (A + A) = φ, in other words, if there are no solutions in A to the
equation x = y + z.

The abelian groups which are of most interest to number theorists are Z

and the groups Zp, where p is a prime.

Example A : Let n ∈ N and let A be a sum-free subset of {1, ..., n}. If a is
the largest element of A, and

B := {a − a1 : a1 ∈ A, a1 6= a},
then A and B are disjoint subsets of {1, ..., n}. It follows that |A| ≤ ⌈n/2⌉.
There are essentially two different examples of a sum-free subset of this size,
namely

A1 = {odd numbers in [1, n]}, A2 =
(n

2
, n
]

.

Example B : Let p be a prime, say p = 3k+i, where k ∈ N0 and i ∈ {0, 1, 2}.
If i ∈ {0, 1}, then A := {k + 1, ..., 2k} is a sum-free set modulo p, whereas
if i = 2, then A := {k + 1, ..., 2k + 1} is sum-free modulo p. Thus, if

p ≡ 2 (mod 3), there exists a sum-free set A in Zp such that |A| = p+1
3 .

This is best-possible, but a proof is not as simple as in Example A. It is
a consequence of the so-called Cauchy-Davenport theorem, a special case of
which satates that, if p is a prime and A is a subset of Zp, then

|A + A| ≥ min{p, 2|A| − 1}.
We will now apply a probabilistic argument to prove the following result,
which apparently was first proven by Erdős in 1965 and rediscovered by
Alon and Kleitman in 1990 :
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Theorem 17 Let S be any finite subset of Z, not containing zero. Then

there exists a sum-free subset A of S such that |A| ≥ |S|+1
3 .

Proof : Let S be given and choose a prime p satisfying the following
two conditions :

(i) p > maxs∈S |s|,
(ii) p ≡ 2 (mod 3).

Dirichlet’s theorem on the existence of primes in arithmetic progressions
guarantees the existence of such a prime2. Say p = 3k + 2 and let C :=
{k+1, ..., 2k+1}. As noted in Example B above, the set C is sum-free modulo
p. We shall work in the probability space (Ω, µ), where Ω = {1, 2, ..., p − 1}
and µ is uniform measure. For each s ∈ S let fs : Ω → Ω be the map given
by

fs : ω 7→ ωs (mod p).

The choice of p (property (i)) guarantees that each of the maps fs is one-
to-one. Let Xs := Xfs,C . Then, by (20), for every s we have

E[Xs] =
|C|

p − 1
>

1

3
.

Let X =
∑

s∈S Xs. By linearity of expectation,

E[X] >
|S|
3

.

Thus, by Proposition 10(i), there exists some ω ∈ Ω such that X(ω) > |S|/3.
But, unwinding the definitions, we see that

X(ω) = #{s ∈ S : ωs (mod p) ∈ C}.(27)

Let A be the subset of S on the right of (27). This is a sum-free subset of S,
since a dilation of it lies, modulo p, entirely within C, and hence is sum-free.
Since |A| > |S|/3 and |A| is an integer, we must have |A| ≥ (|S| + 1)/3,
Q.E.D.

Remark 1 One can reformulate the above argument in non-probabilistic
language, in which case it basically employs the well-known method in com-
binatorics of counting pairs. In the proof, we are basically counting in two
different ways the ordered pairs (ω, s) which satisfy (i) ω ∈ Ω (ii) s ∈ S (iii)
ωs ∈ C (mod p). I leave it as an exercise to the reader to fill out the details.

Remark 2 As shown in Example B, the set C employed in the above proof
is a sum-free subset of Zp of maximum size. Hence, it is natural to conjec-
ture that Theorem 17 cannot be improved upon. It turns out that this is

2One can prove by much more simple means that there exist infinitely many primes
congruent to 2 (mod 3). I’ll leave it as an exercise.
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not the case, but it seems to be non-trivial to show it. In a long and difficult
paper, Bourgain [1] showed that, for any finite S ⊆ Z, not containing zero,

one can always find a sum-free subset A of S such that |A| ≥ |S|+2
3 . Nothing

better than this is known, I think.
For upper bounds, it suffices to find examples of sets S ≤ N without

large sum-free subsets. I believe the current record is due to Lewko [2], who
found, via computer search, a set of 28 positive integers with no sum-free
subset of size 12. From such a single example, one can construct (I leave
it as another exercise to determine how) arbitrarily large, finite sets S ⊆ N

for which there are no sum-free subsets of size exceeding 11
28 |S|. The gap

between 1/3 and 11/28 is a significant open problem.

Example 4 : Shannon’s theorem on error-correcting codes

See the handout given in class from Alon-Spencer. Note that there are at
least two error in their text. In the 10th line on the first page, the phrase
“3p2 + p3 = 0.031” should read “3p2(1 − p) + p3 = 0.028”. In the fifth line
of the proof of Theorem 14.1.1, the phrase

“x is the unique vector in {0, 1}m within n(p + δ) of f(x)”

should read

“f(x) is the unique vector in f({0, 1}m) ⊆ {0, 1}n within n(p + δ) of y”.

References
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J. Math. 97 (1997), no.1, 71–92.
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Lecture 4 (Nov. 10, 2011)

In the proof of Shannon’s Theorem handed out in class, some things are
glossed over pretty quickly. So here are some notes to help you read that
proof.

Definition 12 : The entropy function3 H : [0, 1] → [0, 1] is defined as
follows :

(28) H(p) :=

{

−p log2 p − (1 − p) log2(1 − p), if p 6∈ {0, 1},
0, if p ∈ {0, 1}.

It is easy to see that H(p) = H(1− p), that H(p) is continuous and strictly
increasing for p ∈ (0, 1/2) and that H(1/2) = 1.

We now give a formal definition of the binomial distribution.

Definition 13 : Let p ∈ [0, 1]. Let (Ω, µ) be the probability space given by
Ω = {0, 1}, µ({1}) = p, µ({0}) = 1− p. Let χ1 be the indicator of the event
{1}, i.e.:

χ1(ω) =

{

1, if ω = 1,
0, if ω = 0.

In words, χ1 is the indicator of the event that a head is obtained when a
biased coin, with a probability p of heads, is tossed once. Henceforth, such
a coin will simply be called p-biased to save space.

Now let n ∈ N. Let (Ωn, µn) be the probability space where Ωn = {0, 1}n

and µn is defined by

µn(ω1, ..., ωn) =
n
∏

i=1

µ(ωi).

In other words, if the string ω = (ω1, ..., ωn) contains k ones and n−k zeroes,
then µn(ω) = pk(1 − p)n−k. The pair (Ωn, µn) is called the n-fold binomial
distribution with parameter p and is usually denoted B(n, p).

When studying the binomial distribution, the basic random variable of in-
terest is the variable X = Xn defined by

(29) Xn((ω1, ..., ωn)) = #{i : ωi = 1}.
In words, Xn is the number of heads one obtains after tossing a p-biased coin
a total of n times, assuming that the results of distinct tosses are independent
of one another. It is convenient to write X as a sum of indicator variables
Xn =

∑n
i=1 Xn

i , where

(30) Xn
i ((ω1, ..., ωn)) =

{

1, if ωi = 1,
0, if ωi = 0.

3It would be more correct to say that this is an example of an entropy function, but
we do not wish to discuss the concept of entropy in any more general terms here.
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It is natural to think of each Xn
i as being a random variable on Ω = Ω1,

since it records the result of just one coin toss, namely the i:th one, in which
case it is identical to the variable χ1 above4. One then speaks of Xn as be-
ing a sum of independent, identically distributed (i.i.d.) indicator variables.
There is a comprehensive theory of such random variables, which we will
get a glimpse of later in the course when we study Chernoff-type inequal-
ities. The main point is that such variables are very strongly concentrated
about their mean. Since, for each i = 1, ..., n one clearly has E[Xn

i ] = p,
by linearity of expectation we know that E[Xn] = np. In other words, the
expected number of heads after n tosses is just np. That Xn is “strongly
concentrated” about its mean means, intuitively, that it is highly unlikely
to attain values far from np - in other words, if you make n tosses, and n
is large, then the number of heads recorded is very unlikely to stray too far
from np. The following proposition makes this idea precise :

Proposition 18 Let p ∈ [0, 1]. Then, for any fixed δ > 0,

(31) P(|Xn − np| ≥ δn) → 0, as n → ∞.

Indeed, the probability goes to zero exponentially as a function of n, for each
fixed δ > 0.

Proof Idea : This result falls out from a Chernoff-type inequality (see
later), but it can also be proven “with one’s bare hands”, so to speak. One
begins by noting that, for each k ∈ {0, ..., n},

(32) P(Xn = k) =

(

n
k

)

pk(1 − p)n−k.

Let f(k) denote the function on the right-hand side of (32). One easily
checks that, for any k < n,

(33)
f(k + 1)

f(k)
=

(

n − k

k + 1

)(

p

1 − p

)

.

From there it is easy to deduce that f(k) attains a maximum at k = np,
and that for any fixed δ > 0, there exists δ′ > 0, depending on δ, such that

if n(p + δ) ≤ k ≤ n, then f(k+1)
f(k) ≤ 1 − δ′, whereas if 0 ≤ k ≤ n(p − δ), then

f(k+1)
f(k) ≥ 1 + δ′. From there, one can deduce the exponential decay with n

of the probability in (31).

Finally, the proof of Shannon’s Theorem invloves some estimates relating
binomial coefficients to the entropy function :

4Formally, this involves what is called conditioning. We ignore a formal definition of
this here.
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Proposition 19 (i) Let ξ ∈ [0, 1]. Then

(34)

(

n
ξn

)

= 2n(H(ξ)+on(1)).

(ii) Moreover, if ξ ≤ 1/2, then

(35)

ξn
∑

i=0

(

n
i

)

= 2n(H(ξ)+on(1)).

Proof : The first estimate follows from Stirling’s approximation n! ∼
nne−n

√
2πn and a little computation. The second estimate follows from the

first and the observation that, if ξ ∈ (0, 1/2], then

(36)

(

n
ξn

)

≤
ξn
∑

i=0

(

n
i

)

≤ (1 + ξn)

(

n
ξn

)

,

since the binomial coefficient

(

n
i

)

increases with i. The point is then that

the linear factor 1 + ξn on the right of (36) does not affect the exponential
estimate coming from (34) - it only changes the on(1) function.

The following theorem was then proven in class :

Theorem 20 (Shannon 1948) Let p ∈ (0, 1/2) and ǫ > 0. Then for
all n sufficiently large, depending on ǫ, and for all m < 1 − H(p) − ǫ, there
exists an (m, n)-Coding Scheme such that, for transmission across a noisy
channel, with noise parameter p, the probability of error is less than ǫ.

Proof : See the handout. In particular, see the handout or consult your
own handwritten lecture notes if you are unsure of the meaning of any of
the terminology in the statement of the theorem.

Local Coloring

Jeff started lecturing on this topic, and another sheet was handed out in
class. You should refer to this and your own handwritten notes. The theo-
rem that we started, but did not finish proving, was

Theorem 21 For each k ∈ N there exists ǫk > 0 such that, for all n ≫ǫk
0,

there exist graphs G on n vertices with χ(G) > k and yet χ(G|S) ≤ 3 for
every set S of vertices of size at most ǫkn.

Proof of Theorem : See handout. Note that the proof uses the fol-
lowing two lemmas, which are not explicitly proven on the handout :
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Lemma 22 Let k ≤ n be positive pintegers. Then

(37)

(

n
k

)

≤
(ne

k

)k

.

Proof : Clearly,

(

n
k

)

≤ nk

k! , so it suffices to show that ek ≥ kk

k! . But the

right-hand side of this inequality is just the k:th term in the Taylor expan-
sion of ek.

Lemma 23 Let G be a graph on n vertices and k ∈ N. If χ(G) ≤ k
then α(G) ≥ ⌈n/k⌉.

Proof : Consider a k-coloring of G. By the pigeonhole principle, at least
one of the colors must be used on at least ⌈n/k⌉ of the vertices. But the set
of vertices with any prescribed color must form an independent set in G.


