On m-covering families of Beatty sequences with irrational moduli

Peter Hegarty

Chalmers University of Technology and University of Gothenburg

11 January, 2011
We use \bigcup to denote ordinary union of sets and \bigcup^* to denote multiset union.
We use \bigcup to denote ordinary union of sets and \bigcup^* to denote multiset union.

For example, if $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$ then

$$A \cup B = \{1, 2, 3, 4, 5\}, \quad A \cup^* B = \{1, 2, 3, 3, 4, 5\}.$$
We use \bigcup to denote ordinary union of sets and \bigcup^* to denote multiset union.

For example, if $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$ then

$$A \cup B = \{1, 2, 3, 4, 5\}, \quad A \cup^* B = \{1, 2, 3, 3, 4, 5\}.$$

If A is a set and $m \in \mathbb{N}$, we denote by mA the multiset union of m copies of A.
Beatty’s Theorem
Beatty’s Theorem

Let \(\alpha, \beta \) be positive real numbers. Then

\[
\{ \lfloor n\alpha \rfloor : n \in \mathbb{N} \} \cup^* \{ \lfloor n\beta \rfloor : n \in \mathbb{N} \} = \mathbb{N}
\]

if and only if \(\alpha \) and \(\beta \) are irrational and satisfy

\[
\frac{1}{\alpha} + \frac{1}{\beta} = 1.
\]
Beatty’s Theorem

Let α, β be positive real numbers. Then

$$\{[n\alpha] : n \in \mathbb{N}\} \cup^* \{[n\beta] : n \in \mathbb{N}\} = \mathbb{N}$$

if and only if α and β are irrational and satisfy

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1.$$

Wythoff Nim
Beatty’s Theorem

Let α, β be positive real numbers. Then

$$\{[n\alpha] : n \in \mathbb{N}\} \cup^* \{[n\beta] : n \in \mathbb{N}\} = \mathbb{N}$$

if and only if α and β are irrational and satisfy

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1.$$

Wythoff Nim

The P-positions of Wythoff Nim are the pairs

$$\{\{[n\phi], [n\phi^2]\} : n \in \mathbb{N}_0\},$$

where

$$\frac{1}{\phi} + \frac{1}{\phi^2} = 1 = \phi^2 - \phi \Rightarrow \phi = \frac{1 + \sqrt{5}}{2}. $$
Permutations
Permutations

The permutation $\pi : \mathbb{N}_0 \to \mathbb{N}_0$ defined by

$$\pi([n\phi]) = [n\phi^2], \quad \pi = \pi^{-1},$$

has the property that

$$\{\pi(n) - n : n \in \mathbb{N}_0\} = \mathbb{Z}. $$
Permutations

The permutation $\pi : \mathbb{N}_0 \to \mathbb{N}_0$ defined by

$$\pi([n\phi]) = [n\phi^2], \quad \pi = \pi^{-1},$$

has the property that

$$\{\pi(n) - n : n \in \mathbb{N}_0\} = \mathbb{Z}.$$

i.e.: every integer difference occurs exactly once. In fact, π is the ‘most natural’ permutation of \mathbb{N}_0 with this property.
\textbf{Permutations}

The permutation \(\pi : \mathbb{N}_0 \rightarrow \mathbb{N}_0 \) defined by

\[\pi([n\phi]) = [n\phi^2], \quad \pi = \pi^{-1}, \]

has the property that

\[\{ \pi(n) - n : n \in \mathbb{N}_0 \} = \mathbb{Z}. \]

i.e.: every integer difference occurs exactly once. In fact, \(\pi \) is the ‘most natural’ permutation of \(\mathbb{N}_0 \) with this property.

I won’t pursue this line any further here, but see my paper with U. Larsson:

k-Wythoff Nim
\textbf{k-Wythoff Nim}

One allows diagonal moves \((x, y) \rightarrow (r, s)\), where \(x \geq r, y \geq s, \max\{x - r, y - s\} > 0\) and

\[| (x - r) - (y - s) | < k. \]
\textbf{k-Wythoff Nim}

One allows diagonal moves \((x, y) \rightarrow (r, s)\), where \(x \geq r,\) \(y \geq s,\) \(\max\{x - r, y - s\} > 0\) and

\[|(x - r) - (y - s)| < k.\]

Then Fraenkel showed that the \(P\)-positions are given by the pairs \(\{[[nr_k], [ns_k]] : n \in \mathbb{N}_0\}\), where

\[\frac{1}{r_k} + \frac{1}{s_k} = 1, \quad s_k - r_k = k,\]
\[k\text{-Wythoff Nim} \]

One allows diagonal moves \((x, y) \rightarrow (r, s)\), where \(x \geq r,\ y \geq s,\ \max\{x - r, y - s\} > 0\) and

\[|(x - r) - (y - s)| < k. \]

Then Fraenkel showed that the \(P\)-positions are given by the pairs \(\{[[nr_k], [ns_k]] : n \in \mathbb{N}_0\}\), where

\[\frac{1}{r_k} + \frac{1}{s_k} = 1,\quad s_k - r_k = k, \]

\[\Rightarrow r_k = \frac{2 - k + \sqrt{k^2 + 4}}{2}. \]
Beatty’s Theorem for exact m-covers
Beatty's Theorem for exact m-covers

Let $m \in \mathbb{N}$. Let α, β be positive real numbers. Then

$$\{[n\alpha] : n \in \mathbb{N}\} \cup^* \{[n\beta] : n \in \mathbb{N}\} = m\mathbb{N}$$

if and only if α and β are irrational and satisfy

$$\frac{1}{\alpha} + \frac{1}{\beta} = m.$$
Beatty’s Theorem for exact \(m \)-covers

Let \(m \in \mathbb{N} \). Let \(\alpha, \beta \) be positive real numbers. Then

\[
\{\lfloor n\alpha \rfloor : n \in \mathbb{N}\} \cup^* \{\lfloor n\beta \rfloor : n \in \mathbb{N}\} = m\mathbb{N}
\]

if and only if \(\alpha \) and \(\beta \) are irrational and satisfy

\[
\frac{1}{\alpha} + \frac{1}{\beta} = m.
\]

This is a direct generalisation of Beatty’s theorem, and seems to have been first observed by K. O’Bryant (2002).
Beatty’s Theorem for exact m-covers

Let $m \in \mathbb{N}$. Let α, β be positive real numbers. Then

$$\{[n\alpha] : n \in \mathbb{N}\} \cup^* \{[n\beta] : n \in \mathbb{N}\} = m\mathbb{N}$$

if and only if α and β are irrational and satisfy

$$\frac{1}{\alpha} + \frac{1}{\beta} = m.$$

This is a direct generalisation of Beatty’s theorem, and seems to have been first observed by K. O’Bryant (2002).

It was rediscovered by Larsson (2009) in his study of various generalisations of k-Wythoff Nim, including a certain blocking game.
We shall henceforth employ the following notation for Beatty sequences:

\[S(\alpha, \beta) := \{\lfloor n\alpha + \beta \rfloor : n \in \mathbb{N}\}. \]
We shall henceforth employ the following notation for Beatty sequences:

\[S(\alpha, \beta) := \{ [n\alpha + \beta] : n \in \mathbb{N} \}. \]

\textbf{Uspensky's Theorem (1927)}
We shall henceforth employ the following notation for Beatty sequences:

\[S(\alpha, \beta) := \{[n\alpha + \beta] : n \in \mathbb{N}\}. \]

Upsensky’s Theorem (1927)

Let \(\alpha_1, \ldots, \alpha_k \) be positive real numbers. Then

\[S(\alpha_1, 0) \cup^* \cdots \cup^* S(\alpha_k, 0) = \mathbb{N} \]

if and only if either

(i) \(k = 1 \) and \(\alpha_1 = 1 \), or

(ii) \(k = 2 \), \(\alpha_1 \not\in \mathbb{Q} \) and \(1/\alpha_1 + 1/\alpha_2 = 1 \).
We shall henceforth employ the following notation for Beatty sequences:

\[S(\alpha, \beta) := \{ [n\alpha + \beta] : n \in \mathbb{N} \} . \]

Upensky’s Theorem (1927)

Let \(\alpha_1, \ldots, \alpha_k \) be positive real numbers. Then

\[S(\alpha_1, 0) \cup^* \cdots \cup^* S(\alpha_k, 0) = \mathbb{N} \]

if and only if either

(i) \(k = 1 \) and \(\alpha_1 = 1 \), or
(ii) \(k = 2 \), \(\alpha_1 \notin \mathbb{Q} \) and \(1/\alpha_1 + 1/\alpha_2 = 1 \).

This result indicates that it might not be so easy to generalise Wythoff Nim to more than 2 piles in a ‘nice’ way. Fraenkel has proposed a generalisation to any number of piles, but these games are still not well understood.
\textbf{m-COVER VERSION}
m-COVER VERSION

Theorem (H, 2010)

Let $m \in \mathbb{N}$. Let $\alpha_1, \ldots, \alpha_k$ be positive irrational numbers satisfying

$$\sum_{i=1}^{k} \frac{1}{\alpha_i} = m.$$

Then

$$S(\alpha_1, 0) \cup^* \cdots \cup^* S(\alpha_k, 0) = m\mathbb{N}$$

if and only if:
\textbf{m-COVER VERSION}

\textbf{Theorem (H, 2010)}

Let $m \in \mathbb{N}$. Let $\alpha_1, \ldots, \alpha_k$ be positive irrational numbers satisfying

$$\sum_{i=1}^{k} \frac{1}{\alpha_i} = m.$$

Then

$$S(\alpha_1, 0) \cup^* \cdots \cup^* S(\alpha_k, 0) = m\mathbb{N}$$

if and only if:

- k is even, $k = 2l$ say, and the α_i can be reordered so that

 $$\frac{1}{\alpha_{2i-1}} + \frac{1}{\alpha_{2i}} \in \mathbb{Z}, \quad i = 1, \ldots, l.$$
Idea of Proof

- Set $\theta_i := 1/\alpha_i$. The sequences form an eventual exact m-cover if and only if the density condition is satisfied and the function $\epsilon: \mathbb{N} \to \mathbb{N}$ defined by

$$
\epsilon(n) := \sum_{i=1}^{k} \{n\theta_i\}, \quad \text{(here } \{x\} := x - \lfloor x \rfloor)$$

is ultimately constant.
- Weyl equidistribution is then used to reduce the problem to the following arithmetical fact:
Weyl equidistribution is then used to reduce the problem to the following arithmetical fact:

Proposition

Let $a_1, ..., a_\mu, c_1, ..., c_\nu$ be positive integers and $b_1, ..., b_\mu, d_1, ..., d_\nu$ be any integers. If, for every $t \in \mathbb{Z}$, we have an equality of multisets

$$\bigstar \bigcup_{i=1}^{\mu} S(a_i, tb_i) = \bigstar \bigcup_{j=1}^{\nu} S(c_j, td_j),$$

then $\mu = \nu$, and we can reorder so that, for each $i = 1, ..., \mu$, $a_i = c_i$ and $b_i \equiv d_i \pmod{a_i}$.
No ‘reasonable’ sufficient conditions are known for a family of arithmetic progressions to exactly cover \mathbb{Z}, though it’s known that the moduli cannot all be distinct (Erdős).
> No ‘reasonable’ sufficient conditions are known for a family of arithmetic progressions to exactly cover \(\mathbb{Z} \), though it’s known that the moduli cannot all be distinct (Erdős).

> For distinct rational moduli, there is the famous **Tiling Conjecture** of Fraenkel, which states that if \(k \geq 3 \) and the \(\alpha_i \) are distinct positive rationals, then

\[
\star \bigcup_{i=1}^{k} S(\alpha_i, \beta_i) = \mathbb{N} \iff \alpha_i = \frac{2^k - 1}{2^{k-i}}, \quad i = 1, \ldots, k.
\]
No ‘reasonable’ sufficient conditions are known for a family of arithmetic progressions to exactly cover \(\mathbb{Z} \), though it’s known that the moduli cannot all be distinct (Erdős).

For distinct rational moduli, there is the famous Tiling Conjecture of Fraenkel, which states that if \(k \geq 3 \) and the \(\alpha_i \) are distinct positive rationals, then

\[
* \bigcup_{i=1}^{k} S(\alpha_i, \beta_i) = \mathbb{N} \iff \alpha_i = \frac{2^k - 1}{2k-i}, \quad i = 1, \ldots, k.
\]

Fraenkel has constructed various multi-pile subtraction games (e.g.: Rat Game) whose \(P \)-positions correspond to complementary rational Beatty sequences.
For $m = 1$, Graham (1973) reduced the classification of eventual exact m-covers of \mathbb{N} by Beatty sequences at least one of whose moduli is irrational, to the integer moduli case.
For $m = 1$, Graham (1973) reduced the classification of eventual exact m-covers of \mathbb{N} by Beatty sequences at least one of whose moduli is irrational, to the integer moduli case.

Our approach extends the classification in a sense to $m > 1$, but the arithmetical structure is more complicated than in the homogeneous case.
Fraenkel: Can one construct (invariant) subtraction games whose \(P \)-positions correspond, in some sense, to ‘fractional Beatty sequences’?
Fraenkel: Can one construct (invariant) subtraction games whose P-positions correspond, in some sense, to ‘fractional Beatty sequences’?

The first step would be to have a ‘fractional version’ of Beatty’s theorem, i.e.: a version for pairs $\{\alpha_1, \alpha_2\}$ of positive irrationals satisfying

$$\frac{1}{\alpha_1} + \frac{1}{\alpha_2} = m,$$

where now $m \in \mathbb{Q}$.
Fraenkel: Can one construct (invariant) subtraction games whose P-positions correspond, in some sense, to ‘fractional Beatty sequences’?

The first step would be to have a ‘fractional version’ of Beatty’s theorem, i.e.: a version for pairs $\{\alpha_1, \alpha_2\}$ of positive irrationals satisfying

\[
\frac{1}{\alpha_1} + \frac{1}{\alpha_2} = m,
\]

where now $m \in \mathbb{Q}$.

Such a result is given in my paper. It is technical to state in full, but the main points are the following:
Let α_1, α_2 be positive irrationals satisfying

$$\frac{1}{\alpha_1} + \frac{1}{\alpha_2} = \frac{p}{q},$$

where the fraction is written in lowest terms.
Let α_1, α_2 be positive irrationals satisfying

$$\frac{1}{\alpha_1} + \frac{1}{\alpha_2} = \frac{p}{q},$$

where the fraction is written in lowest terms. For each $n \in \mathbb{N}$, let

$$r(n) := \#\{ k : [k\alpha_1] = n \} + \#\{ k : [k\alpha_2] = n \}.$$
Let α_1, α_2 be positive irrationals satisfying
\[
\frac{1}{\alpha_1} + \frac{1}{\alpha_2} = \frac{p}{q},
\]
where the fraction is written in lowest terms. For each $n \in \mathbb{N}$, let
\[
r(n) := \#\{k : [k\alpha_1] = n\} + \#\{k : [k\alpha_2] = n\}.
\]

- If $q = 2$, then $r(n) \in \{[p/2], \lceil p/2 \rceil\}$ for every $n \in \mathbb{N}$.

Peter Hegarty
Chalmers University of Technology and University of Gothenburg

On m-covering families of Beatty sequences with irrational moduli.
Let α_1, α_2 be positive irrationals satisfying

$$\frac{1}{\alpha_1} + \frac{1}{\alpha_2} = \frac{p}{q},$$

where the fraction is written in lowest terms.

For each $n \in \mathbb{N}$, let

$$r(n) := \#\{k : [k\alpha_1] = n\} + \#\{k : [k\alpha_2] = n\}.$$

- If $q = 2$, then $r(n) \in \{[p/2], \lceil p/2 \rceil\}$ for every $n \in \mathbb{N}$.
- If $q > 2$, then either

 $$r(n) \in \{[p/q], \lceil p/q \rceil, \lceil p/q \rceil + 1\}, \quad \text{for every } n \in \mathbb{N}$$

 or

 $$r(n) \in \{[p/q] - 1, [p/q], \lceil p/q \rceil\}, \quad \text{for every } n \in \mathbb{N},$$

 depending on the values of $\{1/\alpha_1\}$ and $p \pmod{q}$.

Peter Hegarty Chalmers University of Technology and University of Gothenburg

On m-covering families of Beatty sequences with irrational moduli
Let α_1, α_2 be positive irrationals satisfying
\[
\frac{1}{\alpha_1} + \frac{1}{\alpha_2} = \frac{p}{q},
\]
where the fraction is written in lowest terms.
For each $n \in \mathbb{N}$, let
\[
r(n) := \# \{ k : [k\alpha_1] = n \} + \# \{ k : [k\alpha_2] = n \}.
\]

- If $q = 2$, then $r(n) \in \{[p/2], [p/2]\}$ for every $n \in \mathbb{N}$.
- If $q > 2$, then either
 \[
r(n) \in \{[p/q], [p/q], [p/q] + 1\}, \quad \text{for every } n \in \mathbb{N}
 \]
or
 \[
r(n) \in \{[p/q] - 1, [p/q], [p/q]\}, \quad \text{for every } n \in \mathbb{N},
 \]
depending on the values of $\{1/\alpha_1\}$ and $p \pmod{q}$.
Moreover, the densities of the sets on which $r(n)$ is constant
can be computed.