
Lecture 7 (Nov. 22, 2011)

We begin by introducing the Erdős-Renyi random graph model. Actually,
it was already introduced by Jeff when he lectured on local coloring two
weeks ago, but now here it is for the first time in the actual lecture notes.
To begin with, an informal definition :

Definition 16 : Let n be a positive integer and p ∈ [0, 1]. The random

graph G(n, p) has n vertices and is obtained by choosing each of the

(

n
2

)

possible edges randomly and independently with probability p.

The informal terminology “random graph” is a bit misleading, because
strictly speaking a random graph is not a graph at all, it is a probabil-
ity space. To be able to say what space, we first need to introduce the
notion of a product measure :

Definiton 17 : Let (Ω, µ) be a discrete probability space and suppose
the underlying set Ω is a Cartesian product Ω = Ω1 × · · · × Ωk of k sets.
Then the measure µ is called a product measure if there exist probability
measures µi on Ωi, for i = 1, ..., k, such that, for any point (ω1, ..., ωk) ∈ Ω,

µ[{(ω1, ..., ωk)}] =
k

∏

i=1

µi[{ωi}].

In this case, we write that

µ =
k

∏

i=1

µi.

We can now give a more formal definition of a random graph :

Definition 18 : The random graph G(n, p) is the probability space (Ω, µ),

where Ω = {0, 1}

 

n
2

!

, i.e.: Ω is the Cartesian product of

(

n
2

)

copies

of the two-element set {0, 1}, and µ =
∏

µp, i.e.: the product of the same
number of copies of the measure µp on {0, 1} given by

µp({0}) = 1 − p, µp({1}) = p.

In the study of random graphs, one of the most important concepts is that
of a threshold function.

Notation : Let A be a graph property and G a graph. We write G |= A to
denote the fact that G has the property A. For example, if A is the property
“is connected”, then G |= A means that G is connected.
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Definition 19 : Let A be a graph property and t : N → [0, 1] a func-
tion. Then t is said to be a threshold function for the property A if two
conditions hold :

(I) If p(n) = o[t(n)] then P[G(n, p(n)) |= A] → 0 as n → ∞,
(II) If t(n) = o[p(n)] then P[G(n, p(n)) |= A] → 1 as n → ∞.

Remark If t is a threshold for some property A, then so is c · t for any
constant c such that ||c · t||∞ ≤ 1.

First application : Subgraph threshold

Given a graph property A, there are basically three stages in the analysis of
the threshold phenomenon for that property :

(I) Prove that a threshold exists.
(II) Compute the threshold1

(III) Investigate more closely what happens as the threshold is crossed.

We will concentrate in this course on stage (II). There are some very gen-
eral theorems about existence of thresholds, but to do justice to these would
require too long a detour toward mathematical logic. Stage (III) obviously
is likely to be more technical, and it cannot be undertaken before stage (II)
anyway. Note however that, in speaking of “crossing the threshold” we are
adopting a dynamic model of random graphs G(n, p), where we think of the
parameter p as growing, and the edges of the graph “growing” accordingly.

The graph property we have chosen, in order to exhibit how the second
moment method can be used to compute thresholds, is that of subgraph

containment. So let H be any fixed graph. The graph property A = AH

under consideration is “contains a copy of H”, so that G |= AH means that
the graph G contains a copy of the graph H. For example, Kn |= AKm

if and only if n ≥ m, in which case Kn in fact contains

(

n
m

)

or (n)m

different copies of Km, depending on how one counts.
We need some definitions before stating our main result :

Definition 20 : Let H be a graph, with e edges and v vertices. The
density of H, denoted ρ(H), is the quantity

ρ(H) :=
e

v
.

1Here we are once again deliberately sloppy with our language. Since a threshold
function can never be unique (one can always multiply by a constant, for example), one
shouldn’t speak of “the” threshold. But this is common practice.
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The graph H is said to be balanced if ρ(H) ≥ ρ(H ′) for every subgraph H ′

of H.

Theorem 28 Let H be a balanced graph. Then the function

t(n) := n−1/ρ(H)

is a threshold function for the property AH .

Proof : We need to prove two things, namely :

(I) If p(n) = o[t(n)] then P[G(n, p(n)) |= AH ] = o(1).
(II) If t(n) = o[p(n)] then P[G(n, p(n)) |= AH ] = 1 − o(1).

Proof of (I) : This part does not require the knowledge that H is bal-
anced. Let e, v denote the number of edges and vertices of H respectively.
These quantities are thus constants and do not affect any estimates of orders
of magnitude of quantities as n → ∞. Fix an n and p ∈ [0, 1]. For every
subset S of the vertices of Kn of size v, let XS be the indicator variable of
the event that, in G(n, p), at least one copy of H appears on the vertices in
S. Note that, a priori, many different copies of a single graph may appear
on the same set of vertices. But since H is fixed, the number of copies
of it which may appear on any set of v vertices is bounded by a function
depending only on v. All of this implies that

E[XS ] = Θ(pe).

Let X :=
∑

XS , the sum being over all v-element sets of vertices in Kn.
Then

E[X] =
∑

E[XS ] =

(

n
v

)

· Θ(pe) = Θ(nvpe).(57)

But X just counts the total number of copies of H in G(n, p). So from (57)
it is already clear that if p = p(n) = o[t(n)], then E[X] = o(1), implying
that P(X = 0) = 1 − o(1). This proves part (I).

Proof of (II) : Similarly, (57) implies that if t(n) = o[p(n)] then E[X] →
∞. All we need to show is that P(X > 0) = 1 − o(1). We apply the second
moment method. To simplify notation, let AS denote the event indicated
by XS . Clearly, the various conditions introduced in our discussion of the
second moment method apply to the present situation, so that it suffices
for us to show that, in the notation of the previous lecture, ∆∗ = o(E[X]),
where

∆∗ =
∑

T∼S

P(AT |AS).

Here S is a fixed set of vertices of size v, and the sum runs over all sets T of
vertices of size v so that the event AT is not independent of the event AS .
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Now in the random graph setting, two events are independent if they are
defined on disjoint sets of edges. So AT is dependent on AS if and only if
the edge-sets defined by T and S are not disjoint, which is the case if and
only if T and S share at least two vertices. Hence we can write

∆∗ =
∑

T :2≤|T∩S|≤v−1

P(AT |AS) =
v−1
∑

i=2

∑

T :|T∩S|=i

P(AT |AS).(58)

In the inner sum, the quantity P(AT |AS) must be the same for every choice

of T . The number of such choices is

(

v
i

) (

n − v
v − i

)

, since T must have i

vertices in common with S and v− i other vertices. This number is Θ(nv−i).
Now fix an i and a T . We need an estimate for P(AT |AS). Here it is

assumed that at least one copy of H appears on S and want to estimate the
probability of at least one copy of H also appearing on T . Up to a constant
factor, as before, we may consider a fixed copy of H on S. Let H ′ be the
part of it on T ∩ S. Once again, up to a constant factor, we may consider a
fixed extension of H ′ to a copy of H on the vertices of T .

At this point we use the fact that H is balanced. It implies that ρ(H ′) ≤
ρ(H), thus H ′ contains at most ie/v edges and so H\H ′ contains at least
e− ie/v edges. This means that the appearance or otherwise in S of a fixed
extension of H ′ on T is an event which depends on at least e − ie/v inde-
pendent biased coin tosses, namely the presence or otherwise in G(n, p) of
the edges in H\H ′.

Putting all this together, what we have shown is that, for a fixed i and
T ,

P(AT |AS) = Θ(pe−ie/v).

Substituting this and the estimate for the number of different T :s into (58)
we find that

∆∗ =

v−1
∑

i=2

Θ(nv−i) · Θ(pe−ie/v) =

v−1
∑

i=2

Θ
[

(nvpe)1−i/v
]

.

Since 1− i/v ≤ 1− 2/v < 1 for every value of i, it is thus clear that the sum
is o(nvpe) = o(E[X]), which completes the proof of the theorem.

The proof of the following completely general result is more technical.

Theorem 29 Let H be any graph, not necessarily balanced. Let H ′ be a

subgraph of H of maxmimal density. Then the function t(n) = n−1/ρ(H′) is

a threshold for the property AH .

A full proof is not contained in [AS], but the book contains some techni-
cal extensions of Theorem 28 above from which Theorem 29 can be deduced
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without too much pain. I leave all this as an exercise to the interested reader.

Second application : Concentration of random graph invariants

A graph invariant just means any numerical quantity which may be as-
sociated to an arbitrary graph. Examples of graph invariants are chromatic
number, girth, number of connected components, number of Hamilton cy-
cles etc. Invariants of random graphs G(n, p) are thus (non-negative integer
valued) functions of two variables, n and p.

The computation of random graph invariants is a natural counterpart to the
problem of computing thresholds. In the former type of problem, one consid-
ers a fixed p (the most natural and interesting choice often being p = 1/2, as
it corresponds to the edges of the graph being chosen by independent tosses
of a fair coin) and wants to estimate the value of the invariant as n → ∞.
This basically involves estimating the expectation of some random variable
X. Of more interest, though, is the degree of predictability of the invariant’s
value, in other words, how well concentrated the variable X is around its
mean. The second moment method sometimes gets us quite strong results,
a particularly nice example being the following ‘2-values theorem’ :

Theorem 30 There is an integer-valued function k(n) such that

P[ω(G(n, 1/2)) = k(n) or k(n) + 1] → 1 as n → ∞.

In addition, k(n) ∼ 2 log2 n.

Here ω(G) denotes the clique number of a graph G, which is the maxmi-
mal number of vertices in a complete subgraph of G. Note that the theorem
does not tell us exactly what two values ω(G(n, 1/2)) is concentrated on,
for any given large n, just that there are two such values, and they are of
the order of magnitude of 2 log2 n. However, it will be clear from the proof
of the theorem that the function k(n), and the amount of concentration, is
easily2 computable for any particular n.

Sketch proof of Theorem 30 : I will not go through all the details
of the proof, but just give the main ideas. One may consult Chapter 4 of
[AS] for the full computations. What is interesting is that, in [AS], they
defer a final proof of this theorem to Chapter 10, and there use some more
advanced probabilistic machinery, namely the so-called Janson inequalities.
I think this is unnecessary, however, and that the second moment method
suffices to get a full proof. I leave it for yourselves to check this !

Anyway, here is the sketch :

Fix an n and a k and let X be a r.v. which counts the number of cliques of

2i.e.: in polynomial time, at least.
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size k in G(n, 1/2). We can write (should by now be getting used to
this !) X =

∑

XS , the sum being taken over all vertex sets S of size k,

where XS indicates that all

(

k
2

)

edges between the vertices of S are, so

to speak, “turned on”. Thus

E[X] =

(

n
k

)

· 2
−

 

k
2

!

.(59)

Denote the quantity on the right hand side of (59) as f(n, k). We have
already seen in the very first lecture that f(n, k) becomes less than 1 when
k is in the vicinity of 2 log2(n). Since the event X = 0 is the same as
the event ω[G(n, 1/2)] < k, this is the crucial transition as long as we can
show that ∆∗ = o(f(n, k)) when the latter is large. The exceptionally high
concentration of the clique number comes from the fact that the function
f(n, k), which is a decreasing function of k for fixed n, is decreasing very
rapidly when k is close to 2 log2 n. In fact, direct insertion into the formula
for f(n, k) gives that

f(n, k + 1)

f(n, k)
= 2−k n − k

k + 1
,

so that when k ∼ 2 log2 n, f(n,k+1)
f(n,k) = n−1+o(1).

Some remarks on the estimation of ∆∗ : It can be broken up exactly as in
(58) above. The analysis is even simpler than in Theorem 28, however, as
one doesn’t need to worry about those annoying “up to a constant factor”
estimates here. One finds (see [AS] for more detail) that

∆∗

E[X]
=

k−1
∑

i=2

g(i),

where

g(i) =

(

k
i

)(

n − k
k − i

)

(

n
k

) · 2

 

i
2

!

.

One needs to show that each term in the sum is o(1), when E[X] is large
and k ∼ 2 log2 n. In [AS] they show by direct computation that

g(2) ∼
k4

n2
= n−2+o(1),

g(k − 1) ∼
2kn2−k

E[X]
=

n−1+o(1)

E[X]
,

and leave the remaining cases to the reader. In fact, one can see (again just
by direct insertion into the formula for g(i)) that, up to a 1 + o(1) factor,
the function g(i) starts off by decreasing as i increases, and then starts
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increasing again as i approaches the order of magnitude of log2 n. What
this implies is that, for every i,

g(i) ≤ (1 + o(1))max{g(2), g(k − 1)}.

It is this estimate which I think allows one to finish off the proof of
Theorem 30 without needing to resort to any more advanced techniques.
But don’t take my word for it : check it yourselves !

Lecture 8 (Nov. 24, 2011)

Devdatt lectured on two CS applications : quicksort and median finding.
Only the latter application involved the second moment method. Photo-
copies of the relevant sections of [MU], i.e.: sections 2.5 and 3.4 respectively,
were handed out in class.


