
Lectures 5,6 (Nov. 15 and 17, 2011)

From the point of view of general probability theory, we have so far in this
course been engaged in the computation of expectation values of random
variables. And not just any old random variables. The finite, combinatorial
nature of the applications meant that our random variables X were “count-
ing something”. More precisely, they usually had the following
properties :

(i) they were non-negative integer valued
(ii) they could be expressed as sums of identically distributed indicator

variables.

From such computations we have been able to deduce interesting existence
results, using essentially nothing more complicated than Proposition 10 and
Corollary 11. From now on, the nature of our applications will be charac-
terised by the following types of requirements :

(A) we will be interested in proving that certain events occur with high
probability, not just non-zero probability

(B) it will not be enough to be able to compute E[X], we will also require
information on how much X is “spread out” around its mean.

As indicated by Corollary 11, if you have a non-negative integer valued
RV, then if you want to prove that X = 0 with high probability, it suffices
to show that E[X] is “much smaller than 1”. Actually, what one is using
here is a very simple, but very useful general result, whose trivial proof we
leave as an exercise :

Proposition 24 (Markov’s Inequality) Let X be a non-negative real

valued RV, and α ≥ 1. Then

(38) P(X ≥ αE[X]) ≤ 1

α
.

This is the simplest example of a so-called concentration inequality. For
applications to come it is by itself far too weak, though it is used all over
the place in the proofs of much stronger results. The other problem is that
it is “one-sided”, i.e.: it only bounds the probability of X being too large.
For the application to showing that X = 0 with high probability, when
E[X] ≪ 1, that’s fine. But suppose now instead you’re interested in show-
ing that X > 0 with high probability. The natural thing to do is to first
show that E[X] is large. But this is, by itself, not enough.

Example : Suppose X = 0 with probability 0, 99 and X = 10, 000, 000
with probability 0, 01. Then E[X] = 100, 000 is still very large, but the
event X > 0 is highly unlikely. In the book of Alon and Spencer (the first
edition of which was written when the Cold War still hadn’t quite ended),
X is the number of deaths from nuclear war in the next 12 months.
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The problem with the X in the above example is obviously that it is too
spread out. Our main theoretical task in the coming lectures will be to
develop tools which allow us to determine that certain random variables of
interest are not too spread out, and therefore attain values in certain ranges
with high probability. Sometimes we’ll have an application where it’s enough
to know that X > 0 with high probability given that E[X] is large. Other
times, we’ll want X to be located in a narrow range around its mean value
with high probability.

In our analyses we will make full use of the simplifying properties (i) and
(ii) of the kinds of RV:s we encounter in combinatorial applications. The
main obstacle to obtaining stronger results will be that, in most cases, the
indicator variables in question are not independent of one another. This is a
crucial point. On the one hand, independence simplifies lots of probabilis-
tic analysis immensely. On the other hand, even with the current state of
knowledge (we’re talking 2011 !), effective tools for dealing with dependent
events are few and far between. The techniques that have been developed
all basically rely on knowing that either the amount of interdependence is
“small” in some precisely quantifiable manner, or that the dependencies are
“correlated” (we avoid defining this term precisely for the moment). Other-
wise, you’re probably screwed in terms of getting proofs : you might as well
get out your computer and run simulations.

The first method we discuss is the simplest but most important one :

Second Moment Method

Basically this involves studying the variance of a RV as a measure of how far
it is spread out. To simplify matters, unless otherwise stated, all RV:s are
henceforth assumed to be non-negative integer valued, even if some of the
things we prove hold more generally, and even with the same proofs (left to
the reader to investigate these matters). At a later point we will specialise
to the case of sums of indicator variables.

Definition 14 : Let X be a RV. The variance of X, written as Var[X], is
defined as

Var[X] := E[(X − E[X])2].

The square root of the variance is called the standard deviation.

Using linearity of expectation, it’s easy to show that (exercise, if you have
never done it before !)

(39) Var[X] = E[X2] − E[X]2.

Notation : E[X] := µX ,
√

Var[X] := σX . We drop the subscripts when
there can be no confusion about what RV is being considered.
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Remark At this point it is worth clarifying the terminology second mo-

ment method. Let X be a RV. The exponential generating function of X is
the RV eX . Thus

eX =
∞
∑

k=0

Xk

k!
.

Under suitable convergence conditions, linearity of expectation yields that

E[eX ] =
∞
∑

k=0

E[Xk]

k!
.

The quantity E[Xk]/k! in this expression is called the k:th moment of the
r.v. X. From (39) we see that the variance of X involves its second moment,
hence the name.

A rough analogy to studying the 2nd moment of a r.v. is to study the
second derivative of a smooth function in calculus. And just as it is pretty
hard to find a real-life situation where one is interested in the third derivative
of a smooth function, so in probability theory it is pretty rare to study the
third moment of a r.v. Basically, if you can’t get a handle on the second
moment, then you’re probably in a whole lot of trouble !

Finally, it should now not come as a great shock that the term first mo-

ment method is applied when one just studies the expectation of a r.v. itself.
So this is the method we’ve been using in the course up to now.

The basic concentration estimate involving variance is

Proposition 25 (Chebyshev’s Inequality) Let X be a r.v. with mean µ
and standard deviation σ. Let λ ≥ 1. Then

(40) P(|X − µ| ≥ λσ) ≤ 1

λ2
.

Proof : Define a new r.v. Y by Y := |X − µ|2. Then the left-hand side of
(40) is just, by definition of variance, P(Y ≥ λ2

E[Y ]). Markov’s inequality
(38) now gives the result immediately.

Corollary 26 Let X be a r.v., ǫ > 0. Then

(41) P(|X − µ| ≥ ǫµ) ≤ σ2

ǫ2µ2
.

In particular,

(42) P(X = 0) ≤ σ2

µ2
.

Proof : For the first part, take λ = ǫµ/σ in (40). For the second part, set
ǫ = 1.
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According to this corollary, we get good concentration of X around its mean
provided that Var[X] is small compared to E[X]2. We now specialise to the
case where

X = X1 + · · · + Xn

is a sum of indicator RV:s. We do not assume the Xi to be identically
distributed though. Indeed let us denote by Ai the event indicated by Xi

and pi := P(Ai). Thus

Xi =

{

1, with probability pi,
0, with probability 1 − pi.

Also denote µi := E[Xi], σ2
i := Var[Xi]. Clearly, µi = pi. Also, by (39) and

the fact that X2
i = Xi since Xi only takes on the values 0 and 1, we have

(43) σ2
i = pi − p2

i = pi(1 − pi).

We thus have the inequality

(44) σ2
i ≤ µi.

Since in applications the individual probabilities pi are usually very small
(even if the number of events Ai is usually very large), we are not losing
much information in using (44).

We want an expression for the variance of X. Using (39) and several
applications of linearity of expectation (LOE from now on), we obtain that

σ2 =
n
∑

i=1

σ2
i +

∑

i6=j

Cov(Xi, Xj),(45)

where the covariance of Xi and Xj is defined by

Cov(Xi, Xj) = E[XiXj ] − E[Xi]E[Xj ].

By (44) and LOE, the first sum on the right of (45) is at most µ. This is
good, since we are interested in having σ2 much smaller than µ2 in situations
where µ is large. So we can focus in on the sum of covariances. Since the
Xi are indicator variables, we have

E[XiXj ] − E[Xi]E[Xj ] = P(Ai ∩ Aj) − P(Ai)P(Aj).

Hence Cov(Xi, Xj) = 0 if the events Ai and Aj are independent1. So inde-
pendent pairs don’t contribute anything to the sum. Let i ∼ j denote that

1More generally, for any two random variables X and Y , if X and Y are independent

then E[XY ] = E[X]E[Y ], though the converse need not hold (find an example !). What
does it mean for two random variables to be independent in general ? It means simply
what one would expect, namely that knowledge of the value of one variable does not give
any information on the value of the other. There are several equivalent ways to express
this formally. In the finite setting the following definition suffices : we say that real-valued
RV:s X and Y are independent if, for all real numbers r, s, P(X = r|Y = s) = P(X = r)
and P(Y = r|X = s) = P(Y = r). In words, the probability that X (resp. Y ) attains the
value r given that Y (resp. X) is known to have the value s, is the same as it was before
the value of Y (resp. X) was known.
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events Ai and Aj are not independent. We have at the very least the bound
∑

i6=j

Cov(Xi, Xj) ≤
∑

i∼j

P(Ai ∩ Aj).

Since P(Ai∩Aj) = P(Ai) ·P(Aj |Ai), we can rewrite the last sum as a double-
sum, namely

∑

i∼j

P(Ai ∩ Aj) =
∑

i

P(Ai)
∑

j∼i

P(Aj |Ai).

Let us now make one further simplifying assumption, namely that the inner
sum above is independent of i. This is a kind of “symmetry” requirement
which holds for most applications. Following Alon-Spencer, we now denote
the inner sum ∆∗. Thus we have

∑

i6=j

Cov(Xi, Xj) ≤ ∆∗ ·
∑

i

P(Ai) = ∆∗ ·
∑

i

µi = ∆∗ · µ.

So let’s summarise where we stand : assuming that our r.v. X is a sum of
indicator variables, and that a certain symmetry condition is fulfilled, we
have that

Var[X] ≤ (1 + ∆∗)E[X].

Hence, to show that Var[X] is much smaller than E[X]2, it suffices to show
that ∆∗ is much smaller than E[X]. This is the crux of the second moment
method.

Application : Distinct subset sums

We now describe an application of the second moment method to a problem
in number theory. It is a relatively simple application from a theoretical
viewpoint, in that it only uses Chebyshev’s inequality, and (45) in the spe-
cial case where the indicator variables are independent, and hence all the
covariances are zero.

Definition 15 : Let A = {a1, ..., ak} be a finite set of integers. A is
said to have distinct subset sums if, for every two distinct subsets I, J of
{1, ..., k}, the sums

∑

i∈I ai and
∑

j∈J aj have different values2.

Let f(n) be the maximum possible size of a subset of {1, ..., n} which has
distinct subset sums.

Lower Bounds :

Take n = 2k and A = {2i : 0 ≤ i ≤ k}. This example shows that

2If I is the empty set, the sum is assigned the value zero. The definition extends to
infinite sets, but the notation will just become a bit more complicated.
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f(n) ≥ 1 + ⌊log2 n⌋. Erdős offered 500 dollars for a proof that there ex-
ists a universal constant C such that f(n) ≤ log2 n + C. Note that he’s
not asking here for a computation of the optimal C or even a decent esti-
mate of it, just a proof that some such constant exists, in other words that
f(n) = log2 n + O(1). The base-2 example shows that C ≥ 1. If we confine
ourselves to integer C then a number of authors, starting with John Con-
way and Richard Guy in 1969, have produced examples showing that C ≥ 2.
The point here is that the powers-of-2 example is not optimal. Note that,
in order to get a better lower bound on C, it suffices to do so for a single
n, because of the following trick : if A = {a1, ..., ak} is a subset of {1, ..., n}
with distinct subset sums, and u is any odd number s.t. 1 ≤ u ≤ 2n, then
A′ = {2a1, ..., 2ak, u} is a subset of {1, ..., 2n} with distinct subset sums
and one additional element. This means that if f(n) > log2 n + C then
f(N) > log2 N + C for every N of the form N = 2tn.

One can then use a computer to help find individual examples ... For
up-to-date information on lower bounds see, for example,

http://garden.imacs.sfu.ca/?q=op/sets−with−distinct−subset−sums

Upper Bounds :

If A has size k and is contained in {1, ..., n} then there are 2k distinct subset

sums and each is among
{

0, ..., nk − k(k−1)
2

}

. Thus

2f(n) ≤ 1 + nf(n) − f(n)(f(n) − 1)

2
.(46)

Taking base-2 logs, we have

(47) f(n) ≤ log2 n + log2 f(n) + O(1),

which leads to a bound of the form

f(n) ≤ log2 n + log2 log2 n + O(1).(48)

Erdős improved this to the following

Theroem 27

f(n) ≤ log2 n +
1

2
log2 log2 n + O(1).(49)

Proof : The idea is to refine the basic counting argument which leads to
(48) by using the fact that the 2k subset sums for a set A = {a1, ..., ak} are

not “uniformly distributed” in the interval
[

0, nk − k(k−1)
2

]

, but that there

is a higher concentration of sums close to the mean. To make this precise
requires a second moment analysis, which we now perform in detail.

Let A = {a1, ..., ak} be a subset of {1, ..., n} with distinct subset sums.
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For each i = 1, ..., k, let Xi be the r.v. given by

(50) Xi =

{

ai, with probability 1/2,
0, with probability 1/2.

The Xi:s are assumed to be independent, and we let X :=
∑k

i=1 Xi. In
words, X is the value of a subset sum of A, where the subset is chosen
uniformly at random from all 2k subsets of A. Though it is of no interest
for the proof, note that, by LOE,

(51) µ = E[X] =
1

2

(

k
∑

i=1

ai

)

.

What we are interested in is the variance. By (43), (45) and independence,
we have

(52) σ2 = Var(X) =
1

4

(

k
∑

i=1

a2
i

)

≤ kn2

4
,

hence σ ≤ n
√

k/2. Now let λ ≥ 1. By Chebyshev’s inequality,

(53) P

(

|X − µ| ≥ λn
√

k

2

)

≤ 1

λ2
.

This is equivalent to saying that

(54) P

(

|X − µ| <
λn

√
k

2

)

≥ 1 − 1

λ2
.

Now, on the one hand, X is integer-valued, and the number of integers

satisfying |X − µ| < λn
√

k
2 is less than 1 + λn

√
k. On the other hand,

(54) says that the probability that a uniformly randomly chosen subset sum
satisfies this inequality is at least 1 − 1/λ2. Since there are 2k subset sums,
and they are assumed to be all distinct, it follows that there must be at least
(

1 − 1
λ2

)

2k integers satisfying the inequality. We conclude that

(55)

(

1 − 1

λ2

)

2f(n) < 1 + λn
√

f(n).

Taking base-2 logs, we have

(56) f(n) ≤ log2 n +
1

2
log2 f(n) + O(1),

where the O(1)-term depends on λ. From this one easily deduces (49).
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Application : Average number of prime divisors

I did not have time to go through this example, but I handed out the text
from Alon-Spencer. Note that this application is slightly more complicated,
since there are non-zero covariances.

Interlude : Randomized Algorithms

At this point we took a break from the applications of the second moment
method, and Devdatt gave an introduction to the algorithmic perspective
on the general probabilistic method. Lecture notes will not be written up
(by me at any rate) for this part.


