Att lämna in onsdag den 1 oktober

1. Below we shall define three sequences (R_n) , (S_n) , (T_n) of positive integers. Your task is to show that, for all n > 0,

$$R_n = S_n = T_n = C_n,$$

where C_n is the n:th Catalan number.

(a) Let R_n denote the number of sequences $a_1 a_2 \cdots a_n$ of n positive integers which are non-decreasing, i.e.:

$$a_i \leq a_{i+1}, \quad i = 1, ..., n-1,$$

and such that

$$a_i \leq i, \quad i = 1, ..., n.$$

For example, $R_3 = 5$ since there are the following five allowed sequences of length three:

(b) S_n är antalet sätt att dela upp en regulär (n+2)-hörning i n st. triangler genom att rita in n-1 st. diagonala linjer.

(OBS! If you don't understand what I mean, ask me or one of the other övningsledarna for further explanation).

(c) T_n is the number of *n*-tuples $(x_1,...,x_n)$ of non-negative integers such that

$$0 < x_1 < x_2 < \dots < x_n < n$$

and

$$n+1$$
 divides $\sum_{i=1}^{n} x_i$.

HINT: For parts (a) and (b) it is probably easiest to show that R_n and S_n both satisfy the same recurrence relation as that for C_n which we learned in class. However, for part (c) it is probably easier to prove directly that

$$T_n = rac{1}{n+1} \left(egin{array}{c} 2n \ n \end{array}
ight).$$

- **2.** Find a formula similar to that in demonstration exercise no. 2, Wednesday, Sept. 17, for the number A_n of ways that n married couples can stand in a line so that noone is standing next to their spouse.
- 3. Prove that the only integer solutions to the equation

$$x^4 - 2y^2 = 1$$

are $x = \pm 1, y = 0$.

(Hint: Fundamental theorem of atirhmetic).

4. On the other hand, prove that the equation

$$x^2 - 2y^2 = 1$$

has infinitely many integer solutions.

(Hint: As you know from studying complex numbers, $z\overline{z} = |z|^2$ when $z = x + \sqrt{-1}y$ for real numbers x, y).

5. Define the function $\mu: \mathbf{N} \to \mathbf{N}$ as follows:

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1, \\ (-1)^k, & \text{if } n \text{ is a product of } k \text{ DISTINCT primes,} \\ 0, & \text{otherwise.} \end{cases}$$

A famous theorem of Euler says that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.\tag{1}$$

Using (1), compute

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^2}.$$