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ABSTRACT. The notion of “balance” is fundamental for sociologists who study social
networks. In formal mathematical terms, it concerns the distribution of triad configu-
rations in actual networks compared to random networks of the same edge density. On
reading Charles Kadushin’s recent book “Understanding Social Networks”, we were
struck by the amount of confusion in the presentation of thisconcept in the early sec-
tions of the book. This confusion seems to lie behind his flawed analysis of a classical
empirical data set, namely the karate club graph of Zachary.Our goal here is twofold.
Firstly, we present the notion of balance in terms which are logically consistent, but
also consistent with the way sociologists use the term. The main message is that the
notion can only be meaningfully applied to undirected graphs. Secondly, we correct
the analysis of triads in the karate club graph. This resultsin the interesting obser-
vation that the graph is, in a precise sense, quite “unbalanced”. We show that this
lack of balance is characteristic of a wide class of starlike-graphs, and discuss possible
sociological interpretations of this fact, which may be useful in many other situations.

1. INTRODUCTION

Social Network Analysis, henceforth abbreviated to SNA, isan area of research
which has seen an explosion of activity in recent years, witha flood of both academic re-
search papers and more popular literature. The field is a paradigm of “cross-disciplinary
research”, attracting the attention of people from a wide range of academic specialisa-
tions. The opposite ends of this spectrum of specialisations are essentially occupied by
sociologists and mathematicians. Sociologists often do the groundwork of collecting
empirical data and compiling them into networks. This work is crucial - without it, no
scientific analysis is possible and the field ceases to exist.Quantitative analysis of so-
cial networks often involves the comparison of real networks with randomly generated
ones, and the search for patterns in the actual networks which occur with a frequency far
different from what one would expect if links were formed completely at random. Such
comparative analysis can be mathematically quite sophisticated, and in general requires
the analyst to have a good working knowledge of that branch ofdiscrete mathematics
known as “random graphs”.

I am a mathematican with a background in discrete mathematics, who has been re-
cently taking part in a reading course on SNA (see the acknowledgement below) out of
simple curiosity about this exciting area. The participants in this course reflect, in the
best possible manner, the interdisciplinary nature of the field, and several of the texts
we have been using are written primarily for an audience of sociologists with limited
mathematical training. One of these is a recently publishedtext by Charles Kadushin
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[Ka], a major figure on the sociological side of SNA. As it states on the back cover, the
book is “aiming for those interested in this fast-moving area who are not mathemati-
cally inclined”. Nevertheless, the book does employ some mathematical terminology
and present some explicitly quantitative analyses. Such effort can in general only be
applauded, and a mathematician should approach such a text in a spirit of generosity.
However, I quickly uncovered problems with this book of a very serious nature. Fun-
damental concepts, both sociological and mathematical, are introduced in a way which
simply does not make sense. The first quantitative analysis of an actual network, the
celebrated karate club network of Zachary [Z], is deeply flawed.

It’s not my purpose here to do a comprehensive book review - all the problems I will
discuss arise, after a general introductory chapter, in thefirst 17 pages of the substantive
text. Rather I want to correct the author’s presentation of some fundamental concepts
in a way which might prove useful to researchers and studentsin the future, especially
to sociologists who might be interested in seeing how a mathematician approaches this
material. I shall be primarily concerned with the mathematical notion oftransitivity
and its application to the sociological notion of the same name, along with the more
restrictive notion ofbalance. I shall discuss these terms in a manner which is logically
consistent, but also consistent with the way sociologists try to apply them. In doing so, I
will explain what is wrong with Kadushin’s text, the crucialpoint being that the concept
of balance cannot be meaningfully discussed for graphs unless they are undirected. This
material is presented in Section 3.

In Section 4 we perform a correct triad census for the karate club graph of Zachary,
which involves comparison of the actual counts of differenttriad configurations with
those in an Erd̋os-Renyi random graph of the same (expected) edge density. Though the
mathematics involved is “standard”, I will present it in detail. The presentation of this
material in the book is deeply flawed, as the author compares the actual network with
randomdirectedgraphs. He is led to the qualitatively false conclusion thatZachary’s
graph is very balanced. The correct analysis leads to a quitedifferent, and more in-
teresting conclusion. In Zachary’s graph, triads with one edge out of three present are
significantly underrepresented, compared to corresponding random graphs, whereas all
other triad configurations are overrepresented. The graph is therefore quite unbalanced.

In Section 5, I show that the distribution of triads observedin Zachary’s graph is
characteristic of a precisely defined class of “starlike” networks. This is the mathemat-
ically most demanding part of the article. A reader not primarily interested in rigorous
proofs may therefore choose to just skim over Section 5 and jump ahead to Section 6,
where I discuss what I think are plausible sociological interpretations of such networks,
and of unbalanced networks in general, and their relevance to understanding the social
dynamics in Zachary’s karate club.

In Section 7, I will revisit the concept of balance itself. Onthe one hand, I will show
that, with a small change in the basic definitions, balance automatically incorporates
dyadic symmetry, something which might help avoid the kind of confusion which arose
in [Ka]. On the other hand, I will discuss what seems to be the obvious notion of
“balance” which makes sense for any weighted digraph. The quotation marks here are
important, because the notion I propose is quite different from that which is used in
sociology, so much so that a new term would need to be inventedfor it.
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Section 8 is a short discussion of some inevitably controversial issues which this note
raises.

2. GRAPH NOTATION AND TERMINOLOGY

The following notation and terminology is standard, but it is important that we leave
no room for doubt as to what statements in subsequent sections mean. Non-mathematicians
may also find this section useful. Adirected graph (digraph)is a pair(V,E), whereV
is a finite set of so-callednodes, andE is a set of ordered pairs(v1, v2), wherev1 andv2

are distinct elements ofV . The ordered pair(v1, v2) is referred to as thedirected edge
from v1 to v2, and written symbolically asv1 → v2. Note that our definition allows for
the existence of up to two directed edges between a given pairof nodes, one in each
direction. We disallowloops, i.e.: edges from a node to itself, though one should keep
in mind that, in many social networks, it is implicit in the meaning of the edges that a
loop exists at each node.

Given a digraphG = (V,E), and a subsetV ′ ⊆ V , we can consider the digraph
H = (V ′, E ′) whose nodes are the elements ofV ′ and whose edge-setE ′ consists of
those directed edgesv1 → v2 in E such that bothv1 andv2 lie in V ′. We refer toH as
thesub(di)graphof G inducedon the subsetV ′. Of particular importance in this paper
will be subgraphs induced on 2 or 3 nodes. A digraph on 2 nodes is called adyad, while
one on 3 nodes is called atriad1.

A digraph is said to besymmetricif, for each pairv1, v2 of distinct nodes, the directed
edgesv1 → v2 andv2 → v1 are either both present or both absent. The description of
such digraphs can be simplified by replacing each existing pair of directed edges by a
single undirected edge. This yields what we shall simply call a graph, i.e.: the word
“graph” on its own means that the edges are undirected. We shall also use the terms
“dyad” and “triad” for graphs on 2 and 3 nodes respectively, and it will always be clear
from the context whether we are considering graphs or digraphs.

For graphs it is clear that there are only two possible dyads,since a single edge is
either present or not. Given three nodesA,B andC, there are23 = 8 possibilities
for a graph on these three nodes, since each of 3 possible edges can be present or not.
However, these 8 graphs fall into only fourisomorphism classesor configurations, the
latter being the term of choice for sociologists. In general, two graphs (resp. digraphs)
are said to beisomorphicif they contain exactly the same edges (resp. directed edges)
up to a relabelling of the nodes. For graph triads, the isomorphism class is completely
determined by the number of edges present2, which can be 0,1,2 or 3. So, for example,
given nodesA,B,C, the graph containing only the edge betweenA andB is isomorphic
to that containing the single edge betweenB andC, since the latter graph can be got
from the former by relabelling the nodesA,B,C asC,B,A respectively. Of a total of
8 possible graphs, there are 1,3,3 resp. 1 in the isomorphismclasses with 0,1,2 resp. 3
edges. Finally, note that a graph on 3 nodes with all 3 edges present is usually called a
triangle, whereas one where no edges are present is said to beempty. If exactly 2 edges
are present, the triad is calledintransitive(see Section 3 below).

1The terminology of dyads and triads is used more by sociologists than mathematicians.
2This is not true for larger numbers of nodes. Indeed, it is a very difficult problem to determine the

number of isomorphism classes of graphs onn nodes, whenn is large. See [O].
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For digraphs, there are 3 isomorphism classes of dyads, depending on whether nei-
ther, exactly one of, or both the two possible directed edgesare present. It is a more
challenging exercise to verify that there are 16 isomorphism classes of digraph triads.
This fact is well-known to sociologists, however, who have also adopted a conventional
numbering of the 16 possibilities. The complete list of digraph triads can be found on
page 24 of [Ka], along with the conventional numbering. It’simportant to keep in mind
that, given three nodesA,B,C, there are26 = 64 possibilites for a digraph on these
three nodes, since each of 6 possible directed edges can be present or not. However,
the 64 digraphs fall into just 16 isomorphism classes. With respect to the conventional
numbering, it can be checked that the number of digraphs in each class is given by the
sequence of 16 numbers

1, 6, 3, 3, 3, 6, 6, 6, 6, 2, 3, 3, 3, 6, 6, 1. (2.1)

3. TRANSITIVITY AND BALANCE

Transitivity is a basic concept with a precise meaning in mathematics. In SNA, the
notion is captured informally with the motto

M1. “the friend of my friend is my friend”.

To make this motto precise, we may consider a digraph, where the nodes represent
people, and where a directed edge fromx to y means thatx considersy as his/her
friend. Then a formal statement of M1 is the following:

M1. Let x, y, z be three distinct nodes in a digraph. If the directed edgesx → y
andy → z are both present, then so is the directed edgex → z.

This is very close to the formal definition of transitivity inmathematics, the only dif-
ference being that, in the latter, the nodesx, y andz are not assumed to be distinct.
In sociology, the notion of transitivity leads naturally tothat ofbalance. The latter is
captured informally by M1 along with three further, similar-sounding mottos:

M2. “the enemy of my enemy is my friend”
M3. “the enemy of my friend is my enemy”.
M4. “the friend of my enemy is my enemy”.

The corresponding formal statements are then as follows:

M2. Let x, y, z be three distinct nodes in a digraph. If the directed edgesx → y
andy → z are both absent, then the directed edgex → z is present.

M3. Let x, y, z be three distinct nodes in a digraph. If the directed edgex → y is
present and the directed edgey → z is absent, then the directed edgex → z is absent.

M4. Let x, y, z be three distinct nodes in a digraph. If the directed edgex → y is
absent and the directed edgey → z is present, then the directed edgex → z is absent.
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Formally, balance is a property of digraph triads. A digraphtriad is said to be(com-
pletely) balancedif M1-M4 all hold. It is a straightforward but tedious exercise to verify
that a balanced triad must be symmetric, and the resulting graph must then contain ei-
ther 1 or 3 edges. Indeed, the table on the next page shows which of the properties
M1-M4 hold for each of the 16 isomorphism classes of digraph triads (Y indicates that
the property holds, N that it doesn’t). Here is an example to assist the reader.

FIGURE 1. Triad types 7 and 8, reproduced from page 24 of [Ka].

Consider triad type 7, which is the graph on the left of Figure 1. Call the three vertices
A,B,C, starting from the bottom left corner and reading counter-clockwise. Hence this
triad contains the three directed edgesA → B, B → A andC → B. The ordered triple
(C,B,A) fails to satisfy M1, sinceC → B andB → A are both present, butC → A is
absent. The triple(A,C,B) fails to satisfy M4, sinceA → C is absent whereasC → B
andA → B are both present. The triple(C,A,B) also fails to satisfy M4.

For the sociologist, a potential use of mottos M1-M4 is to make predictions about un-
seen parts of a social network. For example, suppose we have three peopleA,B andC,
and have only been able to observe directly the interactionsbetween two pairs,A and
B, respectivelyB andC. Then based on our observations and the mottos M1-M4, we
could try to make predictions about the unobserved relationship betweenA andC. The
fact that a balanced triad must be symmetric then assumes crucial importance, since it
implies that, as a matter of pure logic, the mottos M1-M4 cannot make unambiguous
predictions about unobserved social relationships, unless the observed relationships are
symmetric3.

To drive this crucial point home, we consider an example. Suppose we have a friend-
ship network and three entitiesA,B,C. Suppose, for example, thatA andB have been

3Sociologists use the wordmutualin this context.
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Triad type M1 M2 M3 M4
1 Y N Y Y
2 Y N Y Y
3 Y Y Y Y
4 Y N N Y
5 Y N Y N
6 N N Y Y
7 N Y Y N
8 N Y N Y
9 Y N N N
10 N Y Y Y
11 N Y N N
12 Y Y Y N
13 Y Y N Y
14 N Y N N
15 N Y N N
16 Y Y Y Y

observed to like one another, whereasB likes C, but C dislikesB (see triad type 8,
to the right in Figure 1). Hence, at least one pairwise relationship is not symmetric.
However, we have full information about two pairs, so if the mottos M1-M4 are to be
of any use in this situation, then it should be possible to make unambigous predictions
about the relationships in the third pair. So we ask the question, should one expectA to
like C or not, i.e.: should the directed edgeA → C be present in the network ? Well,
on the one hand,A likes B andB likes C, so M1 suggests that, yes,A should likeC.
But supposeA does in fact likeC. ThenA likes C, butC dislikesB, so M3 suggests
thatA should also dislikeB. But A likesB, a contradiction.

In sociology, the first mention of the idea of balance is generally attributed to Hei-
der. A direct citation from Heider’s work appears on page 23 of [Ka]:

“ In the case of three entities, a balanced state exists if all three relations are positive
in all respects, or if two are negative and one is positive (Heider 1946, 110)”.

In Heider’s formulation it is clear that “balance” is to be considered as a property of
the collection of pairwise relationships between three entities, in which each pairwise
relationship is already mutual (positive in all respects ornegative in all respects)4. The
meat of his definition clearly concerns the set of “all three such (pairwise mutual) re-
lations”, not the pairwise relations themselves in isolation. Hence, though Heider did
not use the language of (di)graphs, it seems clear that he understood that balance could
only be a useful notion if one assumed symmetry.

4This is also clear in the treatments of balance in some other textbooks on SNA, for example the book
of Scott [S].
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Now let G be a graph on at least 3 nodes. We say thatG is (completely) balanced
if every triad inG is balanced. It is easy to see that such a graph must either be aclique
(all possible edges are present) or a disjoint union of two cliques5. As real-world (sym-
metric) social networks are rarely this simple, the notion of balance is not very useful
in SNA if taken literally. Indeed, its basic weakness lies inthe mottos M2-M4 which,
in their informal expression, carry the assumption that theabsence of a friendship im-
plies its opposite, an emnity, whereas in reality it may simply imply something like
indifference. Hence, for example, a social network whose graph is a disjoint union of 3
or more cliques will not be balanced, since it will contain lots of empty triads, even if
the members of different cliques merely have nothing in common and are not mutually
antagonistic. Notice, however, that such a graph will stillhave no intransitive triads,
which supports the intuition that transitivity, as expressed by M1, is a much more co-
herent and fundamental idea than balance, as expressed by M1-M4. If a social network
is observed to possess a large number of intransitive triads, then it indicates that some-
thing interesting is going on. This is the basic idea that will occupy us in the remaining
sections of this paper.

A weaker, but potentially more useful, “balance hypothesis” would assert that, in a real-
life, symmetric social network, balanced triads should appear with greater frequency
than in a graph of the same edge density where the edges are placed at random. Recall
that, for a positive integern and a real numberp between zero and one, the Erdős-Renyi
random graphG(n, p) is the random graph onn nodes in which each of then(n− 1)/2
possible edges appears with probabilityp, independently of all other edges. We can
now state the

GENERAL BALANCE HYPOTHESIS (GBH): Consider a social network in which all
pairwise relationships are mutual, and hence the network can be represented as an
undirected graphG. Suppose this graph hasn nodes ande edges, thus edge density
p = 2e

n(n−1)
. Let i be either 1 or 3. Then the number of triads inG in which exactly

i edges are present should exceed the expected number of such configurations in the
Erdős-Renyi random graphG(n, p). Similarly, if i is either 0 or 2, then the number of
triads inG in which exactlyi edges are present should be less than the expected number
of such configurations inG(n, p).

5Here is a complete proof of this fact, for the benefit of non-mathematical readers. Firstly,G can
have at most two connected components, because any triad whose three vertices all came from distinct
components would be empty and hence unbalanced. Now letx, y be two vertices in the same connected
component. We need to show that the edge{x, y} is present inG. Since these vertices lie in the same
component, there must besomepath between them, say

v0 := x − v1 − v2 − · · · − vk =: y.

First consider the triad consisting ofx, v1, v2. Two of three edges are already present, namely{x, v1}
and{v1, v2}. Since all triads are balanced, the edge{x, v2} must also be present. Next consider the
triad formed byx, v2, v3. By the previous step, we already know that the two edges{x, v2} and{v2, v3}
are present. Balance thus requires that{x, v3} also be present. We can keep iterating this argument and
deduce thatx is joined by an edge to every vertexvi along the path above, and hence finally toy.
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If a network fails the balance hypothesis, in particular if intransitive triads are over-
represented compared toG(n, p), then it is an indication that something interesting is
going on. For eachi ∈ {0, 1, 2, 3}, let Ei = Ei(n, p) denote the expected number of
i-edge triads inG(n, p), andei = Ei/C(n, 3) be the expected proportion of such triads.
HereC(n, 3) = n(n−1)(n−2)

6
is the total number of triads in a graph onn nodes. We

record the fact that

[e0, e1, e2, e3] =
[

(1 − p)3, 3p(1 − p)2, 3p2(1 − p), p3
]

. (3.1)

The usefulness of GBH as a reference point is indicated by thefact that it is satis-
fied by the graphs considered above, which are disjoint unions of cliques. To prove
this in full generality is a rather uninspiring calculus exercise. For conceptual pur-
poses, imagine the numberk of cliques as being fixed, suppose the cliques have equal
sizen and let the latter number tend to infinity. For largen, the edge density in the
graph will be approximately1/k. Hence, by (3.1), the expected proportions ofi-edge
triads in the relevant Erd̋os-Renyi graph will be approximately given by the vector
1
k3 [(k − 1)3, 3(k − 1)2, 3(k − 1), 1]. By constrast, in the graph itself, one may check
that the corresponding proportions are approximately1

k3 [k(k − 1)(k − 2), 3k(k − 1), 0, k].
Hence, 1- and 3-edge triads are overrepresented, whereas 0-and 2-edge triads are un-
derrepresented, in accordance with GBH. Of course, it is thecomplete absence of in-
transitive triads which is the most striking feature.

It is logically possible to extend the GBH to digraphs, in which case the assertion would
be that balanced triads should be overrepresented comparedto a random digraph of the
same edge density. However, such an extension of the hypothesis does not seem to add
anything conceptually. For, as we showed earlier, a balanced triad in a digraph must be
symmetric. If an experimenter, in constructing his network, decides to make it directed,
then he probably has a good reason for expecting there to be a good deal of asymme-
try. If it turns out that there is a bias towards symmetry, at the level of dyads, then this
bias will extend to any larger, symmetric configurations. Any additional bias towards
balanced configurations should then be interpreted, in the first place, with respect to
the GBH for undirected graphs. In other words, a balance hypothesis for digraphs is
in essence nothing more than the corresponding hypothesis for undirected graphs, to-
gether with a “symmetry hypothesis”, which would assert that symmetric dyads should
be overrepresented, in comparison to randomly constructeddigraphs. See Section 6 for
some further discussion of the relevance of the latter.

On the other hand, there may still be good reason to expect that transitivity, as ex-
pressed by M1, will usually be satisfied in directed networksin general. Property M1
seems reasonable in the absence of any assumptions about symmetry. Hence, for di-
graphs, it still seems useful to formulate atransitivity hypothesis. Note, though, that
transitivity is a property, not of induced subgraphs (triads) but of ordered triples of
nodes. We can now state the

GENERAL TRANSITIVITY HYPOTHESIS(GTH): Consider a social network in which
pairwise relationships are not necessarily mutual, and hence the network can be repre-
sented as a directed graphG. Suppose this graph hasn nodes ande directed edges, thus
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directed edge densityp = e
n(n−1)

. Then the number of ordered triples(x, y, z) of dis-
tinct nodes inG which don’t satisfy M1 should be less than the expected number of such
triples in the Erd̋os-Renyi random digraph~G(n, p). Note that, in the latter, each of the
n(n−1) possible directed edges is present, independently of the others, with probability
p. The expected number of triples not satisfying M1 is thusn(n − 1)(n − 2)p2(1 − p),
since there aren(n − 1)(n − 2) possible triples and for a triple(x, y, z) to fail M1, the
directed edgesx → y andy → z must both be present, whilex → z is absent. The first
two events each occur with probabilityp and the third with probability1 − p.

Let us now turn to the flawed treatment of these same concepts in Chapter 2 of [Ka].
The problem begins with the author’s apparent lack of understanding of transitivity. His
first use of this term is on page 15, with the following sentence:

“ If the relationship is transitive, it means that if 1 loves 2,then 2 also loves 3”.

Formally, he is saying the following:

M5. If x, y, z are three distinct nodes in a digraph and if the directed edgex → y
is present, then so is the directed edgey → z.

This is, obviously, not what transitivity means. In fact, the motto above is essentially
meaningless, as the hypothesis concerns two entities, 1 and2, whereas the conclusion
concerns a third entity 3. There is no a priori relation between 3 and the others, he/she
could be anybody. More formally, it is easy to prove that a digraph satisfying M5 and
containing at least four nodes6 must either becomplete, i.e.: all pairwise directed edges
are present, orempty, i.e.: all edges are absent7 . The motto is therefore totally uninter-
esting.

Further down on page 15, the term “transitive” is used again,but now with the correct
meaning. It then seems to be used properly for a while, until the end of Chapter 2, when
on page 26 the original mistake is repeated in the following sentence:

“Relationships are transitive when what holds for A to B, also holds for B to C”.

The fact that the same incorrect statement is made in two different places is already
quite worrying. This uncertainty regarding transitivity may be relevant to the extremely
confusing analysis of “balanced triads” on page 25. Partly the confusion arises from
the author’s failure to distinguish adequately between thenotion of transitivity and the
more restrictive notion of balance. More fundamentally, hedoesn’t seem to understand
that a balanced triad must be symmetric, and hence that the notion of balance is only
really useful for undirected graphs, in other words for the analysis of social networks in

6If, in stating M5, we did not requirex, y andz to be distinct, then we would have the same conclusion
already for two nodes or more.

7Formally, if n ≥ 4 then, modulo loops, there are only two possible relations onan n-element set
satisfying M5, namely the set of relations must either be empty or full. In contrast, for largen, it is
known that there are close to2n2/4 transitive relations on ann-element, that is, relations satisfying the
slightly stronger form of M1 where we don’t requirex, y, z to be distinct. See [Kl].
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which there is ana priori reason to represent relationships as being mutual. The high
point of the confusion is when he gives triad types 7 and 8 (seeFigure 1) as examples
that “conform to this hypothesis”. It’s not entirely clear if “this” refers to a transitivity
or a balance hypothesis. But even if he means the former then his assertion makes no
sense. If he means that these triads satisfy M1, then he is simply wrong, as the table on
page 6 illustrates. If he means that, as digraphs, they satisfy GTH above, then he is still
wrong. Each of these digraphs contains 3 nodes and 3 directededges, and 1 ordered
triple of nodes failing M1. We compare with~G(n, p) wheren = 3 andp = 3/6 = 1/2.
The expected number of intransitive triples in the latter isthus3 · 2 · 1 ·

(

1
2

)3
= 3

4
, which

is less than 1, so both digraphs fail GTH.
In my email correspondence with the author concerning Zachary’s graph, it became

clear that he fundamentally misunderstood the concept of balance. It is to these issues
we turn in the next section.

4. THE KARATE CLUB NETWORK OFZACHARY

A classical study in the history of SNA was performed by WayneZachary, who ob-
served the social interactions between members of a karate club over a period of ap-
proximately two years, from 1970 to 1972. He finally presented his results in 1977 [Z]
in the form of a graph (see Figure 4 at the end of the paper) showing the “friendship”
connections between 34 club members near the end of his observations and shortly
before a formal split in the club. In other words, Zachary’s graph had 34 nodes and
each edge represented a pair of club members who were “friends”. Crucially, Zachary
assumed friendships were mutual, so his graph is undirected. It is also unweighted,
though he also considered a weighted version when considering information flow in the
network8. The unweighted graph is reproduced on page 28 of [Ka] and theauthor then
proceeds to perform a triad census. Recall that, in the usualmathematical terminology,
a triad means an induced subgraph on three nodes. Hence, in anundirected graph, there
are four possible types (i.e.: isomorphism classes) of triads, depending on whether the
induced subgraph has 0,1,2 resp. 3 edges.

On page 29, two main assertions are made, which we cite verbatim:

ASSERTION 1: “There are 1,575 symmetric dyads in the network (triad type 3-102
in chapter 2, figure 2) ... The number of dyads was much greaterthan would have been
found by chance”.

ASSERTION2: “There are 45 (symmetric) triads in the entire network (triad type 16-
300 in chapter 2, figure 2), also far more than expected by chance”.

Unwinding the quantitative statements into standard mathematical terminology, the au-
thor is saying that the graph contains 1,575 triads in which one of the three edges is

8Zachary ignored members of the karate club who did not interact socially at all. The club apparently
had close to 60 regular members, hence a full representationof the social connections would have in-
cluded up to 26 isolated nodes. One can make a strong case, I think, why it would have been better to
include these nodes in the network. I will come back to this point in Section 6.
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present, and 45 induced triangles. My own computer-aided check confirmed these num-
bers. However I also realised that the second part of the firstassertion, that 1-edge triads
are overrepresented, is false, indeed very false. There are78 edges in this graph, out
of a possible total ofC(34, 2) = 561. Hence, the appropriate comparison is with the
Erdős-Renyi random graphG(n, p), wheren = 34 andp = 78/561. By (3.1), the
expected number of one-edge triads in the latter is

E1 = C(n, 3) × 3p(1 − p)2 =
n(n − 1)(n − 2)p(1 − p)2

2
≈ 1850.18... (4.1)

That the graph contains nearly 300 fewer one-edge triads seems significant - the prob-
ability of G(n, p) containing so few such configurations is extremely small. Hence,
Assertion 1 is false and the corrected version is as follows:

ASSERTION 1′: The number of one-edge triads in the karate club graph of Zachary
is much less than would have been found by chance.

The expected number of induced triangles inG(n, p) is

E3 = C(n, 3) × p3 ≈ 16.08... (4.2)

Hence Assertion 2 above is valid. After email consultation with the author it gradually
became clear where his error with Assertion 1 lay. He had computed expected values,
not for G(n, p), but instead for the directed version~G(n, p). The configurations with
which he was comparing the observed numbers of triads in Assertions 1 and 2 were,
respectively,

- those in which one pair of directed edges was present, and all four other possible
directed edges absent (triad type 3),

- those in which all six directed edges were present (triad type 16).
Let E1 and E3 respectively denote the expected numbers of these configurations in
~G(n, p). Then

E1 = C(n, 3) × 3p2(1 − p)4 ≈ 190.68... (4.3)

and
E3 = C(n, 3) × p6 ≈ 0.04... (4.4)

These are consistent with the numbers the author showed me via email (the numbers do
not appear in the book), which he had obtained using a well-known software package
called Pajek, in other words he did not use the exact formulasin (4.3) and (4.4). So it
is clear where Assertion 1 came from. The conceptual mistakehere is severe: it simply
makes no sense to compare an undirected graph with random directed graphs. As the
equations above show, the resulting quantitative errors are enormous, and result in a
qualitatively wrong conclusion, namely that the number of 1-edge triads is much larger
than expected by chance, whereas in fact the complete opposite is true.

It is clear that the author’s reason for highlighting Assertions 1 and 2 was to illus-
trate that the graph was well in accordance with the balance hypothesis discussed in
the previous section. Assertion 1′ indicates that, on the contrary, the evidence for this
hypothesis is mixed: 3-edge triads are indeed overrepresented, but 1-edge triads are
significantly underrepresented. To get a more complete picture, I also checked with
a computer that the numbers of 0-edge and 2-edge triads in Zachary’s graph are 3971



12 PETER HEGARTY

and 393 respectively. The corresponding expected numbers,E0 andE2, in G(n, p) are
given by

E0 = C(n, 3) × (1 − p)3 ≈ 3818.95... (4.5)

E2 = C(n, 3) × 3p2(1 − p) ≈ 298.79. (4.6)

Hence, both these types of triads are also overrepresented in Zachary’s graph, contrary
to what the balance hypothesis would predict. In particular, the overrepresentation of
intransitive triads seems significant. Overall then, it is clear that Zachary’s graph is
highly “unbalanced”.

After some email correspondence, the author admitted to me his conceptual and
quantitative errors. However, he responded to my suggestion that the unbalanced nature
of Zachary’s graph was an interesting phenomenon worthy of separate attention with
the following message9:

“You are absolutely correct in one sense and wrong on balance inanother sense.
The graph is undirected and that is the only depiction of the Karate club observations
that make any sense. Hence the entire discussion of a triad census and balance theory
in this context is incorrect since balance theory and the entire body of social network
theory that follows from it is only concerned with DIRECTED graphs. Heider’s origi-
nal formulation was a directed graph (he did not have those concepts then) discussion.
Balance theory and its entire literature therefore does notapply to undirected graphs.”

I find these statements rather shocking since, as the previous section makes clear, they
demonstrate a complete misunderstanding of the underlyingtheoretical concept of bal-
ance. I will leave them to the reader to ponder, and instead turn to an investigation of
the unbalanced nature of Zachary’s graph.

5. A FAMILY OF UNBALANCED GRAPHS

In this section, I will present a family of (random) graphs which exhibit the same
pattern of imbalances in their triad counts as does Zachary’s graph. In other words, in
these graphs there are fewer 1-edge triads than in Erdős-Renyi graphs of the same edge
density, whereas all other triad types are overrepresented10. This family will not exhibit
all of the important structural features of Zachary’s graphbut, I shall contend, is still
rich enough to satisfactorily explain the unbalanced triadcensus in the latter. Choosing a
family with a simpler structure will allow me to give rigorous proofs without becoming
too technical. We must also make an obvious caveat: Zachary’s network is just one

9I realise that including details of email correspondence between two people puts the reader in the
impossible position of being unable to directly verify the accuracy of what I write. I could have chosen not
to mention my correspondence with the author at all, but thenI would not have been able to acknowledge
that he did at least admit his errors in the analysis of Zachary’s graph. Having made this decision, I
thought it best to give direct quotes, rather than my own interpretation of them.

10Since we shall be comparing two infinite families of random graphs, all statements like this one
should, if we are being completely precise, be preceeded by words like “almost surely as the number
of nodes goes to infinity ...”. To avoid getting too bogged down in mathematical terminology, I will
avoid uttering these words explicitly, and leave it to mathematically inclined readers to fill in the gaps for
themselves.
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specific graph, and here we shall be considering an infinite family of random graphs.
The reader should desist from taking any quantitive statements made here and “plugging
in the numbers” to Zachary’s graph. Instead, the graphs considered here are meant as
idealisations, and are intended to give a conceptual understanding of why Zachary’s
graph is unbalanced in the way it is.

For the remainder of this section, all graphs are assumed to be undirected. We begin
with some standard mathematical terminology:

Definition 5.1. Let G be a graph onn nodes.G is called astar graphif it is a tree
with n − 1 leaves11.

FIGURE 2. A star graph with 7 leaves.

Let G be a star graph with nodesv1, ..., vn and supposev2, ..., vn are the leaves. Then
v1 is joined to every other node by an edge. We will abuse terminology and refer to
the nodev1 as thestar in the tree. Note that, in a star graph, there are no triads at all
having either 1 or 3 edges: the GBH could not fail more miserably. Suppose, however,
that we now introduce what I think of asrandom noise. Precisely, letδ > 0 be some
small positive constant and, for each pair of leaves, insertan edge between them with
probabilityδ. We now have on our hands a random graphGδ, which I refer to as anoisy
star graph with noise parameterδ. The family of graphs which I will now consider are
disjoint unions of such random graphs. Here is the precise definition:

Definition 5.2. Let k, n be positive integers andδ ∈ (0, 1) a (small) positive constant.
For eachi = 1, ..., k, let Gi be a noisy star graph onn nodes with noise parameterδ.
Let G = Gk,n,δ be the disjoint union of theGi, i.e.: the random graph whose connected
components are theGi. We shall refer toG as a(k, n, δ)-noisy constellation.

The following standard notation will be used in the remainder of this section: if

11In graph theory, atree is a connected graph with no cycles. Aleaf in a tree is a node of degree 1.
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FIGURE 3. A noisy 4-star constellation. Each of the noisy edges creates
a triangle.

f, g : N → R are any two functions, we can write eitherf ≪ g or f = o(g) to denote
that limn→∞ f(n)/g(n) = 0.

In what follows, we are interested in values ofk, n, δ where

k is fixed, n → ∞, δ = δ(n) = on(1), (5.1)

and all asymptotic estimates are to be interpreted with respect to these conditions.
The expected number of edges in a(k, n, δ)-noisy constellation is given by

ε = εk,n,δ = k [n − 1 + δ · C(n − 1, 2)] , (5.2)

and the expected edge density is

p = pk,n,δ =
εk,n,δ

C(kn, 2)
=

δ

k
+

2

kn
(1 + on(1)). (5.3)

We wish to compareGk,n,δ with the Erd̋os-Renyi random graphG(kn, pk,n,δ). For each
i ∈ {0, 1, 2, 3}, let Ei,a denote the expected number ofi-edge triads inGk,n,δ, and let
Ei,b denote the coresponding quantity forG(kn, pk,n,δ). All of these quantities of course
depend onk, n and δ, but we suppress this in our notation, which otherwise would
become unmanageable. First consideri = 3. Standard calculations yield

E3,a = k
[

δ3 · C(n − 1, 3) + δ · C(n − 1, 2)
]

, (5.4)

E3,b = p3 · C(kn, 3). (5.5)

If δ = o(n−1/2) then the second term in the expression forE3,a dominates the first. By
(5.3) it will also dominate the expression forE3,b providedn−2 = o(δ). So henceforth
we shall assume that

n−2 ≪ δ ≪ n−1/2. (5.6)
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In this range we will have

E3,a ∼
k

2
n2δ, E3,b ≪ E3,a. (5.7)

Hence, 3-edge triads are likely to behighly overrepresented inGk,n,δ as compared to
G(kn, pk,n,δ). Next consideri = 2. Similar calculations yield

E2,a = k
[

(1 − δ) · C(n − 1, 2) + 3δ2(1 − δ) · C(n − 1, 3)
]

, (5.8)

E2,b = 3p2(1 − p) · C(kn, 3). (5.9)

Hence in the range (5.6) we will have

E2,a ∼
k

2
n2, E2,b ≪ E2,a. (5.10)

Thus there will likely also be a large overrepresentation of2-edge triads. Next consider
i = 1. We have

E1,a = k · C(n − 1, 3) · 3δ(1 − δ)2 + k(k − 1) [n(n − 1) + δ · n · C(n − 1, 2)] ,
(5.11)

E1,b = C(kn, 3) · 3p(1 − p)2.
(5.12)

Here one has to work a little bit, but using (5.3) and (5.6) onecan check that

E1,b − E1,a ∼ kn2. (5.13)

Hence, 1-edge triads are likely to be underrepresented inGk,n,δ, though the difference
from G(kn, pk,n,δ) will become less significant asδ increases beyondn−1. More pre-
cisely,

wheneverδ ≪ n−1, E1,a ∼

{

k(k − 1)n2, for k ≥ 2,
1
2
n3δ, for k = 1,

(5.14)

whereas
n2 ≪ min{E1,a, E1,b}, whenevern−1 ≪ δ. (5.15)

The situation for 0-edge triads can now be deduced from our previous calculations.
Since

3
∑

i=0

Ei,a =
3

∑

i=0

Ei,b = C(kn, 3), (5.16)

it follows from (5.7), (5.10) and (5.13) that

E0,a − E0,b ∼
k

2
n2. (5.17)

Hence 0-edge triads are also overrepresented inGk,n,δ, though not significantly since

E0,a ∼ E0,b ∼
n3

6
, as soon asδ = o(1). (5.18)

We can summarise our findings in a theorem, which we shall deliberately state some-
what informally:

Theorem 5.3. Let Gk,n,δ be a noisy constellation, where the parametersk, n, δ sat-
isfy (5.1) and (5.6). Letpk,n,δ be as in (5.3). Then fori ∈ {0, 2, 3}, the number ofi-edge
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triads in Gk,n,δ is very likely to be significantly higher than in an Erdős-Reny random
graphG(kn, pk,n,δ). For 1-edge triads, the opposite is true, though their underrepre-
sentation will be less significant oncen−1 ≪ δ. More precise quantitative statements
are recorded in (5.7), (5.10), (5.13) and (5.17) above.

Note also that (5.7), (5.10), (5.14)-(5.15) and (5.18) imply that, for k ≥ 2, the ex-
pected number ofi-edge triads in the noisy constellations is a decreasing function of i
in the range (5.6). Fork = 1, the same is true oncen−1 ≪ δ.

In the next section we shall apply these findings to the analysis of Zachary’s graph.

6. APPLICATION TO ZACHARY ’ S GRAPH

The graphs considered in the previous section are models forsocial networks with
the following characteristics:

(i) Pairwise relationships are a priori mutual, e.g.: friendships, so that we have an undi-
rected graph.
(ii) The network is split into a small number of groups of approximately equal size.
There is more or less no interaction between different groups, the reason for which may
depend on the particular network - in particular, the groupsmay be mutually antagonis-
tic or just indifferent to one another.
(iii) Each group is dominated by one individual, who is the “star” of his respective
group. This person maintains a relationship with every other member of his group.
(iv) Relationships between members of the same group, otherthan the star, are gener-
ally weak. Some pairs of individuals do manage to form a relationship, more or less at
random. However, it is the relationships of the groups members to the star which are
most important.

In Section 5 we demonstrated rigorously that, for a fixed number of groups of equal size,
as the size of the groups increases and the frequency of interactions between non-stars
is not too large (see (5.6)), the triad census of such a network will reveal a significant
overrepresentation of 2- and 3-edge triads, compared to an Erdős-Renyi random graph
with the same edge density. On the other hand, 1-edge triads will be underrepresented,
by an amount which becomes less significant as the density of non-star interactions
increases beyond an intermediate threshold (see (5.15)). 0-edge triads will be slightly
overrepresented. The absolute numbers ofi-edge triads will be decreasing asi goes
from zero up to three (again, this statement needs to be qualified if there is only one star
- see the last paragraph of Section 5).

We saw in Section 4 that the triad census for Zachary’s graph revealed the same pat-
terns. And now we can see why, for the model in Section 5, withk = 2, is clearly
a reasonable idealisation of Zachary’s graph. Shortly after he constructed his graph,
showing the network of friendships between 34 club members,the club formally split
into two groups of 17 members each. Each of these two groups had a star, the instructor
Mr. Hi (node 1 in the network) and the club president John A. (node 34), respectively.
Indeed, before the split Mr. Hi was friendly with 16 members,and all but one of these
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joined his group afterwards. John A. was friendly with 17 people beforehand and 15 of
these joined his group. The remaining three people in the network (nodes 17, 25 and
26) had a relationship with neither star beforehand. Nobodyjoined a group unless they
had a relationship with its star beforehand (in other words,all crossovers were friendly
with both stars beforehand).

Still, Zachary’s network is a bit more subtle than a 2-star constellation. The main
reason for this is that there were three other “minor stars” who maintained a lot of
connections before the split. Node 2 had 9 friends, of whom 8 ended up in Mr. Hi’s
group. Node 33 had 11 friends, of whom 10 ended up in John A’s group. One gets the
impression that nodes 2 and 33 acted as “lieutenants” for their respective stars in the
ideological conflict preceeding the split. Node 3, on the other hand, seems to have been
the nearest the network had to a “mediator”. He had 10 friends, of whom 6 ended up in
Mr. Hi’s group and 4 in John A’s.

These five nodes (1,2,3,33 and 34) completely dominated the network. When one
removes all the edges involving one of these five, then the remaining network on 29
nodes contains only 19 edges, giving an edge density of19/C(29, 2) ≈ 0.047, com-
pared to an edge density of78/561 ≈ 0.139 for the network as a whole. Of these 19
edges, 9 were between members who both ended up in Mr. Hi’s group and a further 9
were between members who both ended up in John A’s group. A solitary edge,{9, 31},
connected members who ended up on different sides and neither of whom were stars or
minor stars before the split.

Hence, while the interactions in the karate club were certainly a bit more nuanced than
in the toy model networks of Section 5, I think it is very reasonable to assert that the
latter capture the essence of what was going on in the club just before the split. What
seems particularly significant here is the weakness of the ties between “ordinary” club
members (i.e.: non-stars and non-minor stars). Interactions between ordinary members
who ended up in different factions were almost non-existent(1 edge out of a possible
14×13 = 182), but even those within each faction were weak (9 edges out ofa possible
C(14, 2) = 91 in Mr. Hi’s faction, and 9 out of a possibleC(15, 2) = 105 in John A’s).
In this situation, the fact that there were approximately 26club members who “minded
their own business” and were not even included in the networkanalysis assumes greater
significance. Had these been included, then the density of friendships between ordinary
members would have been a pitiful19/C(55, 2) ≈ 0.013. It is interesting, therefore,
that on page 454 of [Z], Zachary writes the following:

“Political crisis, then, also had the effect of strengthening the friendship bonds within
these ideological groups, and weakening the bonds between them, by the pattern of se-
lective reinforcement.”

It is certainly very plausible that the political conflict strengthened the ties of ordi-
nary club members to the various stars and minor stars, and may also have altered the
strengths of pre-existing friendships depending on the ideological adherence of the peo-
ple involved. Such things would be reflected more clearly in aweighted version of the
graph, something which Zachary indeed presented, but only at the same fixed point
in time so that it is not possible to see how the weighted network evolved over time.
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However, I think the data hint at a more complex process. Consideration of the overall
weakness of ties among ordinary club members, especially ifthe 26 or so “neutral”
members are included, suggests the following two possible scenarios:

(i) in the absence of the ideological battle which served to focus members’ attentions,
the underlying network of friendships would have been very weak. Most members were
uninterested in socialising with others outside of karate lessons - they generally did not
regard a common interest in karate as a sufficient basis for wider friendships.

(ii) the ideological battle actually served to stunt the development of friendships be-
tween members who were not at the centre of the conflict, and who began to see the
club, not so much as a place to make friends, but as an ideological battleground where
loyalty to one side or the other was the main force driving interactions with other mem-
bers.
Whatever the truth of the matter, it seems reasonable to consider the network drawn by
Zachary, partly as a friendship network and partly as a network of loyalties in a split
hierarchy.

This brings us to more general sociological considerationson the notions of transitivity
and balance. Status differences seem to be a basic mechanismwhich mitigate against
balance in configurations consisting of three entities or more. To see this, we first step
back and consider two people,A andB say, interacting in isolation. SupposeA likes
B, butB, for whatever reason, is not interested in making friends with A. In terms of
graphs, one imagines having a directed edge fromA to B, but no directed edge fromB
to A. Intuitively, it seems clear that over time one of the following two things is likely
to happen: (a)A will succeed in winning overB as his friend (b)A will fail in getting
B to reciprocate his interest, and gradually lose interest inhim, moving on to make
other friends instead. In case (a), we will have two directededges, in case (b) none. In
case (a), we can replace the two directed edges by a single undirected edge. Hence, the
following general claim seems reasonable in many situations12 :

“Pairwise relationships, considered in isolation, tend overtime toward being mu-
tual/symmetric.”

The friendship between two people may be perfectly mutual aslong as they havesome-
thing in common, even if they are different characters in many other respects. Suppose,
however, that a third person enters the picture. Then the differences between the first
two will affect the way they interact with the newcomer, which in turn will upset the
mutuality of their own relationship. Consider the followingexample: we have three
people whom we callA,B andC. A plays football and also plays the piano.B plays
football but has no musical talent, whereasC plays the piano but has no athletic ability.
If A andB interact in isolation, then their common interest in football should lead to a
“perfectly mutual” friendship, as they can simply ignore the other differences between

12Of course this claim will be false if the very basis of the relationship involves an obvious asymmetry,
for example employer-employee, leader-follower and so on.What we’re interested in here is situations
where the relationship isa priori symmetric, for example if it is based on some kind of homophily, so
that a researcher’s default hypothesis is that he is dealingwith a network where the edges should be
undirected.
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them. The same applies toA andC. But if all three interact together, then tension can
arise from everyone’s awareness ofA’s higher “status”. BothB andC are dependent
onA for friendship, as they have no basis for befriending one another. Hence, “power”
becomes a factor in the relationships betweenA and the others, which should be taken
into account in any complete analysis of the social relations in the configuration as a
whole. Indeed, over time, the relationship betweenB andC may move from indiffer-
ence to antagonism, as they compete forA’s attention. In the terminology of Section
3, the triadABC is intransitive, since two of three edges are present. What I think is
most interesting, from a sociological/psychological viewpoint, is that tensions between
A,B andC may not be evident if one just observes pairwise interactions in isolation.
People try to “keep up appearances” and maintain what look like harmonious relations
with their friends, while they simply try to ignore people they may dislike. It is only
by observing the intransitivity of the triad as a whole, especially if it is part of a larger
network in which such configurations are common, that the observer might infer a lack
of genuine mutuality at the level of pairwise relationships.

Note that, in the above example, the higher status ofA was a natural result of his
wider range of talents. However, the same dynamic could arise if A’s higher status
was imposed from outside, i.e: if he came to occupy a higher place in a wider social
hierarchy. Suppose, for example, thatA,B andC are workmates, and that one dayA
receives a promotion which places him in a managerial role aboveB andC. Clearly,
this has the potential to fray all three pairwise relationships. However, whileB andC
have the option, if worst comes to worst, of not interacting at all, both must maintain
some kind of relationship toA, he being their boss. In this case, we’d still end up
with an intransitive triadABC, with two of three edges present, but it would no longer
be appropriate to consider the edges as representing genuinely mutual friendships, but
rather as necessary interactions in an externally imposed hierarchy.

The above discussion considered intransitive triads only,but we can extend it to un-
derstand how empty triads might come to be overrepresented in a social network. If the
network is dominated a small number of high status individuals, then the dynamics de-
scribed above could stunt the development of friendships between “ordinary” network
members, as they are drawn to, or compete for the attention of, the various stars. Hence,
a lot of empty triads involving ordinary members could arise.

The relevance of these considerations to the karate club seems evident. On the one
hand, recall that Zachary observed the interactions of the club members over a long
time, more than 2 years. As we argued above, time seems to be ofthe essence in pro-
moting mutuality in pairwise relationships, taken in isolation. This supports the idea
that Zachary was justified in assuming that friendships in the club were mutual and,
hence, in making his graph undirected. Secondly, because the club is small, in a 2-year
period every pair of members should have actually had the chance to meet and figure
out whether they liked each other or not, so the absence of anyparticular edge in the
friendship graph cannot reasonably be attributed to the twoparties simply never having
had a chance to interact. Thirdly, and most importantly, Zachary’s decision to repre-
sent friendships as mutual is based on his actual observations. We have no reason to
doubt that this decision was reasonable, based on his observations of how pairs in fact
interacted.
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On the other hand, the club was racked by ideological conflictduring most of the
period of observation. The two main figures occupied the central positions in the of-
ficial club hierarchy, they being the instructor and the president respectively. The data
clearly suggest that, over time, it was the relationships ofthe club members to these two
stars and their respective lieutenants that drove the interactions in the club as a whole.
Friendships between “ordinary” club members were very rareoverall.

In particular, it is the overrepresentation of intransitive triads (393 as against an ex-
pected value inG(n, p) of 299) that the above analysis picks out as the most salient
feature of the triad census in Zachary’s network. This strongly hints at widespread
tensions, even between members who were ostensibly friends, something which may
not have been easy for Zachary to observe directly, as peopletried to “keep up appear-
ances”. Kadushin completely misses this point in his analysis, instead concentrating on
the census of 1- and 3-edge triads, which he still manages to analyse incorrectly because
of a serious conceptual error.

7. BALANCE REVISITED

In previous sections we have laboured to point out that the conventional notion of
balance, as expressed by M1-M4 in Section 3, is only really useful to the social network
analyst in situations where pairwise relationships area priori mutual, so that his default
hypothesis is to represent the network as an undirected, andunweighted, graph. To see
this clearly, however, takes some mental effort, and the table on page 6 summarises the
results of that effort.

Suppose now, however, that we consider digraphs where loopsare allowed, i.e.: di-
rected edges of the formx → x from a node to itself. Mathematicians call such an
object aloop digraph. Then M1-M4, in their formal expression, are still meaningful
if we drop the restriction that the nodesx, y, z must be distinct. Let M1′-M4′ denote
the corresponding mottos, with this restriction removed. For a mathematician, this is a
natural step to take: let’s see what it gives !

First consider a triple(x, x, x), i.e.: the same node is repeated three times. Then
M2′ implies that the edgex → x should be present. Hence, if a loop digraph is to
satisfy M2′, a loop must be present at every node. This property is calledreflexivity.
Next consider a triple(x, y, x), wherex 6= y. We already know, by M2′, thatx → x
is present. Supposex → y is present. Then M3′ suggests thaty → x should also be
present. Conversely, if we knowy → x is present, then M4′ suggestsx → y should
be so. In other words, if a loop digraph is to satisfy M2′-M4′, then it must also be
symmetric.

To summarise, if we consider loop digraphs as the basic modelfor our social net-
works, and formulate the notion ofbalanceby M1′-M4′ instead, then balance would
automatically incorporate both reflexivity and symmetry13. It’s only a slight formal
change in the definition, but it might help to avoid the kind ofconfusion which is evi-
dent in [Ka] for example. In this context, we could also formulate aGeneral Balance
Hypothesis for Loop Digraphs, but this would now be a statement about ordered triples

13In formal mathematical language, M1′-M4′ define a type of relation on the set of nodes in a loop
digraph, which is both reflexive, symmetric and transitive,hence a so-calledequivalence relation. In a
completely balanced loop digraph, there can be at most two equivalence classes - see Section 3.
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of nodes, rather than induced subgraphs on three nodes (triads). Such a hypothesis
would assert that, in certain kinds of social networks (the “kinds” being specified by
sociological criteria), the numbers of ordered triples(x, y, z), of not necessarily distinct
nodes, failing any of M1′-M4′ should be less than in a random loop digraph of the same
edge density. Note that, in this setting, if we haven nodes ande directed edges, then
the edge density isp = e/n2, so that the expected numbers of triples failing M1′-M4′

in the corresponding random loop digraph are given, respectively, by

Fail M1′:n3p2(1−p), Fail M2′:n3(1−p)3, Fail M3′:n3p2(1−p), Fail M4′:n3p2(1−p).
(7.1)

One may ask why sociologists don’t employ the notion of balance in this modified
form, but instead regard it specifically as a property of triads. I am not a sociologist,
so I cannot answer that question, but I will hazard a guess, namely that it is because
both reflexivity and symmetry, taken on their own merits, arenot sociological ideas
aboutcollectives, but rather purelypsychologicalones aboutindividuals. First, consider
reflexivity. That a person maintain a friendly relationshipwith himself seems like a
basic psychological survival mechanism14. This driving force within individuals also
promotes symmetry between pairs. When faced with a choice between maintaining
one’s dignity and continuing a futile pursuit of another’s affections, a person will usually
(though not always) choose the former option, especially given time. We also argued
this point in Section 6.

Once three or more people are involved, however15, things can get a lot more com-
plicated. Some explicitlysocial factors, such as status, can undermine balance, as we
have discussed at length in previous sections. Hence, in an intransitive triad, the two
low-status members may view their low relative status as a blow to their egos. On the
other hand, neither may be willing to let their jealousy of the other jeopardize their
friendship with the high status member. Even in a situation where two individuals share
a deep mutual antipathy, there may be a good reason for them tomaintain a common
friendship with a third person, especially if circumstances should one day force them to
have some dealings, since then their common friend can act asan effective go-between.
Hence, in SNA, balance is a useful baseline concept, and the degree to which a given
network is balanced or not indicates the extent to which other, explicitly social factors,
are at work.

Even so, the notion of balance, in its conventional usage, has serious limitations.
It does not take account of the fact that friendships or emnities can vary in strength
- in particular, it makes no distinction between emnity and simple indifference. It is
problematic to apply in large networks, where the absence ofan edge may be due to
the fact that the two individuals involved never got a chanceto interact, alternatively to
the fact that one or the other already has enough friends and simply has no time for any
more. Underlying all this is the problem, stated repeatedlyin this piece, that balance is
not a useful idea unless the pairwise social relationships are of a kind that they should a

14In everyday English, one can say that someone is “unbalanced”, or that they are “their own worst
enemy”. Both expressions roughly describe a person whose behaviour tends to do harm to themselves.
This fits in well with the fact that, as shown earlier, motto M2′ implies reflexivity.

15Indeed, a reasonable definition of the wordsocietyis that it is any collection of at least three people.
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priori be considered mutual. Expressing all this in terms ofgraphs, we would want our
graphs to be undirected, unweighted and have a small number of nodes.

Let us finish, therefore, by considering weighted digraphs in general. There seems to
an obvious, and useful, notion of “balance” in this wider context, but it is quite different
from the sociological notion. Namely, one could say that a network is “balanced” if, at
every node, the total weight of inward edges equals the totalweight of outward ones.
Note that an undirected, unweighted graph is automatically“balanced” in this sense, but
the converse need not hold. Indeed, an entire network may be “balanced” without any
induced subgraph at all, on two or more nodes, having the sameproperty. Triad type
10, consisting of a cycle of three directed edges, is “balanced” in this sense, without
being either symmetric or transitive. Hence, this notion of“balance” is totally different
from the sociological one, so much so that one really should use a different name16. The
concept seems natural, though, and can be applied, for example, to economic trading
networks. In such a network, the weight of a directed edgeA → B would represent
the monetary value of all goods whichA sells toB. “Balance” then simply means that
everyone is spending as much money as they are making. Of course, no real economic
system, in particular any system which includes the possibility of loaning money (a
banking system), will ever be quite “balanced”.

8. CONTROVERSY

As I explained in the introduction, the intial motivation for writing this piece came
after reading the introductory sections of Charles Kadushin’s recent textbook and real-
ising just how flawed his thinking was. I must admit I am ratherbaffled that nobody
else seems to have yet made the criticisms outlined here. There are other books on SNA
which treat the same concepts with much greater care and accuracy, for example Scott’s
book mentioned earlier [S]. Kadushin’s book was published by Oxford University Press
and has been formally reviewed by a number of experts in SNA. It seems to have been
distributed widely among teachers and students. Surely it should not have been left to a
novice in the field to point out its deficiencies ?
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the wordbalancedis used about (undirected) graphs, but has nothing to do withthe number of edges in
a triad. A graph is said tobalancedif no proper induced subgraph has a strictly higher ratio of edges to
nodes. More precisely,G is balanced if, for every induced subgraphH of G, one hase(H)

v(H) ≤ e(G)
v(G) .
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FIGURE 4. Zachary’s graph. In the graph on page 456 of [Z] the edge
{23, 34} is missing, but it is present in the matrix on page 457.
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