
Lecture 11 (Dec. 6, 2011)

We now present a selection of arithmetic and combinatorial applications of
Chernoff bounds.

Example 1 : Thin bases

We begin with the requisite definitions :

Definition 22 : Let h be a positive integer and A a subset of N0. The
representation function of A of order h, denoted rh,A, is the non-negative
integer valued function on N0 such that rh,A(n) is the number of solutions
in A to

a1 + · · · + ah = n.

Here we are considering unordered solutions and repititions are allowed. So,
for example, if A = {1, 2, 3, 4, 6, 9} then r2,A(6) = 2 since we have the two
solutions 2 + 4 = 3 + 3 = 6.

Definition 23 : Let h be a positive integer and A ⊆ N0. A is said to
be a basis of order h if rh,A(n) > 0 for all n ∈ N0. More usefully, A is said
to be an asymptotic basis of order h if rA,h(n) > 0 for all sufficiently large
n.

The case h = 1 is totally uninteresting, since then a subset of N0 is a
(asymptotic) basis if and only if its complement is empty (resp. finite). But
as soon as h > 1 things get interesting.

In that part of classical analytic number theory which deals with bases,
the type of question posed is whether some particularly interesting subset
A of N0 is a (asymptotic) basis of a certain order. There are two examples
which everyone likes to quote :

(i) A1 := {set of primes} ∪ {0, 1},
(ii) A2,k := {nk : n ∈ N0}, for any fixed k > 1.

Regarding (i), the state of the art is

Theorem 33 (Vinogradov 1937) Every sufficiently large odd number is
a sum of at most three primes. Hence, the set A1 is an asymptotic basis of
order 4.

If you want to become rich and famous then you solve

Goldbach Conjecture Every even number greater than two is the sum
of two primes. Hence, A1 is a basis of order 3.

Regarding (ii),
1
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Theorem 34 (Hilbert 1909, Hardy-Littlewood 192x) For every k > 1
the set A2,k is a basis of some order, depending on k.

The problem to which Theorem 34 is the solution is commonly known as
Waring’s Problem. One denotes by g(k) (resp. G(k)) the smallest integer
such that the k:th powers are a basis (resp. asymptotic basis) of order g(k)
(resp. G(k)). It turns out that G(k) is much smaller than g(k) for large k and
it is the more interesting function of the two. The case k = 2 dates back to
Lagrange, who showed that every positive integer (not just every sufficiently
large one) is a sum of at most four squares. On the other hand, it’s easy to
see (exercise !) that there are infinitely many integers which are not sums of
three or fewer squares, so G(2) = g(2) = 4. It is known that 4 ≤ G(3) ≤ 7
and that G(4) = 16. The exact value of G(k) is not known for any k > 4,
and finding improved upper bounds continues to be an active research topic.

Problems like (i) and (ii) are tackled using Fourier analysis, or what number
theorists refer to as the Hardy-Littlewood circle method. A standard refer-
ence if you’re interested is [1].

An ovverriding feature of combinatorial number theory is that one is in-
terested in properties of general sets of integers rather than of individual
ones with a special arithmetical structure. This is pretty wafflish, and there
is no real dividing line between the ranges of applicability of analytic and
combinatorial methods. However, regarding bases, the following curious re-
sult from the 1940s was the starting point of another line of investigation :

Proposition 35 There is no infinite subset A of N for which the repre-
sentation function r2,A(n) is constant for all sufficiently large n.

Proof : Suppose the contrary and let A be an asymptotic basis of or-
der 2 such that r2,n(A) = k for all sufficiently large n and some constant
k > 0. We consider the generating function of the set A, which is the power
series1

F (z) :=
∑

a∈A

za (z ∈ C).

The power series certainly converges when |z| < 1, so we will work in this
region so that all our algebraic manipulations will be valid. The connection

1We’ve encountered generating functions once already in this course, namely we used
the exponential generating function of a random variable in the proof of the Chernoff
bounds. Still, if you’re not familiar with the use of generating functions, proofs like the
present one may strike you as coming out of the blue. However, it is standard practice to
invoke generating functions of sequences when one wants to apply analytical methods to
combinatorial or arithmetical problems. There are many, many illustrations of this. See
[1] for applications in number theory.
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between the generating function and the representation function is that

[F (z)]2 + F (z2) = 2 ·
∞

∑

n=1

r2,A(n)zn.(73)

Suppose now that r2,A(n) = k for all n ≥ n0. Then (73) can be written as

(74) [F (z)]2 + F (z2) = 2 ·
n0−1
∑

n=1

r2,A(n)zn + 2k ·
∞

∑

n=n0

zn.

The first sum on the right of (74) is some polynomial in z. We denote it as
P (z). The second sum is a geometric series, so has a simple formula. We
thus obtain that

(75) [F (z)]2 + F (z2) = P (z) + 2k · zn0

1 − z
.

The desired contradiction is obtained by seeing what happens as z → −1
from the right along the real axis. Because of all the squares present, the
left hand side heads inexorably toward positive infinity. But the right hand
side heads toward some finite value, namely P (−1) + (−1)n0 · k. This con-
tradiction completes the proof.

The following problem, originally posed by Erdős in [2], remains after 70
years the most important (in my opinion) unsolved problem in additive
number theory :

Open Problem Does there exist a constant C > 0 and a basis A of order
2 such that r2,A(n) < C for all n ?

Erdős actually conjectured that the answer is ‘No’, and this is still gen-
erally believed to be the case, even though progress on the problem has
been less than ǫ. Informally, the conjecture asserts that if the set A “cov-
ers” N at least once under addition, then it has to do so with a considerable
amount of room to spare.

Informally, a basis of a certain order is called thin if its representation
function is a slowly growing function2 of n. Classical bases like the sets
A1 and A2,k from earlier are very thick (exercise !), there is an awful lot
of redundancy. The thinnest bases known to exist have been identified by
probabilistic arguments. It would be a major achievement to give an explicit
construction which comes anywhere close to matching the following :

2There is another way to define thinness, namely in terms of the density of the set
A itself. The two points of view are not entirely equivalent, indeed there are subtle
differences which can make the same type of question much easier or harder depending
on the viewpoint taken. However, we won’t waste time here getting deeper into these
matters.
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Theorem 36 (Erdős 1956) There exist bases A of order 2 for which

r2,A(n) = Θ(log n).(76)

This theorem, and its subsequent extension to higher orders which we will
remark on later, are very much state of the art. The gap between it and the
Open Problem above is a gaping black hole in our current understanding of
bases. The proof of Theorem 36 is a beautiful application of the Chernoff
bounds.

Proof : First of all, note that it suffices to prove the existence of an
asymptotic basis A with property (76), as then we can just add a finite
number of elements to A to make it into a basis, without affecting the order
of magnitude of the representation function.

Let K be a fixed positive constant whose value will be determined later.
We consider a random subset A of N such that each positive integer x is
chosen independently of all others with probability px given by

px := min

{

K

√

log x

x
, 1

}

.

We will show that, for an appropriate choice of K, the representation func-
tion of A satisfies (76) with probability one3. For each n > 0, let Xn denote
the random variable r2,A(n). Note that

Xn =

⌊n/2⌋
∑

x=1

Xn,x,

where Xn,x is the indicator variable of the event that both x and n − x lie
in A. Let µn := E[Xn]. Thus,

µn =

⌊n/2⌋
∑

x=1

min

{

K

√

log x

x
, 1

}

· min

{

K

√

log(n − x)

n − x
, 1

}

.(77)

The main technical challenge in the proof is to prove an estimate for µn.
But, conceptually, the crucial point is that, for each fixed n, the variables
Xn,x are mutually independent, hence we will eventually be able to apply
the Chernoff bounds to get good concentration of the Xn. For higher order
bases, this is where the present line of reasoning breaks down and more so-
phisticated concentration results are needed to get around the problem. We
defer further discussion of this issue until we’re done with the current proof.

3which is not the same thing as saying ‘with certainty’, since we are no longer in a
finite setting. Indeed, A is a subset of N, hence there are uncountably many possibilities
for it.
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OK, so we need to estimate the µn. The claim is that

(78) µn ∼ K2π

2
log n.

The verification of (78) is a challenging Calculus 101 exercise. So as not to
obscure the probabilistic ideas being employed here, we relegate the proof
to Appendix 1 and continue with the main thrust of the argument. So we
assume (78). Fix any choice of real number ǫ ∈ (0, 1), and let An denote the

event that r2,A(n) does not lie between (1−ǫ)K2π
2 log n and (1+ǫ)K2π

2 log n.
Theorem 31 now tells us that

P(An) � 2 · exp

(

−cǫ
K2π

2
log n

)

= 2 · n−cǫ
K2π

2 .

If K is now chosen so that

cǫ
K2π

2
> 1,

then
∞

∑

n=1

P(An) < ∞.(79)

The theorem will then follow directly from

Lemma 37 (Borel-Cantelli Lemma) Let (An)∞n=1 be a sequence of events
in a probability space, and suppose that (79) holds. Then with probability
one, only finitely many of the An occur.

Proof of Lemma : Let ǫ > 0. We will show that the probability of
infinitely many An occurring is less than ǫ. Eq. (79) implies that there
exists an n0 such that

(80)
∞

∑

n=n0

P(An) < ǫ.

But the left hand side of (80) is an upper bound for the probability of at
least one An occurring for n ≥ n0, hence in turn an upper bound for the
probability of infinitely many An occurring. So we’re done !

Remark 1 To prove the theorem, it would have sufficed to show that our
random choice of A satisfied (76) with non-zero probability. We actually
succeeded in showing that this was achieved with probability one, so that
in some sense bases of this thinness are abundant. However, as previously
noted, no-one has a clue how to construct one explicitly.

Remark 2 We remarked above where the argument breaks down for higher
order bases. It took 34 years to overcome this obstacle and prove
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Theorem 38 (Erdős, Tetali 1990 [3]) Let h ≥ 2. Then there exists
a basis A of order h for which rh,A(n) = Θ(log n).

Though this was not the original approach of Erdős and Tetali, the quickest
known way to get around the obstacles presented by non-independence is to
use what are called the Jansson inequalities, proven by Svante Jansson in
the late 1980s. These are discussed in Chapter 8 of [AS], and in [3] itself, but
we won’t have time to get that far in this course. The Janson inequalities
will be a topic for the follow-up course in the spring.

References

[1] R.C. Vaughan, The Hardy-Littlewood Method (2nd edition), Cambridge
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Appendix 1

We need to prove (78). We start from (77). Clearly, there will be a bounded
number of terms in this sum which are equal to 1. In all other terms, the
minimum in (77) will be a function of x. Hence,

(81) µn ∼ K2

⌊n/2⌋
∑

x=1

√

log x log(n − x)

x(n − x)
.

Note that the summand above is symmetric about n/2. Hence, in order to
establish (78), it remains to prove that

(82)

n−1
∑

x=1

√

log x log(n − x)

x(n − x)
∼ π log n.

Applying the standard trick of replacing the sum by an integral, we will
show instead that4

(83)

∫ n−1

1

√

log x log(n − x)

x(n − x)
dx ∼ π log n.

4It needs to be justified that replacing the sum by the integral does not lead to a
significant error in our estimates. It is easy to see that the error will be o(log n). A
rigorous proof is technical, and hence I omit it, though if you read through the rest of the
calculations presented here, you should be able to see how to do it.
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We change variables x := ξn, and are left with having to show that

(84)

∫ 1−1/n

1/n

√

log(ξn) log[(1 − ξ)n]

ξ(1 − ξ)
dξ ∼ π log n.

At this point, we need a bit of calculus :

Lemma 39

(85)

∫ 1

0

dξ
√

ξ(1 − ξ)
= π.

In particular, the integral converges, hence

(86) lim
δ→0

∫ δ

0

dξ
√

ξ(1 − ξ)
= lim

δ→0

∫ 1

1−δ

dξ
√

ξ(1 − ξ)
= 0.

The second assertion of the lemma follows from the first (note that the
integrand is symmetric about ξ = 1/2), and the first is proven by making
the trigonometric substitution ξ := sin2 θ.

So back to proving (84). Let δ be a small positive number. At the end
we will let δ → 0. Divide up the integral in (84) into three parts, (i) from 0
to δ, (ii) from δ to 1− δ, (iii) from 1− δ to 1. Call these three sub-integrals
I1, I2 and I3 respectively. Now, for any fixed ξ ∈ (0, 1), we have

log(ξn) log[(1 − ξ)n] = (log n + log ξ)(log n + log(1 − ξ))(87)

= (log n + O(1))(log n + O(1)) ∼ (log n)2,

so that the numerator of the integrand in (84) is ∼ log n. From this and
Lemma 39, it follows easily that, as δ → 0,

I1 � (log n) ·
∫ δ

0

dξ
√

ξ(1 − ξ)
= o(log n),(88)

I2 ∼ (log n) ·
∫ 1−δ

δ

dξ
√

ξ(1 − ξ)
∼ π log n,(89)

I3 � (log n) ·
∫ 1

1−δ

dξ
√

ξ(1 − ξ)
= o(log n).(90)

Eq. (84) follows immediately from these estimates.
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Example 2 : Discrepancy Theory

Definition 24 : Let S be a finite set. A map χ : S → {±1} is called a
2-coloring of S. The elements s ∈ S s.t. χ(s) = −1 will be said to be colored
blue, and the other points colored red.

Definition 25 : Let S be a finite set, χ a 2-coloring of S and A a subset of
S. The discrepancy of A with respect to χ, denoted disc(A, χ), is defined as

disc(A, χ) :=

∣

∣

∣

∣

∣

∑

s∈A

χ(s)

∣

∣

∣

∣

∣

.

In words, it’s the difference between the number of red and blue points in A.

Definition 26 : Let F be a family of subsets of the finite set S. The
discrepancy of F w.r.t. a 2-coloring χ of S, denoted disc(F , χ), is defined as

disc(F , χ) := max
A∈F

disc(A, χ).

The 2-color discrepancy of F , denoted simply disc2(F), is defined as

disc2(F) := min
χ

disc(F , χ),

the minimum being taken over all possible 2-colorings of the set S.

The Chernoff estimates give upper bounds on 2-color discrepancies.

Theorem 40 Let S be a finite set of m elements and F a collection of
n subsets of S. Then

disc2(F) = O
(√

m lnn
)

.

Proof : A random 2-coloring of an m-set can obviously be thought of as a
sequence of m independent coin tosses. Thus we have a very simple instance
where the Chernoff bounds apply. Now let’s be more precise :

Denote S = {1, ..., m} for simplicity. For each i = 1, ..., m, let Xi be the
random variable for which

P(Xi = +1) = P(Xi = −1) =
1

2
.

Thus the Xi are i.i.d. and by a random 2-coloring of S we mean any such
i.i.d. sequence of m random variables. For any subset A of S, we set
XA :=

∑

i∈A Xi. Thus the absolute value of XA records the discrepancy of
A w.r.t. a random 2-coloring of S. We shall show that, for an appropriately
chosen constant C > 0, and for any fixed n and A,

P(|XA| > C
√

m lnn) <
1

n
.(91)
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This implies that, given a family F of n subsets, the total probabilility that
|XA| > C

√
m lnn for at least one A ∈ F is strictly less than one. In other

words, there is a positive probability that a random 2-coloring χ of S satis-
fies disc(F , χ) ≤ C

√
m lnn, as desired. So it suffices to verify (91).

We use (66) in the special case where, in the notation of (64), each pi = 1/2.
Notice that each Xi above is twice such a normalised indicator variable, so
(66) implies that

P(XA < −a) < exp

[

− (a/2)2

2 · 1
2 · |A|

]

= exp

(

− a2

4|A|

)

≤ exp

(

− a2

4m

)

.

But here everything is symmetric about zero, so the same inequality must
hold for P(XA > +a), even if this is not generally the case in the Chernoff
estimates. We conclude that, for any positive real number a,

P(|XA| > a) < 2 · exp

(

− a2

4m

)

.

Setting a := C
√

m lnn, this becomes

P(|XA| > C
√

m lnn) < exp

(

−C2m lnn

4m

)

= n
−C2

4 .

Thus (91) will be satisfied if C > 2 and the theorem is proved.

A particular case of interest in Theorem 40 is when m = n, in which case it
bounds the discrepancy by O(

√
n lnn). In Chapter 12 of [AS], Spencer repro-

duces his argument which improves this to O(
√

n). It is a highly non-trivial
argument running over several pages, so we don’t go through it here. Note,
however, that there are examples known, involving so-called Hadamard ma-
trices, which show that this order of magnitude cannot in general be beaten.
The best-possible constant is, I think, still unknown. Active research areas
within discrepancy theory include, for example :

(I) studying the discrepancy of specific families of sets, not just general ones.
This is somewhat analogous to studying specific subsets of the natural num-
bers in the theory of bases. There is an old, famous result of this type due
to Roth, which states that if F is the family of all arithmetic progressions
(of all lengths) in {1, ..., n}, then disc(F) = Ω(n1/4). More recently, Spencer

and Matousek proved the reverse estimate, namely disc(F) = O(n1/4). See
their paper [4] for details and references.

(II) extending the notion of discrepancy to when there are more than two
colors involved, so-called multi-colored discrepancies. Of course here it’s not
even obvious what the right definitions should be. Search for ‘multi-colored
discrepancies’ on Google if you’re interested.
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(III) Geometric discrepancy theory. There are more geometrical analogues
of the notion of discrepancy, where one is interested in random distributions
of points in space. We will not say any more about this topic here.

Reference

[4] J. Matousek and J. Spencer, Discrepancy in arithmetic progressions, J.
Amer. Math. Soc. 9 (1996), 195-204.

Example 3 : Degrees in random graphs

For any n and p, the degree of any vertex in G(n, p) is the sum of n−1 i.i.d.
indicator variables Xi such that P(Xi = 1) = p, P(Xi = 0) = 1 − p. Indeed
each such indicator corresponds to an edge from the given vertex to one of
the other n−1 vertices. Thus the expected value of the degree of any vertex
is (n−1)p and we expect that the Chernoff bounds would supply some kind
of concentration estimate for the degrees about this average. Given n and p,
and ǫ > 0, let Aǫ denote the event that the degree of every vertex in G(n, p)
lies between (1 − ǫ)(n − 1)p and (1 + ǫ)(n − 1)p. Then we can prove the
following :

Theorem 41 For any ǫ > 0, if ln n
n = o[p = p(n)] then

P[G(n, p(n)) |= Aǫ] = 1 − o(1).

Remark This is kind of a “threshold result”. It says that if p(n) is above
the threshold ln n

n then we get good concentration of the degrees. It says
nothing, however, about what’s going on below the threshold.

Proof of Theorem 41 : Let ǫ be given and for any vertex v of Kn

let Xv be the random variable which records the degree of v in G(n, p). As
explained above, Xv is a sum of n − 1 indicator variables and has mean
µ = (n − 1)p. Thus, by Theorem 31,

P(|Xv − µ| > ǫµ) < 2 · e−cǫµ,(92)

where cǫ s a fixed positive constant. Now Aǫ is the event that |Xv −µ| ≤ ǫµ
for every vertex v. Thus in order for the probability of this event to be
1 − o(1), it suffices for the right hand side of (92) to be o(1/n). But this is
the case if ln n

n = o(p), as one verifies by direct insertion.



11

Lecture 12 (Dec. 8, 2011)

This lecture is concerned with martingales, which are formally defined below
(Definition 29). A martingale is, from a certain point of view, a generalisa-
tion of a sequence of i.i.d. variables, but the concept is far more general. In
1968 Azuma observed that for martingales that satisfy a certain so-called
Lipschitz condition, the final term in the martingale satisfies the same type
of Chernoff concentration estimate as a sum of i.i.d. variables. The result
has applications to random graphs, as there is a natural way to associate
a martingale to any random graph invariant, and for some invariants, the
best-known being the chromatic number, the Lipschitz condition is satisfied.

In order to be able to present this material, we need to introduce the
notion of conditional expectation for random variables. In keeping with our
general philosophy in this course, we keep the abstract probability theory
to a minimum sufficient for our requirements.

Definition 27 : Let (Ω, µ) be a finite probability space, X a real-valued
random variable on Ω. For each r ∈ R, the level set of X at level r, denoted
Br, is defined as

Br := {ω ∈ Ω : X(ω) = r}.
Definition 28 : Now let Y be another random variable on the same space.
We can define a third r.v. Z, called the conditional expectation of Y w.r.t.
X, and usually denoted5 E(Y |X), as follows : for each ω ∈ Ω, we have

Z(ω) :=
1

µ(BX(ω))

∑

τ∈BX(ω)

µ(τ)Y (τ).

In words, the value of the r.v. E(Y |X) at any point ω in the probability
space is the µ-weighted average of the values of Y at the points of the level
set of X(ω). Thus E(Y |X) is constant on each level set of X. If each level
set of X is a single point, then E(Y |X) = Y . At the other extreme, if X is a
constant function, then E(Y |X) is also constant, equal to E(Y ). In between
these two extremes, E(Y |X) is a “partial revelation” of the r.v. Y .

Proposition 42 (i) Suppose X and Y are indicator variables of the events
A and B respectively. Let Z := E(Y |X). Then for ω ∈ Ω,

(93) Z(ω) =

{

P(B|A) = P(A∧B)
P(A) , if ω ∈ A,

P(B|Ac) = P(Ac∧B)
1−P(A) , if ω 6∈ A.

(ii) For any X and Y one has

(94) E[E(Y |X)] = E(Y ).

5To avoid confusion, we use different notation to distinguish between an expected value
E, which is a number, and a conditional expectation E , which is a random variable. The
two things are related, obviously - see Proposition 42 and the discussion preceeding it.
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(iii) For any X and Y , one has

E[X · E(Y |X)] = E[X · Y ].(95)

Proof : Left as an exercise. Note that the · in part (iii) just means an
ordinary product of functions. This part of the proposition will be used in
the proof of Theorem 43 below.

Definition 29 : A sequence X0, ..., Xn of random variables, all defined
on the same probability space, is called a martingale if

E(Xi+1|Xi, Xi−1, ..., X0) = Xi, for i = 0, ..., n − 1.

Example 1 : Let Y0, ..., Yn be i.i.d. variables on a space (Ω, µ), such that

E(Y0) = 0. For each i = 0, ..., n set Xi :=
∑i

j=0 Yj . The Xi may all be

considered as defined on the same space, namely Ωn+1 with the product
measure. Then the Xi form a martingale (exercise !).

Example 2 : The mathematical use of the term “martingale” historically
comes from the following example : consider a game which consists of an
unlimited (i.e.: continue until you get fed up) sequence of coin tosses, where
the amount bet on the outcome of each toss is decided independently just
before it takes place. Consider the following strategy for winning : “double
the bet until I win”. So, for example, you could start by betting 1 euro. If
you win, stop. Otherwise, bet 2 euro on the next toss. If you win then, stop.
Otherwise, bet 4 euro on the next toss etc. One might reason that since one
must surely win a bet at some point, this is a guaranteed money-making
strategy.

Exercise : Show how to model this game with a martingale. What’s the
flaw in the reasoning above ?

One type of martingale which arises in many contexts is where the last
term Xn is a r.v. whose distribution is being “gradually revealed” by the
terms in the martingale. An example, which is the central example of in-
terest for applications to random graphs, will hopefully make this idea clear :

Definition 30 : We work in the probability space G(n, p) for any fixed
n and p. Let f be any graph invariant. Let e1, ..., en(n−1)/2 be any ordering
of the edges of Kn. We define a corresponding martingale X0, ..., Xn(n−1)/2,
called the edge exposure martingale of f in G(n, p), as follows :

For each i = 0, ..., n(n−1)/2, Xi is the random variable on G(n, p) whose
value at any graph H on n vertices is the average value of the function f
taken over all graphs G on n vertices which coincide with H amongst the
edges e1, ..., ei.
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The vertex exposure martingale is defined similarly. Here we order the ver-
tices of Kn in any order, say v1, ..., vn. Then our martingale is X0, ..., Xn−1,
where Xi(H) is the average of f(G) taken over all G which coincide with H
on the subgraph induced by v1, ..., vi+1.

Note that the vertex exposure martingale may be considered as a subse-
quence of the edge exposure martingale.

N.B.: In either the edge- or vertex exposure martingale, the first term X0 is
a constant, namely E[f(G(n, p))], whereas the last term (either Xn(n−1)/2 or
Xn−1 as appropriate) is f(G(n, p)) itself, i.e.: the random graph invariant
in its full glory !!

Example : f(G) = χ(G), the chromatic number. As an exercise, com-
pute the corresponding edge- and vertex-exposure martingales for G(3, 1/2).

We shall now show how the symmetric case of Chernoff’s inequality, con-
cerning a sum of ±1 i.i.d. indicator variables (see the proof of Theorem 40),
can be extended to a certain class of martingales, with basically the same
proof. The important concept is the following :

Definition 31 : A martingale X0, ..., Xn is said to satisfy a Lipschitz con-
dition if there exists a constant c > 0 such that |Xi − Xi−1| ≤ c for all
i = 1, ..., n.

Definition 32 : Let f be a graph invariant. Then f is said to satisfy
an edge (resp. vertex) Lipschitz condition if there exists a constant c > 0
such that, whenever G1 and G2 are two graphs that differ only at one edge
(resp. vertex), then |f(G1) − f(G2)| ≤ c.

Note that, in this definition, when we say that two graphs differ only at
one edge, then we mean that the two graphs have the same number of ver-
tices, and that they share exactly the same edges but one, which is present
in one graph but not the other. Thus one of the graphs is a subgraph of the
other in this case. When we say that two graphs differ at one vertex, we
mean that, when that vertex and all its adjacent edges are removed, then
the remaining graphs are identical. Thus, if two graphs only differ at one
edge then they also only differ at one vertex, though not always vice versa.

Exercise : Show that if f is a graph invariant satisfying an edge (resp.
vertex) Lipschitz condition, then the corresponding edge (resp. vertex) ex-
posure martingale satisfies a Lipschitz condition with the same constant.

The point of these definitions is the following :

Theorem 43 (Azuma’s inequality 1968) Let µ = X0, ..., Xn be a mar-
tingale satisfying a Lipschitz condition with constant c > 0. Then, for any
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a > 0,

(96) P(|Xn − µ| > a) ≤ 2 · exp

(

− a2

2nc2

)

.

Proof : We prove the result in the case where c = 1 and µ = 0. The
general result just follows by simple change of variables. We will need the
following lemmas :

Lemma 44 If λ > 0 then cosh λ ≤ eλ2/2, where cosh λ = 1
2(eλ + e−λ).

Proof of Lemma 44 : Taylor expansions.

Lemma 45 Let Y be a r.v. satisfying
(i) E[Y ] = 0,
(ii) |Y | ≤ 1.

Then for any λ > 0,

E[eλY ] ≤ e
λ2

2 .

Proof of Lemma 45 : The function f(x) = eλx is convex, hence its
graph in the interval [−1, 1] lies on or below the line joining the points
(−1, f(−1)) = (−1, e−λ) and (1, f(1)) = (1, eλ). In other words, for x ∈
[−1, 1],

eλx ≤ cosh λ + sinhλ · x.

Hence, by assumptions (i) and (ii) and linearity of expectation,

E[eλY ] ≤ E[cosh λ + sinhλ · Y ] = coshλ.

But now use Lemma 44 to complete the proof.

So back to the theorem. For each i = 1, ..., n let Yi := Xi −Xi−1. Then the
martingale condition implies that E(Yi|Xi−1) = 0 and the Lipschitz condi-
tion that |Yi| ≤ 1. Thus, by Lemma 45, if λ > 0 then

(97) E [eλYi |Xi−1] ≤ e
λ2

2 , for i = 1, ..., n.

We are, of course, interested in Xn so, in the spirit of Chernoff’s method,
we consider E[eλXn ] for some λ to be chosen appropriately later. Observe
that

(98) Xi = Y1 + · · · + Yi, for i = 1, ..., n.

Thus

E[eλXn ] = E





n
∏

j=1

eλYj



 .
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Now applying (95), (98) and Lemma 45 we have that

E





n
∏

j=1

eλYj



 = E





n−1
∏

j=1

eλYj · eλYn



 = E





n−1
∏

j=1

eλYj · E [eλYn |Xn−1]



 ≤ E





n−1
∏

j=1

eλYj



 · eλ2

2 .

Now just apply the same argument a further n − 1 times to get

E[eλXn ] ≤ e
nλ2

2 .

Then, by Markov’s inequality, if a > 0 we have

P(Xn > a) = P(eλXn > eλa) ≤ e
nλ2

2
−λa.

The exponent is minimised when λ = a/n, hence

P(Xn > a) ≤ e−a2/2n.

Now (−Xk) is a martingale whenever (Xk) is, so by symmetry we have the
same upper bound for P(Xn < −a). This yields (96) when c = 1, µ = 0 and
completes the proof of the theorem.

The chromatic number is a classic example of a graph invariant which sat-
isfies a Lipschitz condition : clearly, it satisfies a vertex Lipschitz condition
with c = 1. Various applications of Azuma’s inequality to the computation
of the chromatic numbers of random graphs are given in Chapter 7 of [AS].
Next week, Jeff will present a proof of the following result (Theorem 7.3.3
in [AS]):

Theorem 46 Let p = n−α where α is fixed, α > 5/6. Let G = G(n, p).
Then there exists u = u(n, p) such that

(99) P(u ≤ χ(G) ≤ u + 3) → 1, as n → ∞.


