
Lecture 9 (Nov. 29, 2011)

A central class of results in probability theory are so-called Central Limit

Theorems. A weaker set of results, called Laws of Large Numbers, capture
the layman’s notion that things tend to average out over time. The Central
Limit Theorems are more precise : they tell you that random variables which
are long-term averages tend to have normal distributions. Recall that the
normal distribution with mean µ and standard deviation σ is the real-valued
random variable X = N(µ, σ) such that, for every z ∈ R+,

P(|X − µ| ≥ z) = 2 ·
∫

∞

z

1√
2π

e−t2/2σ dt.(60)

The normal distribution is thus well concentrated about its mean. For ex-
ample, (60) implies that, for any λ > 0,

P(|X − µ| ≥ λσ) ≤ e−λ2/2.

This should be compared with the totally general Chebyshev inequality.

Classically, “the” Central Limit Theorem is about sums of independent,
identically distributed (i.i.d.) random variables. It is an old result which
says, basically, that if X1, X2, ... is a sequence of i.i.d. random variables, each
with mean µ and variance σ, and Yn = (X1 + · · · + Xn)/n is the average
of the first n of them, then Yn approaches N(µ, σ). What do we mean here
by “approaches” ? Well, there are different possibilities, but the simplest
notion, which is also the weakest and thus the easiest to get results about,
is that, for every positive real number z,

lim
n→∞

P(|Yn − µ| ≥ z) = 2 ·
∫

∞

z

1√
2π

e−t2/2σ dt.(61)

While the CLT is a fundamental theoretical result, there are several prob-
lems associated with its application :

(I) it assumes identical distributions
(II) it assumes independence
(III) it is qualitiative, not a quantitative result. In other words, it doesn’t
say anything about the rate of convergence to the limit in (61).

Problem (I) is not serious : the CLT can be extended to sums of variables
with different distributions. (II) and (III) are much more serious, though.
There are CL Theorems that concern dependent variables, but results are
limited. In a seminal paper, Chernoff (1952) dealt significantly with problem
(III). His results concern sums of independent indicator variables. Chernoff
was interested in statistics, and his results are of great importance in that
field. We’ve already seen in this course that sums of indicator variables
are also ubiquitous in combinatorial applications, so Chernoff’s results de-
serve attention. On the other hand, the fact that they don’t address the
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issue of independence limits their applicability. Nevertheless, the methods
employed by Chernoff lay the foundation for much subsequent work on ad-
dressing the independence issue and knowledge of his method (and of the
various qualitative CL Theorems) is a prerequisite for appreciating these
later developments. We thus present a detailed proof of the following result

Theorem 31 (Chernoff’s bound) Let X be a random variable which

is a sum of independent indicator variables. Let E[X] := µ. Then for any

ǫ > 0 there exists a positive constant cǫ, depending only on ǫ, such that

(62) P(|X − µ| > ǫµ) < 2e−cǫµ.

In fact one can take

(63) cǫ = min

{

ǫ2

2
, (1 + ǫ) ln(1 + ǫ) − ǫ

}

.

The crucial point here is that cǫ does not depend on X, i.e.: it doesn’t
depend on how many indicator variables X is the sum of, nor on the distri-
butions of these.

We will deduce Theorem 31 from a normalised version of it. Let Xi be
an indicator variable, say

Xi =

{

1, with probability pi,
0, with probability 1 − pi.

The normalisation of Xi, which we denote X̂i, is the variable Xi − pi, i.e.:

X̂i =

{

1 − pi, with probability pi,
−pi, with probability 1 − pi.

(64)

Thus X̂i has mean zero. It has the same variance as Xi, namely pi(1 − pi).

Now let X̂ be a r.v. which is a sum of n normalised indicator variables,
for some fixed n. Write X̂ = X̂1 + · · · + X̂n, with the X̂i as above, and
define the number p by np = p1 + · · ·+pn. Finally, let a be any positive real
number. We will prove the following two inequalities :

P(X̂ > a) < exp

[

a − pn ln

(

1 +
a

pn

)

− a ln

(

1 +
a

pn

)]

,(65)

P(X̂ < −a) < exp

[

− a2

2pn

]

.(66)

Note that the theorem follows from (65) and (66) upon setting a = ǫpn. We
will prove (65) in detail. The proof of (66) is very similar and thus omitted,
but the full proof can be found in [AS], Appendix A. First, though, a couple
of remarks are in order :

(i) there is an obvious asymmetry in the estimates (65) and (66), depending
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on whether X̂ is positive or negative. Unfortunately, this is a feature of
Chernoff’s method.
(ii) the connection to the normal distribution is clear in (66), as the vari-

ance of X̂ is about np if the individual pi are small, as is usually the case in
applications. With (65), the connection is not so obvious. However, if a is
small compared to pn and we use the fact that ln(1 + u) ≥ u − u2/2 when
0 < u < 1, then we can deduce from (65) that

(67) P(X̂ > a) < exp

[

− a2

2pn
+

a3

2(pn)2

]

.

Note that (67) gives no information when a is large compared to np as then
the cubic term dominates. Again, this is a feature of Chernoff’s method, but
is not important, since we’re only interested in having concentration close
to the mean anyway.

Proof of (65) : The proof uses the exponential generating function of

X̂, namely : Let λ > 0. Then we will consider the r.v.

eλX̂ :=
∞
∑

k=0

λk

k!
X̂k.

Now X̂ > a if and only if eλX̂ > eλa. The simple Markov inequality gives a
bound

P (eλX̂ > eλa) <
E[eλX̂ ]

eλa
.(68)

We will estimate the expectation and then the clever part of the proof is
that λ, which at this point is still some arbitrary positive real number, will
be chosen so as to minimise the right-hand side of (68). The estimate of
the expectation will use the concavity of the logarithm. Let us begin by
formally defining what this means :

Definition 21 : A function f on the positive reals is said to be concave

if, for any n, any positive reals x1 ≤ x2 ≤ · · · ≤ xn and any positive reals
a1, ..., an satisfying

∑

ai = 1, it holds that

f

(

n
∑

i=1

aixi

)

≥
n
∑

i=1

aif(xi).

Concavity has a simple geometric interpretation, namely that the graph of
f lies on or above the straight line drawn between any two points on it.

Lemma 32 Let C > 0. Then the function f(x) = ln(Cx + 1) is con-

cave.

Proof of Lemma : Exercise.
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Now let us return to the proof of (65). Since X̂ =
∑

X̂i, one easily sees that

eλX̂ =
n
∏

i=1

eλX̂i .

Now we use the independence of the X̂i. Recall that if A, B are independent
random variables, then E[AB] = E[A]E[B]. Thus, by induction,

E[eλX̂ ] =
n
∏

i=1

E[eλX̂i ].(69)

But from (64), the definition of e.g.f. and linearity of expectation (conver-
gence is not a problem), one easily computes that

E[eλX̂i ] = pie
λ(1−pi) + (1 − pi)e

−λpi = e−λpi

[

pi(e
λ − 1) + 1

]

.

Substituting into (69) and recalling the definition of p, we thus have

(70) E[eλX̂ ] = e−λpn
n
∏

i=1

[pi(e
λ − 1) + 1].

But

(71)
n
∏

i=1

[pi(e
λ − 1) + 1] ≤ [p(eλ − 1) + 1]n.

Indeed this follows from taking logarithms and using Lemma 32. So substi-
tuting (71) back into (70) and in turn back into (68), we have the estimate

(72) P(X̂ > a) < e−λpn[peλ + (1 − p)]ne−λa.

It is now a horrid calculus exercise to compute the precise value of λ which
minimises the right hand side of (72)1. However, a good approximation
when a ≪ np is to take λ = ln(1 + a/pn). Substituting this into (72) we get
the desired relation (65) upon noticing that, with this choice of λ,

[peλ + (1 − p)]n = (1 + a/n)n ≤ ea.

This completes the proof of Theorem 31. Applications will follow in the
next lecture(s).

Lecture 10 (Dec. 1, 2011)

Devdatt presents an application of Chernoff bounds to network routing.
See Section 4.5.1 of [MU].

1The right value turns out to be

λ = ln

»„

1 − p

p

« „

a + np

n − (a + np)

«–

.


